An agent-based simulation and logistics optimization model for managing uncertain demand in forest supply chains

annif.suggestionssupply chains|logistics|modelling (representation)|simulation|optimisation|geographic information systems|transport|geographic information|location|platoons|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19415|http://www.yso.fi/onto/yso/p9140|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p4787|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p16923|http://www.yso.fi/onto/yso/p7285|http://www.yso.fi/onto/yso/p2152|http://www.yso.fi/onto/yso/p1467|http://www.yso.fi/onto/yso/p22577en
dc.contributor.authorHelo, Petri
dc.contributor.authorRouzafzoon, Javad
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-0501-2727-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-03-07T13:15:11Z
dc.date.accessioned2025-06-25T13:15:17Z
dc.date.available2024-03-07T13:15:11Z
dc.date.issued2023-10-10
dc.description.abstractThis paper aims to model and minimize transportation costs in collecting tree logs from several regions and delivering them to the nearest collection point. This paper presents agent-based modeling (ABM) that comprehensively encompasses the key elements of the pickup and delivery supply chain model and presents the units as autonomous agents communicating. The modeling combines components such as geographic information systems (GIS) routing, potential facility locations, random tree log pickup locations, fleet sizing, trip distance, and truck and train transportation. ABM models the entire pickup and delivery operation, and modeling outcomes are presented by time series charts such as the number of trucks in use, facilities inventory, and travel distance. In addition, various simulation scenarios are used to investigate potential facility locations and truck numbers and determine the optimal facility location and fleet size.-
dc.description.notification© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.identifier.olddbid20076
dc.identifier.oldhandle10024/17011
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1792
dc.identifier.urnURN:NBN:fi-fe2024030710360-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.sca.2023.100042-
dc.relation.ispartofjournalSupply Chain Analytics-
dc.relation.issn2949-8635-
dc.relation.urlhttps://doi.org/10.1016/j.sca.2023.100042-
dc.relation.volume4-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17011
dc.subjectAgent-based simulation-
dc.subjectPickup and delivery-
dc.subjectFacility location-
dc.subjectFleet optimization-
dc.subjectSupply chain management and Logistics-
dc.subjectGeographical information system-
dc.subject.disciplinefi=Tuotantotalous|en=Industrial Management|-
dc.titleAn agent-based simulation and logistics optimization model for managing uncertain demand in forest supply chains-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Helo_Rouzafzoon_2023.pdf
Size:
6.72 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat