Efficient state of charge estimation of lithium-ion batteries in electric vehicles using evolutionary intelligence-assisted GLA–CNN–Bi-LSTM deep learning model

annif.suggestionsmachine learning|neural networks (information technology)|deep learning|accumulators|optimisation|electric vehicles|lithium-ion batteries|errors|Pakistan|electrical engineering|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2306|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p27472|http://www.yso.fi/onto/yso/p29358|http://www.yso.fi/onto/yso/p148|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p1585en
dc.contributor.authorKhan, Muhammad Kamran
dc.contributor.authorHouran, Mohamad Abou
dc.contributor.authorKauhaniemi, Kimmo
dc.contributor.authorZafar, Muhammad Hamza
dc.contributor.authorMansoor, Majad
dc.contributor.authorRashid, Saad
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-01-15T06:55:43Z
dc.date.accessioned2025-06-25T13:53:19Z
dc.date.available2025-01-15T06:55:43Z
dc.date.issued2024-07-30
dc.description.abstractThe battery's performance heavily influences the safety, dependability, and operational efficiency of electric vehicles (EVs). This paper introduces an innovative hybrid deep learning architecture that dramatically enhances the estimation of the state of charge (SoC) of lithium-ion (Li-ion) batteries, crucial for efficient EV operation. Our model uniquely integrates a convolutional neural network (CNN) with bidirectional long short-term memory (Bi-LSTM), optimized through evolutionary intelligence, enabling an advanced level of precision in SoC estimation. A novel aspect of this work is the application of the Group Learning Algorithm (GLA) to tune the hyperparameters of the CNN–Bi-LSTM network meticulously. This approach not only refines the model's accuracy but also significantly enhances its efficiency by optimizing each parameter to best capture and integrate both spatial and temporal information from the battery data. This is in stark contrast to conventional models that typically focus on either spatial or temporal data, but not both effectively. The model's robustness is further demonstrated through its training across six diverse datasets that represent a range of EV discharge profiles, including the Highway Fuel Economy Test (HWFET), the US06 test, the Beijing Dynamic Stress Test (BJDST), the dynamic stress test (DST), the federal urban driving schedule (FUDS), and the urban development driving schedule (UDDS). These tests are crucial for ensuring that the model can perform under various real-world conditions. Experimentally, our hybrid model not only surpasses the performance of existing LSTM and CNN frameworks in tracking SoC estimation but also achieves an impressively quick convergence to true SoC values, maintaining an average root mean square error (RMSE) of less than 1 %. Furthermore, the experimental outcomes suggest that this new deep learning methodology outstrips conventional approaches in both convergence speed and estimation accuracy, thus promising to significantly enhance battery life and overall EV efficiency.-
dc.description.notification© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent20-
dc.identifier.olddbid22357
dc.identifier.oldhandle10024/18641
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2932
dc.identifier.urnURN:NBN:fi-fe202501153868-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.heliyon.2024.e35183-
dc.relation.ispartofjournalHeliyon-
dc.relation.issn2405-8440-
dc.relation.issue15-
dc.relation.urlhttps://doi.org/10.1016/j.heliyon.2024.e35183-
dc.relation.volume10-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001290390500001-
dc.source.identifierScopus:85200362892-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18641
dc.subjectConvolutional neural network (CNN); Bidirectional long short-term memory (bi-LSTM); Group learning algorithm (GLA); State of charge (SoC); Electric vehicles (EVs)-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysodeep learning-
dc.subject.ysoelectric vehicles-
dc.titleEfficient state of charge estimation of lithium-ion batteries in electric vehicles using evolutionary intelligence-assisted GLA–CNN–Bi-LSTM deep learning model-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Khan_Houran_Kauhaniemi_Hamza Zafar_Mansoor_Rashid_2024.pdf
Size:
16.2 MB
Format:
Adobe Portable Document Format

Kokoelmat