Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineers, Aware! Commercial Tools Disagree on Social Media Sentiment : Analyzing the Sentiment Bias of Four Major Tools

Jung, Soon-Gyo; Salminen, Joni; Jansen, Bernard J. (2022-06-17)

 
Katso/Avaa
Artikkeli (753.6Kb)
Lataukset: 

URI
https://doi.org/10.1145/3532203

Jung, Soon-Gyo
Salminen, Joni
Jansen, Bernard J.
ACM
17.06.2022
doi:10.1145/3532203
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022062248556

Kuvaus

vertaisarvioitu
© Owner/Author(s). ACM 2022. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the ACM on Human-Computer Interaction, https://doi.org/10.1145/3532203.
Tiivistelmä
Large commercial sentiment analysis tools are often deployed in software engineering due to their ease of use. However, it is not known how accurate these tools are, and whether the sentiment ratings given by one tool agree with those given by another tool. We use two datasets - (1) NEWS consisting of 5,880 news stories and 60K comments from four social media platforms: Twitter, Instagram, YouTube, and Facebook; and (2) IMDB consisting of 7,500 positive and 7,500 negative movie reviews - to investigate the agreement and bias of four widely used sentiment analysis (SA) tools: Microsoft Azure (MS), IBM Watson, Google Cloud, and Amazon Web Services (AWS). We find that the four tools assign the same sentiment on less than half (48.1%) of the analyzed content. We also find that AWS exhibits neutrality bias in both datasets, Google exhibits bi-polarity bias in the NEWS dataset but neutrality bias in the IMDB dataset, and IBM and MS exhibit no clear bias in the NEWS dataset but have bi-polarity bias in the IMDB dataset. Overall, IBM has the highest accuracy relative to the known ground truth in the IMDB dataset. Findings indicate that psycholinguistic features - especially affect, tone, and use of adjectives - explain why the tools disagree. Engineers are urged caution when implementing SA tools for applications, as the tool selection affects the obtained sentiment labels.
Kokoelmat
  • Artikkelit [1614]
https://osuva.uwasa.fi
Ota yhteyttä | Lähetä palautetta | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Lähetä palautetta | Tietosuoja | Saavutettavuusseloste