Autonomous Cyber-Physical Systems Enabling Smart Positive Energy Districts

Kuvaus

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
The European Union (EU) is striving to achieve its goal of being climate-neutral by 2050. Aligned with the European Green Deal and in search of means to decarbonize its urban environments, the EU advocates for smart positive energy districts (PEDs). PEDs contribute to the United Nations’ (UN) sustainable development goals (SDGs) of “Sustainable Cities and Communities”, “Affordable and Clean Energy”, and “Climate Action”. PEDs are urban neighborhoods that generate renewable energy to a higher extent than they consume, mainly through the utilization of innovative technologies and renewable energy sources. In accordance with the EU 2050 aim, the PED concept is attracting growing research interest. PEDs can transform existing energy systems and aid in achieving carbon neutrality and sustainable urban development. PED is a novel concept and its implementation is challenging. This study aims to present the emerging technologies enabling the proliferation of PEDs by identifying the main challenges and potential solutions to effective adoption and implementation of PEDs. This paper examines the importance and utilization of cyber-physical systems (CPSs), digital twins (DTs), artificial intelligence (AI), the Internet of Things (IoT), edge computing, and blockchain technologies, which are all fundamental to the creation of PEDs for enhancing energy efficiency, sustainable energy, and user engagement. These systems combine physical infrastructure with digital technologies to create intelligent and autonomous systems to optimize energy production, distribution, and consumption, thus positively contributing to achieving smart and sustainable development.

Emojulkaisu

ISBN

ISSN

2076-3417

Aihealue

Kausijulkaisu

Applied Sciences|15

OKM-julkaisutyyppi

A2 Katsausartikkeli tieteellisessä aikakauslehdessä