Analyzing the Performance of AC Microgrids in Stand-Alone Operation with Artificial Neural Network Controllers

annif.suggestionsneural networks (information technology)|machine learning|artificial intelligence|microgrids|electrical power networks|electrical engineering|renewable energy sources|converters (electrical devices)|control engineering|optimisation|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p39009|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p8191|http://www.yso.fi/onto/yso/p5636|http://www.yso.fi/onto/yso/p13477en
dc.contributor.authorUllah, Qudrat
dc.contributor.authorRazmi, Peyman
dc.contributor.authorResende, Ĉnio Costa
dc.contributor.authorSimões, Marcelo Godoy
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-1353-3338-
dc.contributor.orcidhttps://orcid.org/0000-0003-1518-7325-
dc.contributor.orcidhttps://orcid.org/0000-0002-5110-6791-
dc.contributor.orcidhttps://orcid.org/0000-0003-4124-061X-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-07-01T06:47:30Z
dc.date.accessioned2025-06-25T13:14:54Z
dc.date.issued2024-06-25
dc.description.abstractThe emergency of renewable resources-based power generation depends on the development of voltage source inverters to interface wind or solar power plants. The accurate functioning of these inverters, in turn, depends on the robust control systems capable of keep the inverters operational point in stable conditions even after non-controllable electrical contingencies. In this sense, literature has proposed the application of artificial intelligence algorithms to guarantee control robustness, however, it still lacks a detailed analysis for the application of Artificial Neural Networks (ANN) to replace linear controllers in microgrid (MG) environment. Given this theoretical frame, the main contribution of this work is to analyze ANN performance for the control of stand-alone inverters that work without the presence of the main grid. The proposed ANN-based control scheme will be is tested for stand-alone MG under different load conditions. The results obtained demonstrate the control strategy's effectiveness in managing abrupt load transitions and simulation results also exhibit that voltage or current THD is 0.71 which makes it suitable for VSIs based MGs.-
dc.description.notification©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2026-06-25
dc.embargo.terms2026-06-25
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.identifier.isbn979-8-3503-6496-5-
dc.identifier.olddbid21270
dc.identifier.oldhandle10024/17902
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1781
dc.identifier.urnURN:NBN:fi-fe2024070159983-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE International Workshop on Artificial Intelligence and Machine Learning for Energy Transformation (AIE)-
dc.relation.doi10.1109/AIE61866.2024.10561255-
dc.relation.isbn979-8-3503-6497-2-
dc.relation.ispartof2024 International Workshop on Artificial Intelligence and Machine Learning for Energy Transformation (AIE)-
dc.relation.urlhttps://doi.org/10.1109/AIE61866.2024.10561255-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17902
dc.subjectGrid forming-
dc.subjectInverter-
dc.subjectStand alone-
dc.subjectArtificial neural network-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysomicrogrids-
dc.titleAnalyzing the Performance of AC Microgrids in Stand-Alone Operation with Artificial Neural Network Controllers-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ullah_Razmi_Resende_Simões_2024.pdf
Size:
13.12 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat