Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning-based evaluation of photovoltaic power generation

Diaba, Sayawu Yakubu; Alola, Andrew Adewale; Simões, Marcelo Godoy; Elmusrati, Mohammed (2024-08-14)

 
Katso/Avaa
Article (4.303Mb)
Lataukset: 

URI
https://doi.org/10.1016/j.egyr.2024.08.007

Diaba, Sayawu Yakubu
Alola, Andrew Adewale
Simões, Marcelo Godoy
Elmusrati, Mohammed
Elsevier
14.08.2024
doi:10.1016/j.egyr.2024.08.007
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2024091070039

Kuvaus

vertaisarvioitu
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Tiivistelmä
Photovoltaic (PV) power generation has emerged as a rapidly growing renewable energy source. However, the PV system output’s intermittent and weather-dependent nature poses challenges when integrating with the power grid. These challenges manifest as critical issues, including voltage fluctuations, harmonic distortion, and current deviation, making it difficult to accurately predict grid conditions. Moreover, the spatial variability caused by PV system intermittency further complicates the situation. To address these challenges and ensure efficient grid integration, this paper proposes a comprehensive approach encompassing deep learning-based state prediction of PV power output. The paper introduces the utilization of a long short-term memory (LSTM) model, a type of deep learning architecture, for learning patterns from historical PV power generation data and weather forecasts. The LSTM model enables accurate predictions for effective grid management by capturing long-term dependencies in PV power generation data. Real-world PV power generation data was employed to evaluate the proposed approach. The results demonstrated the significant improvement in PV power generation prediction accuracy achieved by the LSTM model compared to traditional methods. The proposed approach offers a promising solution for addressing the challenges associated with PV system integration into the power grid. It enables enhanced grid planning, resource allocation, and protection measures to accommodate the increasing penetration of solar energy harnessed through PV systems and related power electronics interfaces.
Kokoelmat
  • Artikkelit [3246]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste