A regret-based stochastic bi-level framework for scheduling of DR aggregator under uncertainties

dc.contributor.authorRashidizadeh-Kermani, Homa
dc.contributor.authorVahedipour-Dahraie, Mostafa
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorSiano, Pierluigi
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-02-12T12:31:01Z
dc.date.accessioned2025-06-25T12:31:47Z
dc.date.available2020-02-12T12:31:01Z
dc.date.issued2020-01-23
dc.description.abstractA regret-based stochastic bi-level framework for optimal decision making of a demand response (DR) aggregator to purchase energy from short term electricity market and wind generation units is proposed. Based on this model, the aggregator offers selling prices to the customers, aiming to maximize its expected profit in a competitive market. The clients’ reactions to the offering prices of aggregators and competition among rival aggregators are explicitly considered in the proposed model. Different sources of uncertainty impressing the decisions made by the aggregator are characterized via a set of scenarios and are accounted for by using stochastic programming. Conditional value-at-risk (CVaR) is used for minimizing the expected value of regret over a set of worst scenarios whose collective probability is lower than a limitation value. Simulations are carried out to compare CVaR-based approach with value-at-risk (VaR) concept and traditional scenario based stochastic programming (SBSP) strategy. The findings show that the proposed CVaR strategy outperforms the SBSP approach in terms of making more risk-averse energy biddings and attracting more customers in the competitive market. The results show that although the aggregator offers the same prices in both CVaR and VaR approaches, the average of regret is lower in the VaR approach.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.identifier.olddbid11405
dc.identifier.oldhandle10024/10492
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/394
dc.identifier.urnURN:NBN:fi-fe202002125324-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.relation.doi10.1109/TSG.2020.2968963-
dc.relation.ispartofjournalIEEE transactions on smart grids-
dc.relation.issn1949-3061-
dc.relation.issn1949-3053-
dc.relation.urlhttps://doi.org/10.1109/TSG.2020.2968963-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/10492
dc.subjectaggregator-
dc.subjectbi-level stochastic programming-
dc.subjectdemand response (DR)-
dc.subjectregret-
dc.subjectrisk-averse-
dc.subjectwind generation unit-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleA regret-based stochastic bi-level framework for scheduling of DR aggregator under uncertainties-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Rashidizadeh-Kermani_Vahedipour-Dahraie_Shafie-khah_Siano_2020.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:
article

Kokoelmat