Reinforcement Learning for Decentralized Energy Systems

annif.suggestionsrenewable energy sources|machine learning|smart grids|electrical power networks|energy management|electricity market|energy technology|deep learning|energy|energy policy|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p2388|http://www.yso.fi/onto/yso/p16837|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p1310|http://www.yso.fi/onto/yso/p2387en
dc.contributor.authorAshrafi, Arya
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-05-30T08:14:47Z
dc.date.accessioned2025-06-25T17:40:10Z
dc.date.available2024-05-30T08:14:47Z
dc.date.issued2024-05-07
dc.description.abstractWith the rise of electric vehicles (EVs) and smart grid technology, sophisticated energy management systems that guarantee sustainability and efficiency are required. An in-depth examination of reinforcement learning (RL) algorithms in a simulated smart grid system featuring prosumer-generated renewable energy and embedded EV charging stations is presented in this thesis. The study assesses how well the Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), and Rule-Based Control (RBC) algorithms manage the energy dynamics of 50 prosumer nodes and 40 EVs over a 24-hour period using a Markov decision process framework. The RL algorithms interact with the environment to learn sequential decision-making processes that maximize the overall reward, with a particular focus on balancing energy production, consumption, and vehicle charging demands. The simulation results reveal DDPG's strength in cost-efficient grid energy purchasing and effective state of charge (SOC) management, PPO's potential through exploratory learning, and RBC's advantage in minimizing energy wastage. The findings point towards the necessity of intelligent energy management strategies that not only minimize costs and maximize the use of renewable energy but also enhance the operational efficiency and sustainability of the smart grid and EV ecosystems.-
dc.format.bitstreamtrue
dc.format.extent66-
dc.identifier.olddbid20752
dc.identifier.oldhandle10024/17642
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/11797
dc.identifier.urnURN:NBN:fi-fe2024050828600-
dc.language.isoeng-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17642
dc.subject.degreeprogrammeMaster´s Programme in Smart Energy-
dc.subject.disciplinefi=Energiatekniikka|en=Energy Technology|-
dc.subject.ysoreinforcement learning-
dc.subject.ysosmart grids-
dc.subject.ysoenergy management-
dc.subject.ysoelectricity market-
dc.subject.ysoenergy technology-
dc.subject.ysoelectric vehicles-
dc.subject.ysorenewable energy sources-
dc.titleReinforcement Learning for Decentralized Energy Systems-
dc.type.ontasotfi=Pro gradu -tutkielma|en=Master's thesis|sv=Pro gradu -avhandling|-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Uwasa_2024_Ashrafi_Arya.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
Reinforcement Learning for DECs