Cyber Security in Power Systems Using Meta-Heuristic and Deep Learning Algorithms

annif.suggestionsmachine learning|algorithms|neural networks (information technology)|deep learning|safety and security|automation|electrical power networks|electrical engineering|smart grids|artificial intelligence|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p7349|http://www.yso.fi/onto/yso/p11477|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p2616en
dc.contributor.authorDiaba, Sayawu Yakubu
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-7910-4026-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-04-26T09:38:30Z
dc.date.accessioned2025-06-25T12:41:45Z
dc.date.available2023-04-26T09:38:30Z
dc.date.issued2023-02-22
dc.description.abstractSupervisory Control and Data Acquisition system linked to Intelligent Electronic Devices over a communication network keeps an eye on smart grids’ performance and safety. The lack of algorithms protecting the power system communication protocols makes them vulnerable to cyberattacks, which can result in a hacker introducing false data into the operational network. This can result in delayed attack detection, which might harm the infrastructure, cause financial loss, or even result in fatalities. Similarly, attackers may be able to feed the system with fake information to hoax the operator and the algorithm into making bad decisions at crucial moments. This paper attempts to identify and classify such cyber-attacks by using numerous deep learning algorithms and optimizing the data features with a metaheuristic algorithm. We proposed a Restricted Boltzmann Machine-based nature-inspired artificial root foraging optimization algorithm. Using a publicly available dataset produced in Mississippi State University’s Oak Ridge National Laboratory, simulations are run on the Jupiter Notebook. Traditional supervised machine learning algorithms like Artificial Neural Networks, Convolutional Neural Networks, and Support Vector Machines are measured with the proposed algorithm to demonstrate the effectiveness of the algorithms. Simulations show that the proposed algorithm produced superior results, with an accuracy of 97.8% for binary classification, 95.6% for three-class classification, and 94.3% for multi-class classification. Thereby outperforming its counterpart algorithms in terms of accuracy, precision, recall, and f1 score.-
dc.description.notification©2023 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.format.pagerange18660-18672-
dc.identifier.olddbid18172
dc.identifier.oldhandle10024/15516
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/729
dc.identifier.urnURN:NBN:fi-fe2023042638895-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2023.3247193-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2023.3247193-
dc.relation.volume11-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000942259200001-
dc.source.identifierScopus:85149410623-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15516
dc.subjectArtificial neural network-
dc.subjectartificial root foraging-
dc.subjectcyber security-
dc.subjectmetaheuristic algorithm-
dc.subjectrestricted Boltzmann machines-
dc.subjectsmart grid-
dc.subjectsupervisory control and data acquisition-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.disciplinefi=Tietojärjestelmätiede|en=Information Systems|-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysomachine learning-
dc.subject.ysodeep learning-
dc.titleCyber Security in Power Systems Using Meta-Heuristic and Deep Learning Algorithms-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Diaba_Shafie-Khah_Elmusrati_2023.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat