SS-TTA : Test-Time Adaption for Self-Supervised Denoising Methods

annif.suggestionsnoise (radio technology)|image processing|neural networks (information technology)|algorithms|optimisation|measurement|noise|deep learning|machine learning|display controllers|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19269|http://www.yso.fi/onto/yso/p6449|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p1718|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p11883en
dc.contributor.authorFahim, Masud An-Nur Islam
dc.contributor.authorBoutellier, Jani
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-10-13T11:35:18Z
dc.date.accessioned2025-06-25T13:03:49Z
dc.date.issued2023-08-14
dc.description.abstractEven though image denoising has already been studied for decades, recent progress in deep learning has provided novel and considerably better results for this classical signal reconstruction problem. One of the most significant advances in recent years has been relaxing the requirement of having noise-free (clean) images in the training dataset. By leveraging self-supervised learning, recent methods already reach the reconstruction quality of classical and some supervised schemes. In this paper, we propose SS-TTA, a generic test-time adaptation policy that can be applied on top of various self-supervised denoising methods. Taking a pre-trained self-supervised denoising model and a test image as input, our SS-TTA algorithm improves the denoising performance through a proposed ’inference-guided regularization’ process. Based on experiments with three synthetic and three real noise datasets, SS-TTA improves the denoising results of several state-of-the-art self-supervised methods, outperforms recent test-time adaptation approaches, and shows promising performance with supervised models. Finally, SS-TTA also generalizes to cases where the test-time noise distribution differs from the noise distribution of training images.-
dc.description.notification©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2025-08-14
dc.embargo.terms2025-08-14
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange1178-1187-
dc.identifier.olddbid19151
dc.identifier.oldhandle10024/16349
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1432
dc.identifier.urnURN:NBN:fi-fe20231013140144-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)-
dc.relation.doi10.1109/CVPRW59228.2023.00125-
dc.relation.funderAcademy of Finland-
dc.relation.grantnumber327912-
dc.relation.ispartof2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)-
dc.relation.ispartofseriesIEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops-
dc.relation.issn2160-7516-
dc.relation.issn2160-7508-
dc.relation.urlhttps://doi.org/10.1109/CVPRW59228.2023.00125-
dc.rightsCC BY 4.0-
dc.source.identifierScopus:85170821794-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16349
dc.subjectTraining-
dc.subjectDeep learning-
dc.subjectAdaptation models-
dc.subjectNoise reduction-
dc.subjectSelf-supervised learning-
dc.subjectManuals-
dc.subjectSignal reconstruction-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleSS-TTA : Test-Time Adaption for Self-Supervised Denoising Methods-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Fahim_Boutellier_2023.pdf
Size:
19.43 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat