Predictive Analytics in the Production of Elevators
Boldosova, Valeria; Hietala, Jani; Pakkala, Jari; Salokangas, Riku; Kaarmila, Petri; Puranen, Eetu (2021-10-01)
Boldosova, Valeria
Hietala, Jani
Pakkala, Jari
Salokangas, Riku
Kaarmila, Petri
Puranen, Eetu
Editori(t)
Cerquitelli, Tania
Nikolakis, Nikolaos
O’Mahony, Niamh
Macii, Enrico
Ippolito, Massim
Makris, Sotirios
Springer Nature
01.10.2021
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021081643428
https://urn.fi/URN:NBN:fi-fe2021081643428
Kuvaus
vertaisarvioitu
© Springer Nature 2021. This is a post-peer-review, pre-copyedit version of an article published in Predictive Maintenance in Smart Factories: Architectures, Methodologies, and Use-cases. The final authenticated version is available online at: https://doi.org/10.1007/978-981-16-2940-2_8
This research has been partially funded by the European project “SERENA –VerSatilE plug-and-play platform enabling REmote predictive mainteNAnce” (Grant Agreement: 767561).
© Springer Nature 2021. This is a post-peer-review, pre-copyedit version of an article published in Predictive Maintenance in Smart Factories: Architectures, Methodologies, and Use-cases. The final authenticated version is available online at: https://doi.org/10.1007/978-981-16-2940-2_8
This research has been partially funded by the European project “SERENA –VerSatilE plug-and-play platform enabling REmote predictive mainteNAnce” (Grant Agreement: 767561).
Tiivistelmä
With the emerging role of digitalization in the industrial sector, more and more companies attempt to increase asset availability, improve product quality and reduce maintenance costs. Manufacturing companies are faced with the need to transform traditional services into remote factory monitoring solutions using big data and advanced analytics. Kone is a global leader in the elevator and escalator production industry, which is continuously looking for new ways of improving production efficiency and reducing machine downtime in order to run unmanned 24/7 production. However, the process of collecting data from equipment and utilizing it for predictive analytics can be challenging and time consuming. Therefore, during Serena project Kone cooperated with VTT and Prima Power, which provided necessary capabilities and competencies in the areas of data collection, analysis and utilization for developing and testing predictive maintenance solutions in the elevator manufacturing industry. As a result of this collaboration, VTT integrated sensors into Prima Power production line used at Kone and developed algorithms for measuring the remaining useful life of conveyor bearings. As a machine tool builder, Prima Power contributed to the project with a cloud environment for remote collection of vibration measurement data and Serena Customer Web analytics for condition-based maintenance.
Kokoelmat
- Artikkelit [3060]