On the conditional small ball property of multivariate Lévy-driven moving average processes
Osuva_Pakkanen_Sottinen_Yazigi_2017.pdf - Hyväksytty kirjoittajan käsikirjoitus - 729.35 KB
Pysyvä osoite
Kuvaus
We study whether a multivariate Lévy-driven moving average process can shadow arbitrarily closely any continuous path, starting from the present value of the process, with positive conditional probability, which we call the conditional small ball property. Our main results establish the conditional small ball property for Lévy-driven moving average processes under natural non-degeneracy conditions on the kernel function of the process and on the driving Lévy process. We discuss in depth how to verify these conditions in practice. As concrete examples, to which our results apply, we consider fractional Lévy processes and multivariate Lévy-driven Ornstein–Uhlenbeck processes.
Emojulkaisu
ISBN
ISSN
1879-209X
0304-4149
0304-4149
Aihealue
Kausijulkaisu
Stochastic Processes and their Applications|127
OKM-julkaisutyyppi
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
