Passive discrete-time systems with a Pontryagin state space

Springer
Artikkeli
vertaisarvioitu
artikkeli
Osuva_Lilleberg_2019.pdf - Lopullinen julkaistu versio - 461.25 KB

Kuvaus

Passive discrete-time systems with Hilbert spaces as an incoming and outgoing space and a Pontryagin space as a state space are investigated. A geometric characterization when the index of the transfer function coincides with the negative index of the state space is given. In this case, an isometric (co-isometric) system has a product representation corresponding to the left (right) Kreĭn–Langer factorization of the transfer function. A new criterion, based on the inclusion of reproducing kernel spaces, when a product of two isometric (co-isometric) systems preserves controllability (observability), is obtained. The concept of the defect function is expanded for generalized Schur functions, and realizations of generalized Schur functions with zero defect functions are studied.

Emojulkaisu

ISBN

ISSN

1661-8262
1661-8254

Aihealue

Kausijulkaisu

Complex analysis and operator theory|13

OKM-julkaisutyyppi

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä