Evaluation of the IEC 61850 Communication Solutions
Giasis, Alexandros (2016)
Kuvaus
Opinnäytetyö kokotekstinä PDF-muodossa.
Tiivistelmä
Initially, when the IEC 61850 standard was prepared, it was intended to be used within the limits of a substation for information exchange between devices. In the course of time and due to the standard’s advantages, its concepts are nowadays used as well in other application areas of the power utility system. The IEC 61850 is based to the maximum extent on other existing communication standards (IEC/IEEE/ISO/OSI), offering among others: visualization of the real applications through the ASCI interface, standardized messages to be exchanged (GOOSE, SV), one configuration language regardless of the device (IED) type/brand, and mapping to already implemented computing protocols (MMS, TCP/IP, Ethernet). The features mentioned above lead to cost reduction, reliability, and interoperability, making the IEC61850 the dominant standard for intra- and inter-substation communication.
The parts 90-1 and 90-5 of the IEC 61850 standard concern the application of the tunneling and routing method in order to extend the communication beyond the substation’s limits. Although they establish the theoretical background, it can be mentioned a lack of information regarding real applications. So, the objective of this thesis was at first to establish the communication link which will allow the communication of devices belonging to different LANs and second, the acquiring of the round trip times from the exchanged messages. The experiments were conducted by a combination of software (Hamachi) and embedded platform (BeagleBone) pinging to each other first via tunneling and next via 4G mobile network. The acquired round-trip times were used to evaluate and compare the tunneling and the 4G routing method, estimating in parallel what are the perspectives of these methods to be used for inter-substation communication.
The parts 90-1 and 90-5 of the IEC 61850 standard concern the application of the tunneling and routing method in order to extend the communication beyond the substation’s limits. Although they establish the theoretical background, it can be mentioned a lack of information regarding real applications. So, the objective of this thesis was at first to establish the communication link which will allow the communication of devices belonging to different LANs and second, the acquiring of the round trip times from the exchanged messages. The experiments were conducted by a combination of software (Hamachi) and embedded platform (BeagleBone) pinging to each other first via tunneling and next via 4G mobile network. The acquired round-trip times were used to evaluate and compare the tunneling and the 4G routing method, estimating in parallel what are the perspectives of these methods to be used for inter-substation communication.