Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal Day-Ahead Self-Scheduling and Operation of Prosumer Microgrids Using Hybrid Machine Learning-Based Weather and Load Forecasting

Faraji, Jamal; Ketabi, Abbas; Hashemi-Dezaki, Hamed; Shafie-Khah, Miadreza; Catalão, João P.S. (2020-08-26)

 
Katso/Avaa
Artikkeli (3.583Mb)
Lataukset: 

URI
https://doi.org/10.1109/ACCESS.2020.3019562

Faraji, Jamal
Ketabi, Abbas
Hashemi-Dezaki, Hamed
Shafie-Khah, Miadreza
Catalão, João P.S.
IEEE
26.08.2020
doi:10.1109/ACCESS.2020.3019562
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020101484050

Kuvaus

vertaisarvioitu
©2020 IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Tiivistelmä
Prosumer microgrids (PMGs) are considered as active users in smart grids. These units are able to generate and sell electricity to aggregators or neighbor consumers in the prosumer market. Although the optimal scheduling and operation of PMGs have received a great deal of attention in recent studies, thechallengesofPMG’suncertaintiessuchasstochasticbehaviorofloaddataandweatherconditions(solar irradiance, ambient temperature, and wind speed) and corresponding solutions have not been thoroughly investigated.Inthispaper,anewenergymanagementsystems(EMS)basedonweatherandloadforecasting isproposedforPMG’soptimalschedulingandoperation.Developinganovelhybridmachinelearning-based methodusingadaptiveneuro-fuzzyinferencesystem(ANFIS),multilayerperceptron(MLP)artificialneural network (ANN), and radial basis function (RBF) ANN to precisely predict the load and weather data is one of the most important contributions of this article. The performance of the forecasting process is improved by using a hybrid machine learning-based forecasting method instead of conventional ones. The demand response (DR) program based on the forecasted data and considering the degradation cost of the battery storage system (BSS) are other contributions. The comparison of obtained test results with those of other existing approaches illustrates that more appropriate PMG’s operation cost is achievable by applying the proposed DR-based EMS using a new hybrid machine learning forecasting method.
Kokoelmat
  • Artikkelit [2012]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste