Dual-3DM3-AD : Mixed Transformer based Semantic Segmentation and Triplet Pre-processing for Early Multi-Class Alzheimer’s Diagnosis
| annif.suggestions | Alzheimer's disease|magnetic resonance imaging|imaging|positron emission tomography|medicine (science)|diagnostics|dementia|diagnosis|brain diseases|Lewy body dementia|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p8412|http://www.yso.fi/onto/yso/p12131|http://www.yso.fi/onto/yso/p3532|http://www.yso.fi/onto/yso/p19539|http://www.yso.fi/onto/yso/p469|http://www.yso.fi/onto/yso/p416|http://www.yso.fi/onto/yso/p1711|http://www.yso.fi/onto/yso/p14134|http://www.yso.fi/onto/yso/p17315|http://www.yso.fi/onto/yso/p22102 | en |
| dc.contributor.author | Khan, Arfat Ahmad | |
| dc.contributor.author | Mahendran, Rakesh Kumar | |
| dc.contributor.author | Perumal, Kumar | |
| dc.contributor.author | Faheem, Muhammad | |
| dc.contributor.department | Digital Economy | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-4628-4486 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2024-02-14T07:27:53Z | |
| dc.date.accessioned | 2025-06-25T13:11:19Z | |
| dc.date.available | 2024-02-14T07:27:53Z | |
| dc.date.issued | 2024-01-23 | |
| dc.description.abstract | Alzheimer’s Disease (AD) is a widespread, chronic, irreversible, and degenerative condition, and its early detection during the prodromal stage is of utmost importance. Typically, AD studies rely on single data modalities, such as MRI or PET, for making predictions. Nevertheless, combining metabolic and structural data can offer a comprehensive perspective on AD staging analysis. To address this goal, this paper introduces an innovative multi-modal fusion-based approach named as Dual-3DM3-AD. This model is proposed for an accurate and early Alzheimer’s diagnosis by considering both MRI and PET image scans. Initially, we pre-process both images in terms of noise reduction, skull stripping and 3D image conversion using Quaternion Non-local Means Denoising Algorithm (QNLM), Morphology function and Block Divider Model (BDM), respectively, which enhances the image quality. Furthermore, we have adapted Mixed-transformer with Furthered U-Net for performing semantic segmentation and minimizing complexity. Dual-3DM3-AD model is consisted of multi-scale feature extraction module for extracting appropriate features from both segmented images. The extracted features are then aggregated using Densely Connected Feature Aggregator Module (DCFAM) to utilize both features. Finally, a multi-head attention mechanism is adapted for feature dimensionality reduction, and then the softmax layer is applied for multi-class Alzheimer’s diagnosis. The proposed Dual-3DM3-AD model is compared with several baseline approaches with the help of several performance metrics. The final results unveil that the proposed work achieves 98% of accuracy, 97.8% of sensitivity, 97.5% of specificity, 98.2% of f-measure, and better ROC curves, which outperforms other existing models in multi-class Alzheimer’s diagnosis. | - |
| dc.description.notification | © 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 12 | - |
| dc.format.pagerange | 696-707 | - |
| dc.identifier.olddbid | 19937 | |
| dc.identifier.oldhandle | 10024/16898 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1656 | |
| dc.identifier.urn | URN:NBN:fi-fe202402147152 | - |
| dc.language.iso | eng | - |
| dc.publisher | IEEE | - |
| dc.relation.doi | 10.1109/TNSRE.2024.3357723 | - |
| dc.relation.funder | University of Vaasa | - |
| dc.relation.ispartofjournal | IEEE Transactions on Neural Systems and Rehabilitation Engineering | - |
| dc.relation.issn | 1558-0210 | - |
| dc.relation.issn | 1534-4320 | - |
| dc.relation.url | https://doi.org/10.1109/TNSRE.2024.3357723 | - |
| dc.relation.volume | 32 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | Scopus:85183664828 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/16898 | |
| dc.subject | Alzheimer’s diagnosis | - |
| dc.subject | Multi-modalities | - |
| dc.subject | MRI | - |
| dc.subject | PET | - |
| dc.subject | Semantic segmentation | - |
| dc.subject | Mixed transformer | - |
| dc.subject | multi-scale feature extraction | - |
| dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
| dc.title | Dual-3DM3-AD : Mixed Transformer based Semantic Segmentation and Triplet Pre-processing for Early Multi-Class Alzheimer’s Diagnosis | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Khan_Mahendran_Perumal_Faheem_2024.pdf
- Size:
- 6.15 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
