Vaasan yliopisto | Open
UNIVERSITY OF VAASA ‘ SCIence

This is a self-archived — parallel published version of this article in the
publication archive of the University of Vaasa. It might differ from the original.

Subdiffusive fractional Black-Scholes model for
pricing currency options under transaction

COsts

Author(s):

Title:

Year:

Version:

Copyright

Shokrollahi, Foad

Subdiffusive fractional Black—Scholes model for pricing
currency options under transaction costs

2018
Publisher’s PDF

Cogent OA, Creative Commons Attribution (CC-BY) 4.0 License

Please cite the original version:

Shokrollahi, F., (2018). Subdiffusive fractional Black—Scholes
model for pricing currency options under transaction costs.
Cogent  Mathematics and  Statistics  5(1), 1-14.
https://doi.org/10.1080/25742558.2018.1470145



Shokrollahi, Cogent Mathematics & Statistics (2018), 5: 1470145
https://doi.org/10.1080/25742558.2018.1470145

CrossMark

Received: 16 November 2017
Accepted: 24 April 2018
First Published: 29 May 2018

*Corresponding author: Foad
Shokrollahi, Department of
Mathematics and Statistics,
University of Vaasa, P.O. Box 700,
FIN-65101 Vaasa, Finland

E-mail: foad.shokrollahi@uva.fi

Reviewing editor:
Carlo Cattani, University of Tuscia,
Italy

Additional information is available at
the end of the article

cogent--0a

<k cogent

mathematics
& statistics

APPLIED & INTERDISCIPLINARY MATHEMATICS | RESEARCH ARTICLE

Subdiffusive fractional Black-Scholes model for
pricing currency options under transaction costs
Foad Shokrollahi**

Abstract: A new framework for pricing European currency option is developed in
the case where the spot exchange rate follows a subdiffusive fractional Black-
Scholes. An analytic formula for pricing European currency call option is proposed by
a mean self-financing delta-hedging argument in a discrete time setting. The
minimal price of a currency option under transaction costs is obtained as time-step

N ! Lo . . . e
At = (F‘Ea)) (2)#(%)¥, which can be used as the actual price of an option. In addition,

we also show that time-step and long-range dependence have a significant impact
on option pricing.

Subjects: Science; Mathematics & Statistics; Applied Mathematics; Statistics & Probability
Keywords: subdiffusion process; currency option; transaction costs; inverse subordinator
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1. Introduction

The standard European currency option valuation model has been presented by Garman and
Kohlhagen (G — K) (Garman & Kohlhagen, 1983). However, some papers have provided evidence
of the mispricing for currency options by the G — K model. The most important reason why this
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model may not be entirely satisfactory could be that currencies are different from stocks in
important respects and the geometric Brownian motion cannot capture the behavior of currency
return (Ekvall, Jennergren, & Ndslund, 1997). Since then, many methodologies for currency option
pricing have been proposed by using modifications of the G — K model (Garman & Kohlhagen,
1983; Ho, Stapleton, & Subrahmanyam, 1995).

All this research above assumes that the logarithmic returns of the exchange rate are indepen-
dent identically distributed normal random variables. However, in general, the assumptions of the
Gaussianity and mutual independence of underlying asset log returns would not hold. Moreover,
the empirical research has also shown that the distributions of the logarithmic returns in the
financial market usually exhibit excess kurtosis with more probability mass near the origin and in
the tails and less in the flanks than would occur for normally distributed data (Dai & Singleton,
2000). That is to say the features of financial return series are non-normality, non-independence,
and nonlinearity. To capture these non-normal behaviors, many researchers have considered other
distributions with fat tails such as the Pareto-stable distribution and the Generalized Hyperbolic
Distribution. Moreover, self-similarity and long-range dependence have become important con-
cepts in analyzing the financial time series.

There is strong evidence that the stock return has little or no autocorrelation. As fractional
Brownian motion (FBM) has two important properties called self-similarity and long-range depen-
dence, it has the ability to capture the typical tail behavior of stock prices or indexes (Borovkov,
Mishura, Novikov, & Zhitlukhin, 2018; Shokrollahi & Sottinen, 2017).

The fractional Black-Scholes (FBS) model is an extension of the Black-Scholes (BS) model, which
displays the long-range dependence observed in empirical data. This model is based on replacing the
classic Brownian motion by the fractional Brownian motion (FBM) in the Black-Scholes model. That is

V(t) = Vo exp{ut n JBH(t)}, Vo > 0, (1.1)

where x, and o are fixed, and By(t) is a FBM with Hurst parameter H € £,1). It has been shown
that the FBS model admits arbitrage in a complete and frictionless market (Cheridito, 2003;
Shokrollahi & Kiligman, 2014; Sottinen & Valkeila, 2003; Wang, Zhu, Tang, & Yan, 2010; Xiao,
Zhang, Zhang, & Wang, 2010). Wang (2010) resolved this contradiction by giving up the arbitrage
argument and examining option replication in the presence of proportional transaction costs in
discrete time setting (Mastinsek, 2006).

Magdziarz (2009a) applied the subdiffusive mechanism of trapping events to describe properly
financial data exhibiting periods of constant values and introduced the subdiffusive geometric
Brownian motion

Va(t) = V(Ta(t)), (1.2)

as the model of asset prices exhibiting subdiffusive dynamics, where V,(t) is a subordinated
process (for the notion of subordinated processes please refer to Refs. Janicki and Weron (1993,
1995), Kumar, Wytomanska, Potoczanski, and Sundar (2017), Piryatinska, Saichev, and Woyczynski
(2005), in which the parent process V() is a geometric Brownian motion and T,(t) is the inverse
a-stable subordinator defined as follows:

To(t) =inf{r>0:Q,(r)>t}, O<a<l. (1.3)

Here, Q.(t) is a strictly increasing a-stable subordinator with Laplace transform: E(e %)) = e,
0<a<1, where E denotes the mathematical expectation.

Magdziarz (2009a) demonstrated that the considered model is free-arbitrage but is incomplete
and proposed the corresponding subdiffusive BS formula for the fair prices of European options.

Page 2 of 14



Shokrollahi, Cogent Mathematics & Statistics (2018), 5: 1470145 :k" cogent oo ma‘thema‘UCS & Stat|St|CS

https://doi.org/10.1080/25742558.2018.1470145

Subdiffusion is a well-known and established phenomenon in statistical physics. The usual
model of subdiffusion in physics is developed in terms of FFPE (fractional Fokker-Planck equations).
This equation was first derived from the continuous-time random walk scheme with heavy-tailed
waiting times (Metzler & Klafter, 2000). It provides a useful way for the description of transport
dynamics in complex systems (Magdziarz, Weron, & Weron, 2007). Another description of sub-
diffusion is in terms of subordination, where the standard diffusion process is time-changed by the
so-called inverse subordinator (Gu, Liang, & Zhang, 2012; Guo, 2017; Janczura, Orzet, &
Wytomanska, 2011; Magdziarz, 2009b, Magdziarz et al., 2007; Scalas, Gorenflo, & Mainardi, 2000,
Shokrollahi & Kiligman, 2014; Yang, 2017).

The objective of this paper is to study the European call currency option by a mean self financing
delta hedging argument. The main contribution of this paper is to derive an analytical formula for
European call currency option without using the arbitrage argument in discrete time setting when
the exchange rate follows a subdiffusive FBS

S = V(Ta(t) = Soexp{uTa(t) + oBu(T. (1)) }, (1.4)

We then apply the result to value European put currency option. We also provide representative
numerical results.

Making the change of variable, By (t) ="t + By(t), under the risk-neutral measure, we have

that
St = V(Ry(t)) = Soexp{(ra — rf)(Ta(t)) + oBu((Ta(t)}, (1.5)
So = V(0)>0.

This formula is similar to the Black-Scholes option pricing formula, but with the volatility being
different.

We denote the subordinated process W, ;(t) = By(T,(t)), here the parent process By(z) is a FBM
and T,(t) is assumed to be independent of By(z). The process W,y(t) is called a subdiffusion
process. Particularly, when H =1, it is a subdiffusion process presented in Karipova and Magdziarz
(2017), Kumar et al. (2017), and Magdziarz (2010).

Figure 1 shows typically the differences and relationships between the sample paths of the spot
exchange rate in the FBS model and the subdiffusive FBS model.

The rest of the paper proceeds as follows: In Section 2, we provide an analytic pricing formula for
the European currency option in the subdiffusive FBS environment and some Greeks of our pricing
model are also obtained. Section 3 is devoted to analyze the impact of scaling and long-range
dependence on currency option pricing. Moreover, the comparison of our subdiffusive FBS model
and traditional models is undertaken in this section. Finally, Section 4 draws the concluding
remarks. The proof of Theorems are provided in Appendix.

2. Pricing model for the European call currency option
In this section, we derive a pricing formula for the European call currency option of the subdiffusive

FBS model under the following assumptions:

(i) We consider two possible investments: (1) a stock whose price satisfies the equation:

St = Soexp{(rd — rf)Ta(t) + O‘W,,,J-,(t)}7 So >0., (2.1)
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Figure 1. Comparison of the 10

spot exchange rate’ sample
paths in the F8$ model (left) and

the subdiffusive FBS model 1025}

(right) for r; = 0.03,r; = 0.02,

a=09,H=08,0=01,5=1. 102
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where a € (%,1), He [%,1), a+aH>1, and ry, and ry are the domestic and the foreign interest
rates, respectively. (2) A money market account:

dFt = I’dFtdt, (22)

where ry shows the domestic interest rate.

(i) The stock pays no dividends or other distributions, and all securities are perfectly divisible.
There are no penalties to short selling. It is possible to borrow any fraction of the price of a
security to buy it or to hold it, at the short-term interest rate. These are the same valuation
policy as in the BS model.

(iii) There are transaction costs that are proportional to the value of the transaction in the
underlying stock. Let k denote the round trip transaction cost per unit dollar of transaction.
Suppose U shares of the underlying stock are bought (U>0) or sold (U<0) at the price S,
then the transaction cost is given by ’7‘ |U|S: in either buying or selling. Moreover, trading takes
place only at discrete intervals.

(iv) The option value is replicated by a replicating portfolio IT with U(t) units of stock and riskless
bonds with value F(t). The value of the option must equal the value of the replicating portfolio
to reduce (but not to avoid) arbitrage opportunities and be consistent with economic
equilibrium.

(v) The expected return for a hedged portfolio is equal to that from an option. The portfolio is
revised every At and hedging takes place at equidistant time points with rebalancing intervals
of (equal) length At, where At is a finite and fixed, small time-step.

Remark 2.1. From Guo and Yuan (2014), Magdziarz (2009c), we have E(TT(t)) = % Then, by
using a-self-similar and non-decreasing sample paths of T,(t), we can obtain that a-self-similar

and non-decreasing sample paths of T,(t),

E(AT,(t)) = E(T,(t + At) — T,(t))

=g [+ A" — ] = F(:) At. (2.3)
and o 12
E((eBn.0)2) = [Fs] o -
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Let C =C(t,St) be the price of a European currency option at time t with a strike price K that
matures at time T. Then, the pricing formula for currency call option is given by the following
theorem.

Theorem 2.1. C = C(t,S;) is the value of the European currency call option on the stock S; satisfied
(1.5) and the trading takes place discretely with rebalancing intervals of length At. Then, C satisfies
the partial differential equation

ac 1,,.,0%C
(rq — rf)sta—st +§azs§a—st2 —ry€=0, (2.5)

C
ot +
with boundary condition C(T,St) = max{Sr — K, 0}. The value of the currency call option is
C(t,St) = Ste” "™ Vd(dy) — Ke T Vd(d,), (2.6)
and the value of the put currency option is
P(t,S;) = Ke T Vd(—d;) — S;e " T Dd(—dy), (2.7)
where

22

@) + (ra—r)(T-t+5(T-1t)

d, = ,
' VTt
d, =d; —6(t)VT —t, (2.8)
ta—l 2H \/Ek ta—l H
~2 2 2H-1 ch H-1
6% =0 (r(a)> At + ﬂa(F(a)) At R (2.9)

where @(.) is the cumulative normal distribution function.

In what follows, the properties of the subdiffusive FBS model are discussed, such as
Greeks, which summarize how option prices change with respect to underlying variables and
are critically important to asset pricing and risk management. The model can be used to
rebalance a portfolio to achieve the desired exposure to certain risk. More importantly, by
knowing the Greeks, particular exposure can be hedged from adverse changes in the market by
using appropriate amounts of other related financial instruments. In contrast to option prices
that can be observed in the market, Greeks cannot be observed and must be calculated given a
model assumption. The Greeks are typically computed using a partial differentiation of the
price formula.

Theorem 2.2. The Greeks can be written as follows:

oC

_ b -y

A=gs=e @(dy), (2.10)
_9C ey

V= K- e q)(dz)., (2.11)
_9C T pe-rTH

P = gp = K(T —t)e ®(d,), (2.12)

p =€ L s T— e T Va(dy), (2.13)

f 8rf
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©=" = Sirre 1T Va(dy) — Krge TV (d,)
(T-t) 2 e 2H<t1 ) AtZH '
+ Se™1U'~ T—t)@'(d
e 0@ 1) s Wt (T~ @' (dy)
(2.14)
re(T— t\/» ta ZH(ta 1) AtH ' /
+ Sie™ " -1) T-t)@'(d
_S efrf(T t) (1)/ d
t 5 \/— (d1),
*C 1y @(dy)
r==—=e - _— 12| 2.15
252 SeoVT—t (2.15)
oc —re(T—t) ’
:g:ste =UVT — td' (dy). (2.16)
(o)
Remark 2.2. The modified volatility without transaction costs (k = 0) is given by
g1y 2
2 2| (U 7 2H-1
6" =o¢ (I’(a)) At , (2.17)
specially if a 1 1,
& = At (2.18)

which is consistent with the result in Necula (2002).

Furthermore, from Equation (2.18), if H | 1, then 62 = 62, which is according to the results with
the G — K model (Garman & Kohlhagen, 1983).

Letting a 1 1, from Equation (2.9), we obtain

Remark 2.3. The modified volatility under transaction costs is given by

& = [Atz"’l + \kat”l] :
o

(2.19)

that is in line with the findings in Wang (2010).

3. Empirical studies

The objective of this section is to obtain the minimal price of an option with transaction costs and
to show the impact of time scaling At, transaction costs k, and subordinator parameter « on the
subdiffusive FBS model. Moreover, in the last part, we compute the currency option prices using our
model and make comparisons with the results of the G — K and FBS models.

As §<\/§ often holds (for example: 6 = 0.1,k = 0.01), from Equation (2.9), we have

i 2H-1 2k
o () o B

> z(%) ABH-1(2)1 (k)2

3.1)
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tzl

1 1 1 -1 1 1
where H>1. Then, the minimal volatility 6y is V26 (t” 1)Z( )2 ‘“(ﬁ)l # as At = ( (a)) (2) (k.
Thus, the minimal price of an option under transaction costs is represented as Cpn(t,St) with 6min

in Equation (2.8).

Moreover, the option rehedging time interval for traders to take is At = (t(;)) (f[)i”( ). The
minimal price Cpmin(t,St) can be used as the actual price of an option.

In particular, as At<1,a € (3,1) and % = S;e~"(™-0 % 45 >0,

e e ) o
H 13

a 1 2H a—1
x 2{ ﬁ(a AP \/%(_’i (E(a)) At
" . (3.2)
ta 1 {2H-1 \/Ek et H-1
I:Z A + o (r(a)> At

and 45 =292, then we have

+1In At]

q)\—/

oC 1
55 <0 asHel.1), (3.3)

which displays that an increasing Hurst exponent comes along with a decrease of the option

value (see Figure 2).

On the other hand, if H | ], then

(5 ()

and if @ 1 1, then min — V2o as H | 3.

In addition, if H |

x 10

Figure 2. Call currency option 025
values.
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t I\ T NF VG et T2 k2
() ()6 - (@) ()6 =
and if « T 1, then At — (,%)(l—‘;)z asH |1

Lux and Marchesi (1999) have shown that Hurst exponent H = 0.51 4 0.004 in some cases, so
Equations (3.4) and (3.5) have a practical application in option pricing. For example:if H | 3,a 7 1,k =
2% and ¢ = 20%, then 6min —»%, and At —9292; and if H 13,01 1,k=0.2% and o = 20%, then

Omin — ‘2/—3, and At — 2 x 1074,

In the following, we investigate the impact of scaling and long-range dependence on option
pricing. It is well known that Mantegna and Stanley (1995) introduced the method of scaling
invariance from the complex science into the economic systems for the first time. Since then, a lot
of research for scaling laws in finance has begun. If H = § and k = 0, from Equation (2.9), we know

that 62 = 62 <tr(;1)) shows that fractal scaling At has not any impact on option pricing if a mean self-

financing delta-hedging strategy is applied in a discrete time setting, while subordinator para-
meter  has remarkable impact on option pricing in this case. In particular, from Equations (3.4)

1
and (3.5), we know that 6min — oy /2(%) as H~1 and At — (E(al)) )(4)?, as H~ 1. Therefore,

Cmin(t,St) is approximately scaling free with respect to the parameter k, if H~ 3, but is scaling

-1
dependent with respect to subordinator parameter a. However, At — (F(:)) (2 (f—‘;)z, is scaling

dependent with respect to parameters k and q, if H ~ 3. On the other hand, if H> 1 and k = 0, from

2H
Equation (2.17), we know that 6 = &2 {(f(—:)) Atz"’*l}, which displays that the fractal scaling At

and sabordinator parameter a have a significant impact on option pricing. Furthermore, for k+0,
from Equation (2.8), we know that option pricing is scaling dependent in general.

Now, we present the values of currency call option using subdiffusive FBS model for different
parameters. For the sake of simplicity, we will just consider the out-of-the-money case. Indeed,
using the same method, one can also discuss the remaining cases: in-the-money and
at-the-money. First, the prices of our subdiffusive FBS model are investigated for some At and
prices for different exponent parameters. The prices of the call currency option versus its
parameters H,At,a and k are revealed in Figure 2. The selected parameters are S; = 1.4, K=
15,6=01,rg=003,r,=002,T=1,t=0.1, At=0.01, k=0.01,H=08,a=09. Figure 2
indicates that the option price is an increasing function of k and At, while it is a decreasing
function of H and a.

For a detailed analysis of our model, the prices calculated by the G — K, FBS and subdiffusive FBS
models are compared for both out-of-the-money and in-the-money cases. The following para-
meters are chosen: S = 1.2,6 = 0.5,r4 = 0.05,r; = 0.01,t = 0.1,At = 0.01,k = 0.001, and H = 0.8,
along with time maturity T € [0.1, 2], strike price K € [0.8,1.19] for the in-the-money case and K €
[1.21,1.4] for the out-of-the-money case. Figures 3 and 4 show the theoretical values difference by
the G — K, FBS, and our subdiffusive FBS models for the in-the-money and out-of-the-money,
respectively. As indicated in these figures, the values computed by our subdiffusive FBS model
are better fitted to the G — K values than the FBS model for both in-the-money and out-of-the
money cases. Hence, when compared to these figures, our subdiffusive FBS model seems
reasonable.

4. Conclusion

Without using the arbitrage argument, in this paper, we derive a European currency option pricing
model with transaction costs to capture the behavior of the spot exchange rate price, where the
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spot exchange rate follows a subdiffusive FBS with transaction costs. In discrete time case, we
show that the time scaling At and the Hurst exponent H play an important role in option pricing
with or without transaction costs and option pricing is scaling dependent. In particular, the
minimal price of an option under transaction costs is obtained.
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Appendix
Proof of Theorem 2.1. The movement of S; on time interval [t,t + At) of length At is
ASt — St+At _ St — St(e(rd—rf)ATu(t)+JAW,,_H(t) _ 1)

= S5t((rg — rr)ATo(t) + AW, u(t)

§ 2 (g~ IATL(E) + AW, 1(6)?) “1)

n %ste[a«rrrfma) AW, ()]
x ((ra = I)ATo(t) + oAW, (1)),
here 6 = 9(t,At) € (0,1) is a random variable corresponding to process S;.

Based on Lemmas 2.1 and 2.2 of Gu et al. (2012), we can get

((rd - rf)ATu(t) + O'AW(Z"H(t))Z = (O(At“fg) + O(Ataer))Z
(4.2)
= O(At(’+‘1H*25‘) + 0(At2aH725)7

el ra=rpATa() + oMWt ®)] ((ry — 1 )AT, (t) + AW, u(t)?
— O(At3a735) + O(At2a+aH733) + O(AtZaHJrafBe) + O(At3a73€) (43)

— O(At3aH73s)7
O(Atrz+(1H—2£) + O(At3rzH—3s) _ O(Ata+aH_2€). (44)

From the above equations, Equation (4.1) can be rewritten as follows
ASt = (I’d — l’f)StATa(t) + GStAWa‘H(t)
1 , (4.5)
+ 5 0P SHAW,u(t)” + o(At*TH2),

By the assumption aH + a> 1, we obtain

ASt = (I’d — I’f)StATa(t) + GStAWaA’H(t) (4.6)

Applying the Taylor expansion to C(t,S:), we have

aC ac 19°C
AC(t,S;) = aEAt+ a—StAst + Ea—stzAsf

10°C ., 0%
202 80 T a0t
aC ac 19%C

= At + —AS; + =——AS? At

gttt g A5 T ggg At T oAl “7)
aC

ac acC
=5t + (rg — rf)Sta—St AT,(t) + Usta_st AW, u(t)
oC

- 2¢. Y- 2
+ 20 St 8St (AWaﬁH(t))
1 ,.,0%C
275 s

+ AtAS; + o(At3H=#)

+ (AW, 5(t))* + o(At).

From Equations (4.1)-(4.5), we obtain that gisg, %, (%Ct is o(At(1-H9 ") and
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oC 92C H*C 193C )
((‘Tst) = astatAH@Asﬁzw AS? + 0(At), (4.8)
and
oC
'A(ast>"5t*“ 652 \AWaH )| + o(At). (4.9)

Moreover, from assumptions (iii) and (iv), it is found that the change in the value of portfolio I1; is

All; = Ut(ASt + rfStAt) + AF; — ’7( |AUt|St+At
= Ut(ASt + rfStAt) + rqFiAt (4.10)
—§|AUt|5t+At + o(At),

where the number of bonds U; is constant during time-step At. From assumption (v), C(t,S;) is
replicated by portfolio II(t). Thus, at time points At, 2At, 3At, ..., we have C(t,S;) = U:S; + F: and
U :%- Therefore, according to Equations (4.5)-(4.10), we have

All = 755 [(l’d — rf)StAT(,(t) + GStAWa"H(t) +%625t(AWa7H(t))z + rfStAt}
t
oC

k
+ rgFeAt — ‘A(as

) ‘ St+At + O(At)

ac 1 (4.11)
85 |:(I’d — rf)StAT ( ) + GStAWaA’H(t) +§625t(AWa‘H(t))2 + rfStAt}
oC k ,|0%C
+ (C(t,St) St S )rdAt S 852 AW, u(t) + o(At).
Consequently,
oCc  oC 1 9*C 2
ATl — AC = (rdC —(rg—rf)Stoc 25, at>A —50 o?St 057 (AW, 1(t))
K 2c (4.12)
_K
2(75 852 AW, u(t) + o(At).

The time subscript, t, has been suppressed. As expected, using Equation (4.12), (iv), Remark 2.1,
and (4.13), we infer

E(AH — AC) = (rdC — (rd )St 8Ct gf) At
L[t oy 2 92C 1 \f L[t ulo%C

2 [WaJ AT s 2 VA f[ a J A os?

B ac ac 1M L L 9C

- <rdc_( "G, "ot 2 {r(a)] AT S s

12, o[t 1" wa|o®Cl .,
—E\/;kast L’(a)] At At = 0.

852
Thus, from Equation (4.13), we can derive

(4.13)
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ac oc 1t 92C
{ } APH16257 —
05?2

rqC = (rqg — rf)5t8—5t+§+§ M)

O R
+2\/;k05t {r(a)} At

(4.14)
e
052

We define 5%(t) as follows:

o o[t ! ZH 2H-1 2, [t 5 H-1
6“=oc [r(a)} At + ;k(T {r(a)] At . (4.15)

where % is ever positive for the ordinary European currency call option without transaction costs,
t

if the same conduct of Z¢ is postulated here and 4(t) remains fixed during the time-step [t, At).

052
Then, from Equations (4.14) and (4.15), we obtain
ocC oc 1,5, 82C
E+(rd—rf)5t875t+§0' Sta—stz—rdCzo. (416)
Followed by
C=C(t,S) = Sie TV (dy) — Ke TV (d,), (4.17)
and
di— tn (38) +(ra—rp) (T +2(T-1)
VTt ’ (4.18)
d, =dy —6vT -t

Proof of Theorem 2.2. First, we derive a general formula. Let y be one of the influence factors. Thus

oc o LrF)(T-1)
9C __ OSe (r) ®(dy) + Ste—rf(T—t) f)(%(}l/fll

o aKaX'N*‘) T—t) 00(dy) (4.19)
—eTcD(dz) — Ke—ra(T- )a—yz
But
00(dy) 0 0a
1 40d,
- oY
2n oy
I N BN C AR Y
“Var 2 dy
1 & A(T—t) ad (420
__ T a3 = _ _o U ~bj) s
= 2ﬂe 2 exp(dio/T t))exp( 5 >8y
1 4 St )adz
=——ezexp(ln=+(rg—r)(T—-1t) ) ==
et exp (I3 - )T -1)) 5
1 ¢S od,
=——e 2—exp((rg—r)(T—1)—=.
e gexplira— )T —1) 5
Then
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—(rp)(T—1) —rg(T—t)
oC __ 95e (D(dl) _ 8Kea’; CD(dz)

» » (4.21)
(T 06 /T—1) :
T Sie 00 (dy) YT

Substituting in (4.21), we get the desired Greeks.
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