Machine learning‐based prediction of osteoporosis in postmenopausal women with clinical examined features : A quantitative clinical study

annif.suggestionsosteoporosis|pre-emption|forecasts|older people|bone fractures|fractures|machine learning|medicine (science)|skeletal system|women|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p10781|http://www.yso.fi/onto/yso/p19552|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p2433|http://www.yso.fi/onto/yso/p23619|http://www.yso.fi/onto/yso/p13977|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p469|http://www.yso.fi/onto/yso/p7233|http://www.yso.fi/onto/yso/p16991en
dc.contributor.authorUllah, Kainat A.
dc.contributor.authorRehman, Faisal
dc.contributor.authorAnwar, Muhammad
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorRiaz, Naveed
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-02-22T10:06:10Z
dc.date.accessioned2025-06-25T13:11:12Z
dc.date.available2024-02-22T10:06:10Z
dc.date.issued2023-10-25
dc.description.abstractOsteoporosis is a skeletal disease that is commonly seen in older people but often neglected due to its silent nature. To overcome the issue of osteoporosis in men and women, we proposed an advanced prediction model with the help of machine learning techniques which can help to identify the potential occurrence of this bone disease by its advanced screening tools. To achieve more reliable and accurate results, various machine-learning techniques were applied to the presented data sets. Moreover, we also compared the performance of our results with other existing algorithms to solely focus on the advanced features of the proposed methodology. The two data sets, the clinical tests of patients in Taiwan and medical reports of postmenopausal women in Korea through Korean Health and Nutrition Examination Surveys (2010–2011) were considered in this study. To predict bone disorders, we utilized the data about females and developed a system using artificial neural networks, support vector machines, and K-nearest neighbor. To compare the performance of the model Area under the Receiver Operating Characteristic Curve and other evaluation metrics were compared. The achieved results from all the algorithms and compared them with Osteoporosis Self-Assessment Tool for Asians and the results were noticeably better and more reliable than existing systems due to the involvement of ML. Using machine learning techniques to predict these types of diseases is better because physicians and patients can take early action to prevent the consequences in advance.-
dc.description.notification© 2023 The Authors. Health Science Reports published by Wiley Periodicals LLC. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.identifier.olddbid19982
dc.identifier.oldhandle10024/16931
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1651
dc.identifier.urnURN:NBN:fi-fe202402228290-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1002/hsr2.1656-
dc.relation.funderAcademy of Finland-
dc.relation.funderUniversity of Vaasa-
dc.relation.ispartofjournalHealth Science Reports-
dc.relation.issn2398-8835-
dc.relation.issue10-
dc.relation.urlhttps://doi.org/10.1002/hsr2.1656-
dc.relation.volume6-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001094951500023-
dc.source.identifierScopus:85174916333-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16931
dc.subjectclassification-
dc.subjectosteoporotic fractures-
dc.subjectprediction-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysoosteoporosis-
dc.subject.ysomachine learning-
dc.titleMachine learning‐based prediction of osteoporosis in postmenopausal women with clinical examined features : A quantitative clinical study-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ullah_Rehman_Anwar_Faheem_Riaz_2023.pdf
Size:
743.48 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat