UWB in 3D Indoor Positioning and Base Station Calibration
Koskinen, Toni (2010)
Kuvaus
Opinnäytetyö kokotekstinä PDF-muodossa.
Tiivistelmä
There are several technologies available for object locating and tracking in outdoor and indoor environments but performance requirements are getting tighter and precise object tracking is still largely an open challenge for researchers. Ultra wideband technology (UWB) has been identified as one of the most promising techniques to enhance a mobile node with accurate ranging and tracking capabilities. For indoor applications almost all positioning technologies require physical installation of fixed infrastructure. This infrastructure is usually expensive to deploy and maintain. The aim of this thesis is to improve the accessibility of the RF-positioning systems by lowering the configuration cost.
Real time localisation and tracking systems (RTLS) based on RF technologies pose challenges especially for the deployment of positioning system over large areas or throughout buildings within a number of rooms. If calibration is done manually by providing information about the exact position of the base stations, the initial set-up is particularly time consuming and laborious. In this thesis a method for estimating the position and orientation (x, y, z, yaw, pitch and roll) of a base station of a real time localization system is presented. The algorithm uses two-dimensional Angle of Arrival information (i.e. azimuth and elevation measurements). This allows more inaccurate manual initial survey of the base stations and improves the final accuracy of the positioning.
The thesis presents an implementation of the algorithm, simulations and empirical results. In the experiments, hardware and software procured from Ubisense was used. The Ubisense RTLS bases on UWB technology and utilises Angle of Arrival and Time Difference of Arrival techniques. Performance and functionality of the Ubisense RTLS were measured in various radio environments as well as the implementation of the calibration algorithm. Simulations and experiment studies showed that camera calibration method can be successfully adapted to position systems based on UWB technology and that the base stations can be calibrated in a sufficient accuracy. Because of more flexible calibration, the final positioning accuracy of the Ubisense system was as whole in average better.
Real time localisation and tracking systems (RTLS) based on RF technologies pose challenges especially for the deployment of positioning system over large areas or throughout buildings within a number of rooms. If calibration is done manually by providing information about the exact position of the base stations, the initial set-up is particularly time consuming and laborious. In this thesis a method for estimating the position and orientation (x, y, z, yaw, pitch and roll) of a base station of a real time localization system is presented. The algorithm uses two-dimensional Angle of Arrival information (i.e. azimuth and elevation measurements). This allows more inaccurate manual initial survey of the base stations and improves the final accuracy of the positioning.
The thesis presents an implementation of the algorithm, simulations and empirical results. In the experiments, hardware and software procured from Ubisense was used. The Ubisense RTLS bases on UWB technology and utilises Angle of Arrival and Time Difference of Arrival techniques. Performance and functionality of the Ubisense RTLS were measured in various radio environments as well as the implementation of the calibration algorithm. Simulations and experiment studies showed that camera calibration method can be successfully adapted to position systems based on UWB technology and that the base stations can be calibrated in a sufficient accuracy. Because of more flexible calibration, the final positioning accuracy of the Ubisense system was as whole in average better.