On the performance metrics for cyber-physical attack detection in smart grid
| annif.suggestions | data security|information networks|data systems|safety and security|automation systems|systems of supervision|data protection|steering systems|adjustment systems|smart grids|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p3927|http://www.yso.fi/onto/yso/p7349|http://www.yso.fi/onto/yso/p13920|http://www.yso.fi/onto/yso/p13003|http://www.yso.fi/onto/yso/p3636|http://www.yso.fi/onto/yso/p15802|http://www.yso.fi/onto/yso/p15400|http://www.yso.fi/onto/yso/p29493 | en |
| dc.contributor.author | Diaba, Sayawu Yakubu | |
| dc.contributor.author | Shafie-khah, Miadreza | |
| dc.contributor.author | Elmusrati, Mohammed | |
| dc.contributor.department | Digital Economy | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-1691-5355 | - |
| dc.contributor.orcid | https://orcid.org/0000-0001-9304-6590 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2022-02-03T06:16:57Z | |
| dc.date.accessioned | 2025-06-25T13:22:54Z | |
| dc.date.available | 2022-02-03T06:16:57Z | |
| dc.date.issued | 2022-01-21 | |
| dc.description.abstract | Supervisory Control and Data Acquisition (SCADA) systems play an important role in Smart Grid. Though the rapid evolution provides numerous advantages it is one of the most desired targets for malicious attackers. So far security measures deployed for SCADA systems detect cyber-attacks, however, the performance metrics are not up to the mark. In this paper, we have deployed an intrusion detection system to detect cyber-physical attacks in the SCADA system concatenating the Convolutional Neural Network and Gated Recurrent Unit as a collective approach. Extensive experiments are conducted using a benchmark dataset to validate the performance of the proposed intrusion detection model in a smart metering environment. Parameters such as accuracy, precision, and false-positive rate are compared with existing deep learning models. The proposed concatenated approach attains 98.84% detection accuracy which is much better than existing techniques. | - |
| dc.description.notification | ©The Author(s) 2022 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 10 | - |
| dc.format.pagerange | 1-10 | - |
| dc.identifier.olddbid | 15441 | |
| dc.identifier.oldhandle | 10024/13500 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/2013 | |
| dc.identifier.urn | URN:NBN:fi-fe2022020317427 | - |
| dc.language.iso | eng | - |
| dc.publisher | Springer | - |
| dc.relation.doi | 10.1007/s00500-022-06761-1 | - |
| dc.relation.funder | Evald and Hilda Nissi Foundation | - |
| dc.relation.ispartofjournal | Soft Computing | - |
| dc.relation.issn | 1433-7479 | - |
| dc.relation.issn | 1432-7643 | - |
| dc.relation.url | https://doi.org/10.1007/s00500-022-06761-1 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | WOS:000745450800002 | - |
| dc.source.identifier | Scopus:85123245377 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/13500 | |
| dc.subject | Supervisory control and data acquisition (SCADA) systems | - |
| dc.subject | Intrusion detection system (IDS) | - |
| dc.subject | Industrial control system (ICS) | - |
| dc.subject | Cyber-physical security | - |
| dc.subject | Convolutional neural network (CNN) | - |
| dc.subject | Gated recurrent unit (GRU) | - |
| dc.subject.discipline | fi=Tietoliikennetekniikka|en=Telecommunications Engineering| | - |
| dc.subject.yso | smart grids | - |
| dc.title | On the performance metrics for cyber-physical attack detection in smart grid | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Diaba_Shafie-khah_Elmusrati_2022.pdf
- Size:
- 1.01 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
