Optimal day-ahead scheduling and operation of the prosumer by considering corrective actions based on very short-term load forecasting

annif.suggestionsoptimisation|forecasts|time series|renewable energy sources|electricity consumption|electrical power networks|load|costs|electric vehicles|energy production (process industry)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p12290|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p15953|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p17226|http://www.yso.fi/onto/yso/p7517|http://www.yso.fi/onto/yso/p27472|http://www.yso.fi/onto/yso/p2384en
dc.contributor.authorFaraji, Jamal
dc.contributor.authorKetabi, Abbas
dc.contributor.authorHashemi-Dezaki, Hamed
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorCatalão, João P.S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-06-05T11:40:19Z
dc.date.accessioned2025-06-25T12:39:31Z
dc.date.available2020-06-05T11:40:19Z
dc.date.issued2020-04-30
dc.description.abstractEnergy management systems (EMSs) play an important role in the optimal operation of prosumers. As an essential segment of each EMS, the load forecasting (LF) block enhances the optimal utilization of renewable energy sources (RESs) and battery energy storage systems (BESSs). In this paper, a new optimal day-ahead scheduling and operation of the prosumer is proposed based on the two-level corrective LF. The proposed two-level corrective LF actions are developed through a very precise short-term LF. In the first level, a time-series LF is applied using multi-layer perceptron artificial neural networks (MLP-ANNs). In order to improve the accuracy of the forecasted load data at the first level, the second level corrective LF is applied using feed-forward (FF) ANNs. The second stage prediction is initiated when the LF results violate the pre-defined criteria. The proposed method is applied to a prosumer under different cases (based on the consideration of BESS operation behaviors and cost) and various scenarios (based on the accuracy of the load data). The obtained optimal day-ahead operation results illustrate the advantages of the proposed method and its corrective forecasting process. The comparison of the obtained results and those of other available ones show the effectiveness of the proposed optimal operation of the prosumers. The advantages of the proposed method are highlighted while the BESS costs are considered.-
dc.description.notificationThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent22-
dc.format.pagerange83561-83582-
dc.identifier.olddbid12331
dc.identifier.oldhandle10024/11154
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/654
dc.identifier.urnURN:NBN:fi-fe2020060540890-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2020.2991482-
dc.relation.ispartofjournalIEEE access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2020.2991482-
dc.relation.volume8-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11154
dc.subjectload forecasting (LF)-
dc.subjectmulti-layer perceptron artificial neural network (ANN-MLP)-
dc.subjectoptimal operation and scheduling-
dc.subjectprosumer-
dc.subjectbattery energy storage system (BESS)-
dc.subjectrenewable energy sources (RESs)-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysooptimisation-
dc.subject.ysoforecasts-
dc.subject.ysotime series-
dc.subject.ysorenewable energy sources-
dc.subject.ysoelectricity consumption-
dc.subject.ysoelectrical power networks-
dc.subject.ysoload-
dc.subject.ysocosts-
dc.subject.ysoelectric vehicles-
dc.subject.ysoenergy production (process industry)-
dc.titleOptimal day-ahead scheduling and operation of the prosumer by considering corrective actions based on very short-term load forecasting-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Faraji_Ketabi_Hashemi-Dezaki_Shafie-khah_Catalão_2020.pdf
Size:
4.76 MB
Format:
Adobe Portable Document Format
Description:
article

Kokoelmat