Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Väitöskirjat
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Väitöskirjat
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wrist-based Phonocardiogram Diagnosis Leveraging Machine Learning

Abdelmageed, Shaima (2019-04-17)

 
Katso/Avaa
978-952-476-851-1.pdf (2.361Mb)
Lataukset: 


Abdelmageed, Shaima
Vaasan yliopisto
17.04.2019
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-476-851-1

Kuvaus

vertaisarvioitu
Tiivistelmä
Teknologian valtavan kehittymisen ja nopean elämänrytmin myötä välittömästi saatu tieto on noussut jokapäiväiseksi välttämättömyydeksi, erityisesti hätätapauksissa, joissa jokainen säästetty minuutti on tärkeää ihmishenkien pelastamiseksi. Mobiiliterveys, eli mHealth, on yleisesti valjastettu käyttöön nopeaksi diagnoosimenetelmäksi mobiililaitteiden avulla. Käyttö on kuitenkin ollut haastavaa korkean datan laatuvaatimuksen ja suurten tiedonkäsittelyvaatimuksien, nopean laskentatehon ja sekä suuren virrankulutuksen vuoksi. Tämän tutkimuksen tavoitteena oli diagnosoida sydänsairauksia fonokardiogrammianalyysin (PCG) perusteella käyttämällä koneoppimistekniikoita niin, että käytettävä laskentateho rajoitetaan vastaamaan mobiililaitteiden kapasiteettia. PCG-diagnoosi tehtiin käyttäen kahta tekniikkaa
1. Parametrinen estimointi käyttäen moniulotteista luokitusta, erityisesti signaalien erotteluanalyysin avulla. Tätä asiaa tutkittiin syvällisesti käyttäen erilaisia tilastotieteellisesti kuvailevia piirteitä. Piirteiden irrotus suoritettiin käyttäen Wavelet-muunnosta ja suodatinpankkia.
2. Keinotekoisia neuroverkkoja ja erityisesti hahmontunnistusta. Tässä menetelmässä käytetään myös PCG-signaalin hajoitusta ja Wavelet-muunnos -suodatinpankkia.
Tulokset osoittivat, että PCG 19dB:n signaali-kohina-suhteella voi johtaa 97,33% onnistuneeseen diagnoosiin käytettäessä ensimmäistä tekniikkaa. Signaalin hajottaminen neljään alikaistaan suoritettiin käyttämällä toisen asteen suodatinpankkia. Jokainen alikaista kuvattiin käyttäen kahta piirrettä: signaalin keskiarvoa ja kovarianssia, näin saatiin yhteensä kahdeksan ominaisuutta kuvaamaan noin yhden minuutin näytettä PCG-signaalista. Lisäksi tutkittiin ja verrattiin eriasteisia suodattimia ja piirteitä. Toista tekniikkaa käyttäen diagnoosi johti 100% onnistuneeseen luokitteluun 83,3% luotettavuustasolla. Tuloksia käsitellään ja pohditaan, sekä tehdään niistä johtopäätöksiä. Lopuksi ehdotetaan ja suositellaan käytettyihin menetelmiin uusia parannuksia jatkotutkimuskohteiksi.
 
Kokoelmat
  • Väitöskirjat [463]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste