Short-term traffic flow prediction based on whale optimization algorithm optimized BiLSTM_Attention

annif.suggestionstraffic|forecasts|algorithms|machine learning|optimisation|vehicles|modelling (creation related to information)|communication (information exchange)|traffic networks|road building|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3466|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p9345|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p870|http://www.yso.fi/onto/yso/p4675|http://www.yso.fi/onto/yso/p6522en
dc.contributor.authorXu, Xing
dc.contributor.authorLiu, Chengxing
dc.contributor.authorZhao, Yun
dc.contributor.authorLv, Xiaoshu
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-1928-8580-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-05-02T10:58:15Z
dc.date.accessioned2025-06-25T13:32:49Z
dc.date.available2023-01-12T23:00:07Z
dc.date.issued2022-01-12
dc.description.abstractWith the growths in population and vehicles, traffic flow becomes more complex and uncertain disruptions occur more often. Accurate prediction of urban traffic flow is important for intelligent decision-making and warning, however, remains a challenge. Many researchers have applied neural network methods, such as convolutional neural networks and recurrent neural networks, for traffic flow prediction modeling, but training the conventional network that can obtain the best network parameters and structure is difficult, different hyperparameters lead to different network structures. Therefore, this article proposes a traffic flow prediction model based on the whale optimization algorithm (WOA) optimized BiLSTM_Attention structure to solve this problem. The traffic flow is predicted first using the BiLSTM_Attention network which is then optimized by using the WOA to obtain its four best parameters, including the learning rate, the training times, and the numbers of the nodes of two hidden layers. Finally, the four best parameters are used to build a WOA_BiLSTM_Attention model. The proposed model is compared with both conventional neural network model and neural network model optimized by the WOA. Based on the evaluation metrics of MAPE, RMSE, MAE, and R2, the WOA_BiLSTM_Attention model proposed in this article presents the best performance.-
dc.description.notification©2022 Wiley. This is the peer reviewed version of the following article: Xu, X., Liu, C., Zhao, Y. & Lv, X. (2022). Short-term traffic flow prediction based on whale optimization algorithm optimized BiLSTM_Attention. Concurrency and Computation: Practice and Experience 34(10), e6782, which has been published in final form at https://doi.org/10.1002/cpe.6782. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-01-12
dc.embargo.terms2023-01-12
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid16074
dc.identifier.oldhandle10024/13908
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2300
dc.identifier.urnURN:NBN:fi-fe2022050231901-
dc.language.isoeng-
dc.publisherWiley-
dc.relation.doi10.1002/cpe.6782-
dc.relation.funderKey Technology Research and Development Program of Shandong-
dc.relation.funderNational Key Research and Development Program of China-
dc.relation.funderScience and Technology Program of Zhejiang Province-
dc.relation.grantnumber2019C54005-
dc.relation.grantnumber2019YFE0126100-
dc.relation.ispartofjournalConcurrency and Computation: Practice and Experience-
dc.relation.issn1532-0634-
dc.relation.issn1532-0626-
dc.relation.issue10-
dc.relation.urlhttps://doi.org/10.1002/cpe.6782-
dc.relation.volume34-
dc.source.identifierWOS:000741826600001-
dc.source.identifierScopus:85122747467-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13908
dc.subjectattention-
dc.subjectBiLSTM-
dc.subjectprediction-
dc.subjecttraffic flow-
dc.subjectwhale optimization algorithm-
dc.subject.disciplinefi=Energiatekniikka|en=Energy Technology|-
dc.titleShort-term traffic flow prediction based on whale optimization algorithm optimized BiLSTM_Attention-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Xu_Liu_Zhao_Lv_2022.pdf
Size:
883.75 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat