Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Machine Learning Algorithms for Classification of Partial Discharge Signals in Medium Voltage Components

Kumar, Haresh; Shafiq, Muhammad; Hussain, Ghulam Amjad; Kauhaniemi, Kimmo (2021-12-21)

 
Katso/Avaa
Artikkeli (621.5Kb)
Lataukset: 

URI
https://doi.org/10.1109/ISGTEurope52324.2021.9639923

Kumar, Haresh
Shafiq, Muhammad
Hussain, Ghulam Amjad
Kauhaniemi, Kimmo
IEEE
21.12.2021
doi:10.1109/ISGTEurope52324.2021.9639923
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022032825671

Kuvaus

vertaisarvioitu
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Tiivistelmä
Partial discharge (PD) diagnosis is an effective tool to track the condition of electrical insulation in the medium voltage (MV) power components. Machine Learning Algorithms (MLAs) promote automated diagnosis solutions for large scale and reliable maintenance strategy. This paper aims to investigate the performance of two MLAs: Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) for the classification of different types of PD sources. Suitable features are extracted by applying statistical parameters on the coefficients of discrete wavelet transform (DWT) for observing the performance of both MLAs. The performance of the algorithms is evaluated using key performance indicators (KPIs); accuracy, prediction speed and training time. Besides KPIs, a confusion matrix is presented to highlight the accurately classified and misclassified PD signals for the SVM algorithm. Comparative study of both algorithms demonstrates that SVM provides better results as compared to the KNN algorithm. The proposed solution can be valuable for the development of automated classification.
Kokoelmat
  • Artikkelit [3250]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste