On the performance metrics for cyber-physical attack detection in smart grid

annif.suggestionsdata security|information networks|data systems|safety and security|automation systems|systems of supervision|data protection|steering systems|adjustment systems|smart grids|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p3927|http://www.yso.fi/onto/yso/p7349|http://www.yso.fi/onto/yso/p13920|http://www.yso.fi/onto/yso/p13003|http://www.yso.fi/onto/yso/p3636|http://www.yso.fi/onto/yso/p15802|http://www.yso.fi/onto/yso/p15400|http://www.yso.fi/onto/yso/p29493en
dc.contributor.authorDiaba, Sayawu Yakubu
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-02-03T06:16:57Z
dc.date.accessioned2025-06-25T13:22:54Z
dc.date.available2022-02-03T06:16:57Z
dc.date.issued2022-01-21
dc.description.abstractSupervisory Control and Data Acquisition (SCADA) systems play an important role in Smart Grid. Though the rapid evolution provides numerous advantages it is one of the most desired targets for malicious attackers. So far security measures deployed for SCADA systems detect cyber-attacks, however, the performance metrics are not up to the mark. In this paper, we have deployed an intrusion detection system to detect cyber-physical attacks in the SCADA system concatenating the Convolutional Neural Network and Gated Recurrent Unit as a collective approach. Extensive experiments are conducted using a benchmark dataset to validate the performance of the proposed intrusion detection model in a smart metering environment. Parameters such as accuracy, precision, and false-positive rate are compared with existing deep learning models. The proposed concatenated approach attains 98.84% detection accuracy which is much better than existing techniques.-
dc.description.notification©The Author(s) 2022 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange1-10-
dc.identifier.olddbid15441
dc.identifier.oldhandle10024/13500
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2013
dc.identifier.urnURN:NBN:fi-fe2022020317427-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.doi10.1007/s00500-022-06761-1-
dc.relation.funderEvald and Hilda Nissi Foundation-
dc.relation.ispartofjournalSoft Computing-
dc.relation.issn1433-7479-
dc.relation.issn1432-7643-
dc.relation.urlhttps://doi.org/10.1007/s00500-022-06761-1-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000745450800002-
dc.source.identifierScopus:85123245377-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13500
dc.subjectSupervisory control and data acquisition (SCADA) systems-
dc.subjectIntrusion detection system (IDS)-
dc.subjectIndustrial control system (ICS)-
dc.subjectCyber-physical security-
dc.subjectConvolutional neural network (CNN)-
dc.subjectGated recurrent unit (GRU)-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysosmart grids-
dc.titleOn the performance metrics for cyber-physical attack detection in smart grid-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Diaba_Shafie-khah_Elmusrati_2022.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat