IBAC-Net : integrative brightness adaptive plant leaf disease classification

dc.contributor.authorXu, Xing
dc.contributor.authorMa , Hongya
dc.contributor.authorZhao , Yun
dc.contributor.authorLv, Xiaoshu
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|
dc.contributor.orcidhttps://orcid.org/0000-0002-1928-8580
dc.date.accessioned2025-09-17T06:20:36Z
dc.date.issued2025-03-11
dc.description.abstractAs agricultural technology continues to advance, effective classification of agricultural diseases are crucial for improving crop yield and quality. This study aims to explore an innovative approach to agricultural disease image classification based on a novel image classification model architecture. First, we design a novel model architecture for image classification that better integrates shallow and deep features. Secondly, to address potential brightness differences in images collected under varying weather conditions, we have introduced an image brightness adaptive block. This block automatically adjusts the brightness of images during the data collection and processing stages, thereby reducing image disparities caused by weather variations. This step is crucial for improving the robustness of the model and ensuring accurate identification of agricultural diseases under different environmental conditions. Additionally, drawing inspiration from the Inception architecture and employing a flexible downsampling strategy, we have designed a custom inception block to integrate shallow and deep features effectively. To validate the effectiveness of our proposed approach, we conducted experiments using an agricultural disease image dataset processed with weather effects. The experimental results demonstrate that our model exhibits higher accuracy and robustness in agricultural disease image classification tasks compared to traditional methods. The code has been uploaded to GitHub at the following address: https://github.com/bettyaya/IBAC-Net.
dc.description.notification© 2025 the Author(s) Creative Commons License. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.format.contentfi=kokoteksti|en=fulltext|
dc.format.extent32
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19007
dc.identifier.urnURN:NBN:fi-fe2025091796490
dc.language.isoeng
dc.publisherPagepress
dc.relation.doi10.4081/jae.2025.1772
dc.relation.ispartofjournalJournal of Agricultural Engineering
dc.relation.issn2239-6268
dc.relation.issn1974-7071
dc.relation.issue2
dc.relation.urlhttps://doi.org/10.4081/jae.2025.1772
dc.relation.volume56
dc.rightsCC BY-NC 4.0
dc.source.identifierWOS:001499022200004
dc.source.identifier2-s2.0-105005973657
dc.subjectAgricultural diseases
dc.subjectimage classification
dc.subjectdata processing
dc.subjectbrightness adaptation
dc.subjectflexible downsampling
dc.subject.disciplinefi=Energiatekniikka|en=Energy Technology|
dc.titleIBAC-Net : integrative brightness adaptive plant leaf disease classification
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Xu_Ma_Zhao_Lv_2025.pdf
Size:
3.89 MB
Format:
Adobe Portable Document Format

Kokoelmat