POWER ALLOCATION ALGORITHM FOR MIMO BASED MULTI-HOP COOPERATIVE SENSOR NETWORK
Khan, Muhammad Hasan Danish (2013)
Khan, Muhammad Hasan Danish
2013
Kuvaus
Opinnäytetyö kokotekstinä PDF-muodossa.
Tiivistelmä
Cooperative transmission is a new breed of wireless communication systems that enables the cooperating node in a wireless sensor network to share their radio resources by employing a distributed transmission and processing operation. This new technique offers substantial spatial diversity gains as the cooperating nodes help one another to send data over several independent paths to the destination node. In recent times, an extensive effort has been made to incorporate these systems in the future wireless networks like LTE (Long Term Evolution), IEEE 802.16j (Mobile Multi-hop Relay (MMR) Networks) and IEEE 802.16m (Mobile WiMAX Release 2 or WirelessMAN-Advanced). But, there are few technical issues which need to be addressed before this promising technique is integrated into future wireless networks. Among them, managing transmission power is a critical issue, which needs to be resolved to fully exploit the benefits of cooperative relaying. Optimal Power Allocation, is one such technique that optimally distributes the total transmission power between the source and relaying nodes thus saving a lot of power while maintaining the link quality. In the first part of the thesis, mathematical expressions of the received signals have been derived for different phases of cooperative transmission. Average-Bit-error-rate (ABER), has been taken as a performance metric to show the efficiency of cooperative relaying protocols. In the second part of this Chapter, a multi-hop framework has been presented for the power allocation algorithm with Amplify-and-Forward relaying protocol. The efficiency of the power allocation algorithm has been discussed with different scenarios i.e. First for a three node (2-Hop) wireless network configuration and then for a four node (3-Hop) wireless network configuration. The transmission scenarios (2-Hop and 3-Hop) have been further categorized into multiple cases on the basis of channel quality between source-to-destination, source-to-relay, relay-to-relay and relay-to-destination links.