Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal Singular Value Decomposition Based Big Data Compression Approach in Smart Grids

Hashemipour, Naser; Aghaei, Jamshid; Kavousi-fard, Abdollah; Niknam, Taher; Salimi, Ladan; del Granado, Pedro Crespo; Shafie-Khah, Miadreza; Wang, Fei; Catalão, João P. S. (2021-04-15)

 
Katso/Avaa
Artikkeli (1.697Mb)
Huom!
Tiedosto avautuu julkiseksi:
: 15.04.2023
URI
https://doi.org/10.1109/TIA.2021.3073640

Hashemipour, Naser
Aghaei, Jamshid
Kavousi-fard, Abdollah
Niknam, Taher
Salimi, Ladan
del Granado, Pedro Crespo
Shafie-Khah, Miadreza
Wang, Fei
Catalão, João P. S.
IEEE
15.04.2021
doi:10.1109/TIA.2021.3073640
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202201132298

Kuvaus

vertaisarvioitu
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Tiivistelmä
The smart grid is a fully automatic delivery grid for electricity power with a two-way reliable flow of electricity and information among different equipment on the grid. Smart meters and sensors monitoring the system provide a huge amount of data in various part of smart grid. To logically manage this trouble, a new lossy data compression approach for big data compression is proposed. The optimal singular value decomposition (SVD) is applied to a matrix that achieves the optimal number of singular values to the sending process, and the other ones will be neglected. This goal is done due to the quality of retrieved data and the compression ratio. In the presented scheme, to implement the optimization framework, various intelligent optimization methods are used to determine the number of optimal values in the elimination stage. The efficiency and capabilities of the proposed method are examined using a wide range of data types, from electricity market data to image processing benchmarks. The comparisons show that the compression level obtained by the proposed method can dominate the points given by the existing SVD rank reduction methods. Also, as the other finding of this article, the performance of the rank reduction methods depends on the application and data types. It means that a rank reduction method can reveal a good performance in one application and performs unacceptably for another purpose. So, the optimized rank reduction can pave the way toward a robust and reliable performance.
Kokoelmat
  • Artikkelit [1916]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste