SCADA securing system using deep learning to prevent cyber infiltration

annif.suggestionsneural networks (information technology)|information networks|data communications networks|automation|deep learning|data security|systems of supervision|networks (systems)|industrial automation|machine learning|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p1957|http://www.yso.fi/onto/yso/p11477|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p13003|http://www.yso.fi/onto/yso/p5569|http://www.yso.fi/onto/yso/p2617|http://www.yso.fi/onto/yso/p21846en
dc.contributor.authorDiaba, Sayawu Yakubu
dc.contributor.authorAnafo, Theophilus
dc.contributor.authorTetteh, Lord Anertei
dc.contributor.authorOyibo, Michael Alewo
dc.contributor.authorAlola, Andrew Adewale
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorElmusrati, Mohammed
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-7910-4026-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-06-26T12:58:25Z
dc.date.accessioned2025-06-25T13:00:23Z
dc.date.available2023-06-26T12:58:25Z
dc.date.issued2023-06-14
dc.description.abstractSupervisory Control and Data Acquisition (SCADA) systems are computer-based control architectures specifically engineered for the operation of industrial machinery via hardware and software models. These systems are used to project, monitor, and automate the state of the operational network through the utilization of ethernet links, which enable two-way communications. However, as a result of their constant connectivity to the internet and the lack of security frameworks within their internal architecture, they are susceptible to cyber-attacks. In light of this, we have proposed an intrusion detection algorithm, intending to alleviate this security bottleneck. The proposed algorithm, the Genetically Seeded Flora (GSF) feature optimization algorithm, is integrated with Transformer Neural Network (TNN) and functions by detecting changes in operational patterns that may be indicative of an intruder’s involvement. The proposed Genetically Seeded Flora Transformer Neural Network (GSFTNN) algorithm stands in stark contrast to the signature-based method employed by traditional intrusion detection systems. To evaluate the performance of the proposed algorithm, extensive experiments are conducted using the WUSTL-IIOT-2018 ICS SCADA cyber security dataset. The results of these experiments indicate that the proposed algorithm outperforms traditional algorithms such as Residual Neural Networks (ResNet), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) in terms of accuracy and efficiency.-
dc.description.notification© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.format.pagerange321-332-
dc.identifier.olddbid18836
dc.identifier.oldhandle10024/16033
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1319
dc.identifier.urnURN:NBN:fi-fe2023062658602-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.neunet.2023.05.047-
dc.relation.ispartofjournalNeural Networks-
dc.relation.issn1879-2782-
dc.relation.issn0893-6080-
dc.relation.urlhttps://doi.org/10.1016/j.neunet.2023.05.047-
dc.relation.volume165-
dc.rightsCC BY-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16033
dc.subjectGenetically seeded flora-
dc.subjectIntrusion detection systems-
dc.subjectLong short-term memory-
dc.subjectRecurrent neural network-
dc.subjectResidual neural network-
dc.subjectTransformer neural network-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.disciplinefi=Tietojärjestelmätiede|en=Information Systems|-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.titleSCADA securing system using deep learning to prevent cyber infiltration-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Diaba_Anafo_Tetteh_Oyibo_Alola_Shafie-khah_Elmusrati_2023.pdf
Size:
878.34 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat