Impact factors analysis on the probability characterized effects of time of use demand response tariffs using association rule mining method

annif.suggestionsrenewable energy sources|People's Republic of China|electricity consumption|social classes|customers|household appliances|households (organisations)|tariffs|time use|European Union countries|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p104984|http://www.yso.fi/onto/yso/p15953|http://www.yso.fi/onto/yso/p6310|http://www.yso.fi/onto/yso/p3294|http://www.yso.fi/onto/yso/p431|http://www.yso.fi/onto/yso/p8562|http://www.yso.fi/onto/yso/p4895|http://www.yso.fi/onto/yso/p3367|http://www.yso.fi/onto/yso/p9828en
dc.contributor.authorLi, Kangping
dc.contributor.authorLiu, Liming
dc.contributor.authorWang, Fei
dc.contributor.authorWang, Tieqiang
dc.contributor.authorDuić, Neven
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorCatalão, João P.S
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-02-23T12:17:22Z
dc.date.accessioned2025-06-25T12:52:12Z
dc.date.available2021-10-01T00:00:13Z
dc.date.issued2019-10-01
dc.description.abstractTime of use (TOU) rate has been regarded as an effective strategy to associate utility companies to avoid peak time financial risks and make the most profit out of the market, while most programs are not effective as expected to reduce peak time demand of residents. Exploring the impact factors of peak demand reduction (PDR) can help policy makers find reasons that weaken effects of programs and corresponding measures can be carried out to maximize the benefits. However, averaging quantitative indicators for program assessment and incomplete impactor analysis method in existing research show limitations of revealing the complex reasons behind it. In this paper, an association rule mining based quantitative analysis framework is built to explore the impact of household characteristics on PDR under TOU price making up for the deficiencies in current research. Firstly, a probability distribution based customer PDR characterizing model is proposed, in which difference-in-difference model is adopted to quantify the effect of PDR and probability distribution fitting method is used to characterize the feature of PDR for households. Then a comprehensive association rule mining analysis using Apriori algorithm is presented to explore the impacts factors of PDR covering four categories of household characteristics including dwelling characteristics, socio-demographic, appliances and heating and attitudes towards energy. Finally, analysis results of a case study based on 2993 household records containing smart metering data and survey data illustrate that PDR level cannot be obtained simply based on the appliance’s ownership and its usage habits. Socio-demographic information of households should be taken into consideration together; Internet connection and good house insulation contribute to the increase of PDR level. Moreover, the percentage of renewable generation for households also show a certain relationship with PDR. The proposed analysis framework and findings will associate retailer to improve the benefits of TOU programs and guide policy makers to design more efficient energy saving policies for residents.-
dc.description.notification© 2019 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2021-10-01
dc.embargo.terms2021-10-01
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid13694
dc.identifier.oldhandle10024/12177
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1054
dc.identifier.urnURN:NBN:fi-fe202102235757-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.enconman.2019.111891-
dc.relation.ispartofjournalEnergy Conversion and Management-
dc.relation.issn1879-2227-
dc.relation.issn0196-8904-
dc.relation.urlhttps://doi.org/10.1016/j.enconman.2019.111891-
dc.relation.volume197-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierScopus: 85070195049-
dc.source.identifierWOS: 000487165700027-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12177
dc.subjectPeak demand reduction-
dc.subjectHousehold characteristics-
dc.subjectAssociation rule mining-
dc.subjectDemand response-
dc.subjectApriori algorithm-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleImpact factors analysis on the probability characterized effects of time of use demand response tariffs using association rule mining method-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Li_Liu_Wang_Wang_Duić_Shafie-khah_Catalão_2019.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat