Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved EMD-Based Complex Prediction Model for Wind Power Forecasting

Abedinia, Oveis; Lotfi, Mohamed; Bagheri, Mehdi; Sobhani, Behrouz; Shafie-khah, Miadreza; Catalão, João P.S. (2020-02-28)

 
Katso/Avaa
Artikkeli (1.054Mb)
Lataukset: 

URI
https://doi.org/10.1109/TSTE.2020.2976038

Abedinia, Oveis
Lotfi, Mohamed
Bagheri, Mehdi
Sobhani, Behrouz
Shafie-khah, Miadreza
Catalão, João P.S.
Institute of Electrical and Electronics Engineers
28.02.2020
doi:10.1109/TSTE.2020.2976038
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020100778341

Kuvaus

vertaisarvioitu
© 2020 Institute of Electrical and Electronics Engineers
Tiivistelmä
As a response to rapidly increasing penetration of wind power generation in modern electric power grids, accurate prediction models are crucial to deal with the associated uncertainties. Due to the highly volatile and chaotic nature of wind power, employing complex intelligent prediction tools is necessary. Accordingly, this article proposes a novel improved version of empirical mode decomposition (IEMD) to decompose wind measurements. The decomposed signal is provided as input to a hybrid forecasting model built on a bagging neural network (BaNN) combined with K-means clustering. Moreover, a new intelligent optimization method named ChB-SSO is applied to automatically tune the BaNN parameters. The performance of the proposed forecasting framework is tested using different seasonal subsets of real-world wind farm case studies (Alberta and Sotavento) through a comprehensive comparative analysis against other well-known prediction strategies. Furthermore, to analyze the effectiveness of the proposed framework, different forecast horizons have been considered in different test cases. Several error assessment criteria were used and the obtained results demonstrate the superiority of the proposed method for wind forecasting compared to other methods for all test cases.
Kokoelmat
  • Artikkelit [3158]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste