Development and testing of IEC 61850 network interference equipment - a case study
Björk, Mathias (2014)
Kuvaus
Opinnäytetyö kokotekstinä PDF-muodossa.
Tiivistelmä
As the number of intelligent electronic devices (IEDs) is increasing in substation automation systems (SAS), the IEDs have often been extended with network communication conforming with the IEC 61850 standard, where the Generic Object-Oriented Substation Events (GOOSE) communication protocol is mostly used. This protocol sets certain demands on the IEDs and the network architecture, which must be strictly followed to ensure a safe and functional SAS.
The aim of this study is to develop equipment for testing IEDs communicating with the GOOSE protocol in the worst conditions possible. The testing equipment is able to transmit Ethernet packets at the rate of one gigabit per second, in order to analyze the impact of the interference on a device under test (DUT). This testing equipment is also able search for the single most harmful
packet for a DUT by using a genetic algorithm.
This study shows that the developed equipment is able to find flaws in DUT's by transmitting Ethernet packets at high speeds, when setting the destination address of the interfering packets
to any other address than the physical address of the DUT. However, this only works for a specific DUT, and not in every case. This particular case managed to disable the DUT's functionality completely. This study also shows that the genetic algorithms did not manage to find any specific harmful packet. This shows that the packet structure does not seem to play any role in disabling the functionality of the DUT.
The aim of this study is to develop equipment for testing IEDs communicating with the GOOSE protocol in the worst conditions possible. The testing equipment is able to transmit Ethernet packets at the rate of one gigabit per second, in order to analyze the impact of the interference on a device under test (DUT). This testing equipment is also able search for the single most harmful
packet for a DUT by using a genetic algorithm.
This study shows that the developed equipment is able to find flaws in DUT's by transmitting Ethernet packets at high speeds, when setting the destination address of the interfering packets
to any other address than the physical address of the DUT. However, this only works for a specific DUT, and not in every case. This particular case managed to disable the DUT's functionality completely. This study also shows that the genetic algorithms did not manage to find any specific harmful packet. This shows that the packet structure does not seem to play any role in disabling the functionality of the DUT.