Simulation-Based Safety Training for Plant Maintenance in Virtual Reality
Kwegyir-Afful, Ebo; Kantola, Jussi (2021-01-01)
Kwegyir-Afful, Ebo
Kantola, Jussi
Springer
01.01.2021
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202101181995
https://urn.fi/URN:NBN:fi-fe202101181995
Kuvaus
vertaisarvioitu
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021. This is a post-peer-review, pre-copyedit version of an article published in Advances in Simulation and Digital Human Modeling: Proceedings of the AHFE 2020 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 16-20, 2020, USA. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-51064-0_22
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021. This is a post-peer-review, pre-copyedit version of an article published in Advances in Simulation and Digital Human Modeling: Proceedings of the AHFE 2020 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 16-20, 2020, USA. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-51064-0_22
Tiivistelmä
This paper presents a 3-D simulation model for safety training in an interactive and fully immersive virtual environment (IVE). The training comprises application of serious games (SGs) designed for filter replacements on a gas-powered plant (GPP) engine model by participants based on plant maintenance health and safety environment (HSE) regulations. Although maintenance work on GPP constitutes significantly in the share of hazards in the industry, there is however, scanty research related to simulation-based training for safety. Research nonetheless indicates the success of this technology in other industrial fields. For this reason, this study explored the possibility for training in safe work practices during maintenance in a gamified virtual environment. The Unreal real-time 3D game engine software was employed for creating virtual objects in the simulation. In total, 38 participants individually undertook the training in the virtual realm and provided feedback on a 5-point Likert scale. Questions pursuant to the assessment included the efficacy of acquired safety knowledge and skills, proximity of the simulation-based training to reality, and the interests and preference of SGs-IVE towards safety training. Results demonstrates participant’s perception of the prospects and learning outcome of SGs-IVE towards safety training: A factor that promotes greater cognitive learning for mindful safety practices.
Kokoelmat
- Artikkelit [2809]