Enhancing DC microgrid performance through machine learning-optimized droop control

annif.suggestionsrenewable energy sources|electrical power networks|energy production (process industry)|microgrids|distributed generation|emissions|energy management|distribution of electricity|energy technology|efficiency (properties)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p39009|http://www.yso.fi/onto/yso/p25903|http://www.yso.fi/onto/yso/p437|http://www.yso.fi/onto/yso/p2388|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p8329en
dc.contributor.authorSaeidinia, Younes
dc.contributor.authorArabshahi, Mohammadreza
dc.contributor.authorAminirad, Mohammad
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-04-29T10:09:44Z
dc.date.accessioned2025-06-25T13:16:03Z
dc.date.available2024-04-29T10:09:44Z
dc.date.issued2024-04-25
dc.description.abstractA machine learning-based optimized droop method is suggested here to simultaneously reduce the production cost (PC) and power line losses (PLL) for a class of direct current (DC) microgrids (MGs). Traditionally, a communication-less technique known as the hybrid droop method has been employed to decrease PC and PLL in DC MGs. However, achieving the desired reduction in either PC or PLL requires arbitrary adjustments of weighting coefficients for each distributed generator in the conventional hybrid droop method. To address this challenge, this paper introduces a systematic approach that capitalizes on the benefits of artificial intelligence to accurately predict both the PC and PLL in a DC MG. Furthermore, an optimization technique relying on the gradient descendent method is employed to independently optimize both PC and PLL for each scenario. The effectiveness of the proposed method is confirmed through a comparative study with classical and hybrid droop coordination schemes under various scenarios such as rapid load changes.-
dc.description.notification© 2024 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivsLicense, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent16-
dc.identifier.olddbid20552
dc.identifier.oldhandle10024/17266
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1811
dc.identifier.urnURN:NBN:fi-fe2024042923540-
dc.language.isoeng-
dc.publisherInstitution of Engineering and Technology-
dc.relation.doi10.1049/gtd2.13169-
dc.relation.ispartofjournalIET Generation, Transmission & Distribution-
dc.relation.issn1751-8695-
dc.relation.issn1751-8687-
dc.relation.urlhttps://doi.org/10.1049/gtd2.13169-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17266
dc.subjectartificial intelligence-
dc.subjecteconomic forecasting-
dc.subjectmicro grids-
dc.subjectoptimisation-
dc.subjectvoltage control-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleEnhancing DC microgrid performance through machine learning-optimized droop control-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Saeidinia_Arabshahi_Aminirad_Shafie-khah_2024.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat