Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things

annif.suggestionsskin cancer|melanoma|skin|deep learning|skin diseases|cancerous diseases|segmentation|machine learning|basal cell carcinoma|forecasts|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p13613|http://www.yso.fi/onto/yso/p15128|http://www.yso.fi/onto/yso/p1769|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p8746|http://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p18246|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p21782|http://www.yso.fi/onto/yso/p3297en
dc.contributor.authorAkram, Arslan
dc.contributor.authorRashid, Javed
dc.contributor.authorJaffar, Muhammad Arfan
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorAmin, Riaz ul
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-03-05T07:17:16Z
dc.date.accessioned2025-06-25T13:11:29Z
dc.date.available2024-03-05T07:17:16Z
dc.date.issued2023-11-15
dc.description.abstractIntroduction Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques. Method This research uses a hybrid deep learning model that combines two cutting-edge approaches: Mask Region-based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset. Results The experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state-of-the-art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well. Conclusion In conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.-
dc.description.notification© 2023 The Authors. Skin Research and Technology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent14-
dc.identifier.olddbid20043
dc.identifier.oldhandle10024/16967
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1662
dc.identifier.urnURN:NBN:fi-fe202403059862-
dc.language.isoeng-
dc.publisherWiley-Blackwell-
dc.relation.doi10.1111/srt.13524-
dc.relation.ispartofjournalSkin Research and Technology-
dc.relation.issn1600-0846-
dc.relation.issn0909-752X-
dc.relation.issue11-
dc.relation.urlhttps://doi.org/10.1111/srt.13524-
dc.relation.volume29-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001101568700001-
dc.source.identifierScopus:85177057156-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16967
dc.subjectInternet of Medical Things-
dc.subjectISIC-2020-
dc.subjectmelanoma skin cancer-
dc.subjectMRCNN-
dc.subjectResNet50-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysodeep learning-
dc.titleSegmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Akram_Rashid_Jaffar_Faheem_Amin_2023.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat