Generalized boundary triples, II. Some applications of generalized boundary triples and form domain invariant Nevanlinna functions

annif.suggestionsoperators|mathematics|partial differential equations|boundaries|functional analysis|Hilbert space|university libraries|analytic functions|differential equations|functions (mathematical methods)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p15714|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p12392|http://www.yso.fi/onto/yso/p2856|http://www.yso.fi/onto/yso/p17780|http://www.yso.fi/onto/yso/p27794|http://www.yso.fi/onto/yso/p10184|http://www.yso.fi/onto/yso/p7096|http://www.yso.fi/onto/yso/p3552|http://www.yso.fi/onto/yso/p7097en
dc.contributor.authorDerkach, Volodymyr
dc.contributor.authorHassi, Seppo
dc.contributor.authorMalamud, Mark
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-0102-1087-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-01-12T13:26:34Z
dc.date.accessioned2025-06-25T13:41:31Z
dc.date.available2023-01-12T13:26:34Z
dc.date.issued2022-05-12
dc.description.abstractThe paper is a continuation of Part I and contains several further results on generalized boundary triples, the corresponding Weyl functions, and applications of this technique to ordinary and partial differential operators. We establish a connection between Post's theory of boundary pairs of closed nonnegative forms on the one hand and the theory of generalized boundary triples of nonnegative symmetric operators on the other hand. Applications to the Laplacian operator on bounded domains with smooth, Lipschitz, and even rough boundary, as well as to mixed boundary value problem for the Laplacian are given. Other applications concern with the momentum, Schrödinger, and Dirac operators with local point interactions. These operators demonstrate natural occurrence of -generalized boundary triples with domain invariant Weyl functions and essentially selfadjoint reference operators A0.-
dc.description.notification© 2022 The Authors. Mathematische Nachrichten published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent50-
dc.format.pagerange1113-1162-
dc.identifier.olddbid17580
dc.identifier.oldhandle10024/15042
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2555
dc.identifier.urnURN:NBN:fi-fe202301122651-
dc.language.isoeng-
dc.publisherWiley-
dc.relation.doi10.1002/mana.202000049-
dc.relation.ispartofjournalMathematische Nachrichten-
dc.relation.issn1522-2616-
dc.relation.issn0025-584X-
dc.relation.issue6-
dc.relation.urlhttps://doi.org/10.1002/mana.202000049-
dc.relation.volume295-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000794041800001-
dc.source.identifierScopus:85130052961-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15042
dc.subjectboundary triple-
dc.subjectboundary value problem-
dc.subjectDirichlet-to-Neumann type map-
dc.subjectGreen's identities-
dc.subjectresolvent-
dc.subjectselfadjoint extension-
dc.subjectsymmetric operator-
dc.subjecttrace operator-
dc.subjectWeyl function-
dc.subject.disciplinefi=Matematiikka|en=Mathematics|-
dc.titleGeneralized boundary triples, II. Some applications of generalized boundary triples and form domain invariant Nevanlinna functions-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Derkach_Hassi_Malamud_2022.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat