Enhancing DC microgrid performance through machine learning-optimized droop control
annif.suggestions | renewable energy sources|electrical power networks|energy production (process industry)|microgrids|distributed generation|emissions|energy management|distribution of electricity|energy technology|efficiency (properties)|en | en |
annif.suggestions.links | http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p39009|http://www.yso.fi/onto/yso/p25903|http://www.yso.fi/onto/yso/p437|http://www.yso.fi/onto/yso/p2388|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p8329 | en |
dc.contributor.author | Saeidinia, Younes | |
dc.contributor.author | Arabshahi, Mohammadreza | |
dc.contributor.author | Aminirad, Mohammad | |
dc.contributor.author | Shafie-khah, Miadreza | |
dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
dc.contributor.orcid | https://orcid.org/0000-0003-1691-5355 | - |
dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
dc.date.accessioned | 2024-04-29T10:09:44Z | |
dc.date.accessioned | 2025-06-25T13:16:03Z | |
dc.date.available | 2024-04-29T10:09:44Z | |
dc.date.issued | 2024-04-25 | |
dc.description.abstract | A machine learning-based optimized droop method is suggested here to simultaneously reduce the production cost (PC) and power line losses (PLL) for a class of direct current (DC) microgrids (MGs). Traditionally, a communication-less technique known as the hybrid droop method has been employed to decrease PC and PLL in DC MGs. However, achieving the desired reduction in either PC or PLL requires arbitrary adjustments of weighting coefficients for each distributed generator in the conventional hybrid droop method. To address this challenge, this paper introduces a systematic approach that capitalizes on the benefits of artificial intelligence to accurately predict both the PC and PLL in a DC MG. Furthermore, an optimization technique relying on the gradient descendent method is employed to independently optimize both PC and PLL for each scenario. The effectiveness of the proposed method is confirmed through a comparative study with classical and hybrid droop coordination schemes under various scenarios such as rapid load changes. | - |
dc.description.notification | © 2024 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivsLicense, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. | - |
dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
dc.format.bitstream | true | |
dc.format.content | fi=kokoteksti|en=fulltext| | - |
dc.format.extent | 16 | - |
dc.identifier.olddbid | 20552 | |
dc.identifier.oldhandle | 10024/17266 | |
dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1811 | |
dc.identifier.urn | URN:NBN:fi-fe2024042923540 | - |
dc.language.iso | eng | - |
dc.publisher | Institution of Engineering and Technology | - |
dc.relation.doi | 10.1049/gtd2.13169 | - |
dc.relation.ispartofjournal | IET Generation, Transmission & Distribution | - |
dc.relation.issn | 1751-8695 | - |
dc.relation.issn | 1751-8687 | - |
dc.relation.url | https://doi.org/10.1049/gtd2.13169 | - |
dc.rights | CC BY-NC-ND 4.0 | - |
dc.source.identifier | https://osuva.uwasa.fi/handle/10024/17266 | |
dc.subject | artificial intelligence | - |
dc.subject | economic forecasting | - |
dc.subject | micro grids | - |
dc.subject | optimisation | - |
dc.subject | voltage control | - |
dc.subject.discipline | fi=Sähkötekniikka|en=Electrical Engineering| | - |
dc.title | Enhancing DC microgrid performance through machine learning-optimized droop control | - |
dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
dc.type.publication | article | - |
dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Saeidinia_Arabshahi_Aminirad_Shafie-khah_2024.pdf
- Size:
- 3.17 MB
- Format:
- Adobe Portable Document Format
- Description:
- Article