Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems

Shahbazbegian, Vahid; Shafie-khah, Miadreza; Laaksonen, Hannu; Strbac, Goran; Ameli, Hossein (2023-07-13)

 
Katso/Avaa
Artikkeli (2.113Mb)
Lataukset: 

URI
https://doi.org/10.1016/j.apenergy.2023.121429

Shahbazbegian, Vahid
Shafie-khah, Miadreza
Laaksonen, Hannu
Strbac, Goran
Ameli, Hossein
Elsevier
13.07.2023
doi:10.1016/j.apenergy.2023.121429
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023080994512

Kuvaus

vertaisarvioitu
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Tiivistelmä
This study presents a novel framework for improving the resilience of microgrids based on the power-to-hydrogen concept and the ability of microgrids to operate independently (i.e., islanded mode). For this purpose, a model is being developed for the resilient operation of microgrids in which the compressed hydrogen produced by power-to-hydrogen systems can either be used to generate electricity through fuel cells or sold to other industries. The model is a bi-objective optimization problem, which minimizes the cost of operation and resilience by (i) reducing the active power exchange with the main grid, (ii) reducing the ohmic power losses, and (iii) increasing the amount of hydrogen stored in the tanks. A solution approach is also developed to deal with the complexity of the bi-objective model, combining a goal programming approach and Generalized Benders Decomposition, due to the mixed-integer nonlinear nature of the optimization problem. The results indicate that the resilience approach, although increasing the operation cost, does not lead to load shedding in the event of main grid failures. The study concludes that integrating distributed power-to-hydrogen systems results in significant benefits, including emission reductions of up to 20 % and cost savings of up to 30 %. Additionally, the integration of the decomposition method improves computational performance by 54 % compared to using commercial solvers within the GAMS software.
Kokoelmat
  • Artikkelit [3271]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste