Edge-PRUNE : A Dataflow-Based Framework for Distributed Signal Processing and Machine Learning

dc.contributor.authorBoutellier , Jani
dc.contributor.authorTan, Bo
dc.contributor.authorNurmi, Jari
dc.contributor.authorBhattacharyya, Shuvra S.
dc.contributor.departmentDigital Economy
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655
dc.date.accessioned2025-09-24T07:39:31Z
dc.date.issued2025-08-13
dc.description.abstractDistributed sensing through video, audio, radar and other sensors is strongly growing with application areas such as smart homes and Internet of Things. The concept of edge computing proposes shifting signal and data analysis from centralized servers close to the sensors, providing reduction in data communication bandwidth requirements and centralized server computation load as well as improving data privacy. Previous works in the domain of edge computing have paid little attention to formal modeling of computing across devices. This work proposes the VR-PRUNE-E model of computation that is based on the well-known dataflow abstraction. Within VR-PRUNE-E, a specific type of resilient network graph is introduced, which allows the distributed system to continue its operation after the failure of any single node or connection. Besides the formal model, the manuscript introduces the Edge-PRUNE software framework that supports the proposed dataflow abstraction, as well as concrete experimental results on real edge computing scenarios. The explored setups cover networks with up to 128 endpoint nodes and two servers. Application examples cover popular machine learning applications of image classification, object detection and radar signal processing, built on CNN and transformer architectures, extended with redundant system configurations that provide fault tolerance. The proposed work is also benchmarked in terms of processing time and shown to outperform previous work by 34% in computation efficiency.
dc.description.notification© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.format.contentfi=kokoteksti|en=fulltext|
dc.format.extent14
dc.format.pagerange3302-3315
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19021
dc.identifier.urnURN:NBN:fi-fe2025092497866
dc.language.isoeng
dc.publisherIEEE
dc.relation.doi10.1109/TSP.2025.3598453
dc.relation.funderResearch Council of Finland
dc.relation.funderBusiness Finland
dc.relation.funderFinnish Scientific Advisory Board for Defence
dc.relation.funderUS Army Research Office and US Army Research Laboratory
dc.relation.grantnumber345681
dc.relation.grantnumber345683
dc.relation.grantnumber11019/31/2022
dc.relation.grantnumberVN/17548/2023-SAAP-25
dc.relation.grantnumberW911NF-21-1-0258
dc.relation.ispartofjournalIEEE Transactions on Signal Processing
dc.relation.issn1941-0476
dc.relation.issn1053-587X
dc.relation.urlhttps://doi.org/10.1109/TSP.2025.3598453
dc.relation.volume73
dc.rightsCC BY 4.0
dc.source.identifierWOS:001570447800003
dc.source.identifier2-s2.0-105013592625
dc.subjectDataflow computing
dc.subjectsignal processing
dc.subjectmachine learning
dc.subjectedge computing
dc.subjectfault tolerance
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|
dc.titleEdge-PRUNE : A Dataflow-Based Framework for Distributed Signal Processing and Machine Learning
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Boutellier_Tan_Nurmi_Bhattacharyya_2025.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format

Kokoelmat