Sky Image Prediction Model Based on Convolutional Auto-Encoder for Minutely Solar PV Power Forecasting

annif.suggestionselectrical engineering|solar energy|People's Republic of China|forecasts|electrical power networks|electricity market|renewable energy sources|distribution of electricity|electric power|energy|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p104984|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p16837|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p1213|http://www.yso.fi/onto/yso/p1310en
dc.contributor.authorFu, Yuwei
dc.contributor.authorChai, Hua
dc.contributor.authorZhen, Zhao
dc.contributor.authorWang, Fei
dc.contributor.authorXu, Xunjian
dc.contributor.authorLi, Kangping
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.authorDehghanian, Payman
dc.contributor.authorCatalão, João P. S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-01-13T12:11:52Z
dc.date.accessioned2025-06-25T13:24:11Z
dc.date.available2023-04-08T22:00:10Z
dc.date.issued2021-04-08
dc.description.abstractThe precise minute time scale forecasting of an individual PV power station output relies on accurate prediction of cloud distribution, which can lead to dramatic fluctuation of PV power generation. Precise cloud distribution information is mainly achieved by ground-based total sky imager, then the future cloud distribution can also be achieved by sky image prediction. In previous studies, traditional digital image processing technology (DIPT) has been widely used in predicting sky images. However, DIPT has two deficiencies: relatively limited input spatiotemporal information and linear extrapolation of images. The first deficiency makes the input spatiotemporal information not rich enough, while the second creates the prediction error from the beginning. To avoid these two deficiencies, convolutional autoencoder (CAE) based sky image prediction models are proposed due to the spatiotemporal feature extraction ability of two-dimensional (2-D) CAEs and 3-D CAEs. For 2-D CAEs and 3-D CAEs, four architectures are given respectively. To verify the effectiveness of the proposed models, two typical DIPT methods, including particle image velocimetry and Fourier phase correlation theory are introduced to build the benchmark models. Besides, five different scenarios are also set and the results show that the proposed models outperform the benchmark models in all scenarios.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-04-08
dc.embargo.terms2023-04-08
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange3272-3281-
dc.identifier.olddbid15355
dc.identifier.oldhandle10024/13419
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2048
dc.identifier.urnURN:NBN:fi-fe202201132280-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/TIA.2021.3072025-
dc.relation.funderNational Key R&D Program of China-
dc.relation.funderComplement S&T Program (Research on PV power forecasting technology considering the complex motion of clouds) of Inner Mongolia Power (Group) Co, Ltd.-
dc.relation.grantnumber2018YFB0904200-
dc.relation.ispartofjournalIEEE Transactions on Industry Applications-
dc.relation.issn1939-9367-
dc.relation.issn0093-9994-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1109/TIA.2021.3072025-
dc.relation.volume57-
dc.source.identifierWOS:000673633200005-
dc.source.identifierScopus: 85104192090-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13419
dc.subjectConvolutional autoencoder (CAE)-
dc.subjectminute time scale-
dc.subjectsky image-
dc.subjectsolar PV power forecasting-
dc.subjectspatiotemporal feature-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleSky Image Prediction Model Based on Convolutional Auto-Encoder for Minutely Solar PV Power Forecasting-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Fu_Chai_Zhen_Wang_Xu_Li_Shafie-Khah_Dehghanian_Catalão_2021.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat