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Assessment and Optimization of Clean Energy Equity Risks and Commodity

Price Volatility Indexes: Implications for Sustainability

Abstract

Although clean energy equities have emerged as a new asset class for market participants,
especially environmentally concerned investors, existing and previous studies pay very little
attention to how equity investors in clean energy markets can reduce their downside risk. The
authors of this paper address this void by considering the roles of the commodity market volatility
indexes of crude oil, gold and silver. Using the dynamic conditional correlation model, the results
show that commodity volatilities and clean energy equity prices move in opposite directions.
Based on the hedging effectiveness, each of the three volatility indexes performs as an effective
tool for reducing the risk of clean energy equity indexes. Meanwhile, the implied volatility index
of crude oil is the most effective tool, followed by that of gold and silver. The application of an
asymmetric model confirms the main findings. The findings extend the limited understanding on
how to hedge the downside risk of clean energy stock indices, and provide useful implications to
market participants on the ability of implied volatility indexes of major commodities to hedge that

risk.

Keywords: Clean energy equities; Commodity market volatility; Time-varying correlations;
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1. Introduction

Recent years have seen a rapid development of the renewable energy industry (Kazemilari et al.,
2017). Related investments in this sector have witnessed a substantial uptrend over the last few
years, growing from $47 billion in 2004 to $279.8 in 2017". This significant expansion was mainly
driven by the adverse impact of conventional energy sources on global climate change, and thus
the willingness of governments to cope with deteriorating environmental conditions?. Given this
rapid expansion of the renewable energy business, clean energy stocks have emerged as a new
asset class for market participants, especially environmentally concerned investors. Accordingly,
scholars are becoming interested in investigating the association between clean energy and other
asset classes. However, previous studies pay very little attention to how investors holding equity
assets in clean energy markets can reduce their downside risk. This is surprising given investments
in clean energy stocks have positive environmental and socio-economic impacts that potentially
help ensuring a certain degree of sustainability. Furthermore, clean energy equities seem highly
volatile, which makes proper knowledge of how to hedge their risks crucial for gaining portfolio
diversification benefits (Ahmad et al., 2018) and thereby for the stability of investments in clean
energy stocks.

In this paper, the authors extend this scant literature by investigating whether commodity market

volatility indexes, namely crude oil implied volatility index (OVX), gold volatility index (GVZ)

! http://www.iberglobal.com/files/2018/renewable_trends.pdf

2 For example, Reboredo et al. (2017) contend that alternative energies receive considerable attention as they emit less
carbon than traditional energy sources. Chiu et al. (2016) indicate that the usage of renewable fuels has increased with
a view to reducing GHG emissions and moderating the negative effect of volatile energy prices. Dutta (2019) argues
that concerns about energy security and climate changes are the main reasons behind the significant growth of the

clean energy industry.



and silver volatility index (VXSLV), can diversify the risk associated with clean energy equity
indexes.

From an econometric perspective, the correlation analysis employed in this paper is based on a
bivariate DCC-GARCH model (Engle, 2002), which estimates the correlation matrix directly by
utilizing the standardized residuals which reduces the number of parameters to be estimated.
Compared to other various multivariate GARCH specifications, the empirical superiority of DCC-
GARCH models is demonstrated (see, among others, Sadorsky 2014). Hedging effectiveness is
assessed along the lines of Basher and Sadorsky (2016).

The findings arising from this analysis would help market participants to understand the role of
crude oil or precious metal implied volatilities in hedging the risk linked to clean energy stock
indexes. Furthermore, investors might utilize the information provided in the implied volatility
indexes of major commodities to predict clean energy stock market returns. In addition,
policymakers can build on the findings of this paper to articulate policies seeking to avoid the
contagion risk stemming from volatile commodity markets. The findings of this paper could also
be useful to academics who are engaged in research involving asset pricing models, with the
enhancement of the latter being dependent on a better understanding of the relationships across

assets and markets.

2. Related studies

The global energy transition to a low carbon planet aims to achieve a sustainable future for the
planet and a reliable and sustainable access to modern energy services. Accordingly, the

emergence of clean energy investments helps in advancing environmental and economical



sustainability. Numerous studies focus on energy efficiency, hybrid renewable energy systems,
and cleaner sustainability (Shezan and Das, 2017)°.

A growing strand of research considers the clean energy stocks and their relationships with other
asset classes*. However, previous research exploring the connection amongst commodity markets
and renewable energy stocks is scarce. Sadorsky (2012a) finds that an upsurge in oil prices
increases the risk associated with clean energy equities. Kumar et al. (2012) document that stock
prices of renewable energy firms are sensitive to oil price shocks. Employing a copula approach,
Reboredo (2015) shows that the dependence between oil and clean energy stock prices evolves
over time. Additionally, Bondia et al. (2016) indicate a short-term linkage between oil and
renewable energy equity markets and, more importantly, show that the Granger-causality runs
from commodity to stock markets. Using continuous and discrete wavelets, Reboredo et al. (2017)
indicate that although the short-run relationship between energy prices and clean energy equities
appears to be weak, such a relationship seems strong in the long run. Ahmad (2017) finds that oil
prices and renewable energy stock returns move in the same direction, implying that an upturn in
energy prices leads to an increase in the stock prices of alternative energy firms.

Another strand of literature uses the information content of the OVX to explore whether energy
market uncertainty has any impact on clean energy stock indexes. Dutta (2017) finds a positive
association between the levels of oil price volatility and the realized volatility of renewable energy
stocks. Ahmad et al. (2018) show that OVX and clean energy equities are negatively correlated,
and hence the inclusion of OVX in a portfolio of clean energy equities reduces the risk associated
with the alternative energy markets. However, the association between precious metals (e.g., gold

and silver) and renewable energy stocks remains understudied. Ahmad et al. (2018) examines the

3 Related studies include Shezan et al. (2016) and Shezan et al. (2018).
4 Table Al exhibits an extensive literature review of existing studies focusing on clean energy stock markets.
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role of gold in reducing the volatility of clean energy portfolios. They show that gold fails to
minimize such risk, which is surprising given that this precious metal is frequently used to hedge
equity market risks (Junttila et al., 2018). More recently, Bouri et al. (2019) focus on the roles of
gold and crude oil prices and document similar findings. Basher and Sadorsky (2016), however,
claim that precious metals are no longer effective in moderating the risk linked to stock prices. A
similar finding is documented by Cunado et al. (2019). This is based on the rationale that the
upward correlation between gold and equity markets tends to lessen the attractiveness of
investments in precious metals as hedging instruments.

In this paper, unlike the standing literature, the authors examine whether oil and precious metal
(gold and silver) volatility indexes can hedge clean energy stock market risk. Given that implied
volatility indexes such as the US VIX usually have a negative link with stock market indexes, one
can wonder whether commodity market volatility indexes could be used as effective hedging tools
against clean energy equity risks>.

The contributions of the paper are two-fold. Firstly, the analyses in this study complement the
outcome of Ahmad et al. (2018), which is the only study found in the existing literature that
examines whether a commodity implied volatility index (i.e., OVX) can be used as a hedging tool
for clean energy equities. This current paper differs from Ahmad et al. (2018) in that it uses,
besides the OVX, two potential hedging tools from the commodity markets, namely the gold and
silver implied volatility indexes (i.e., gold volatility index (GVZ) and silver volatility index
(VXSLYV)). This current paper uses the information on gold volatility as this precious metal is

frequently used to hedge equity market risks. In addition, the silver implied volatility is considered,

> Basher and Sadorsky (2016) also argue that different VIX indexes, which have a negative connection with stock

prices, could diminish the risk associated with equity markets.



as silver represents a precious metal that is massively consumed in the photovoltaic (PV) process
in order to produce solar energy. Secondly, this current paper estimates the time-varying
correlations between commodity implied volatility indexes and clean energy stock prices. Note
that the unconditional correlations cannot capture the dynamics of the aforementioned linkage as
they ignore the time-varying fluctuations of the correlation structure. Exploring the connection
between commodity and clean energy markets in a time-varying environment would help us to

observe how the said association evolves over time.

3. Data and preliminary analyses

3.1. Data

The daily dataset covers the period March 16, 2011 to December 31, 2018, yielding 2,034 daily
common observations. The commencement of the sample period is dictated by the availability of
the implied volatility index of silver. All the information is collected from DataStream. The
indexes covered in this study include three implied volatility indexes from strategic commodities
and three clean energy stock indexes. The former indexes are the oil volatility index (OVX), the
gold volatility index (GVZ) and the silver volatility index (VXSLV). Each of these indexes was
constructed by the Chicago Board of Options Exchange (CBOE) in order to measure the market's
expectation of 30-day volatility. They were computed according to the VIX methodology applied
to the US options markets. The clean energy stock indexes include Wilder Hill Clean Energy
(ECO), S&P Global Clean Energy (SPGCE), and MAC global solar energy stock (MAC). Traded
on the American Stock Exchange, ECO is an equal-dollar-weighted index, tracking clean energy
equity prices. At present, it constitutes 40 renewable energy firms. SPGCE provides liquid and
tradable exposure to 30 global renewable energy companies. In fact, it is a modified capitalization-

weighted index consisting of a diversified mix of companies from clean energy production, clean
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energy equipment, and technology. Finally, MAC is traded on the New York Stock Exchange
ARCA, and consists of a wide range of firms such as solar power equipment producers, and

suppliers of materials or services to solar equipment producers.

3.2. Preliminary analyses

Summary statistics of the data series are given in Table 1. It is evident from these statistics that the
mean return of each of the three clean energy stock indexes is negative. MAC has the highest
standard deviation among the stock indexes. In addition, ECO and SPGCE are negatively skewed,
while the MAC is positively skewed. All the clean energy stock indexes have leptokurtic return,

which points to a departure from normality.

Table 1: Summary statistics of the daily series - Levels

Mean SD Skewness Kurtosis JB statistics
ECO -0.0174 0.7127 -0.2733 5.61 604.41%%*
SPGCE -0.0156 0.5487 -0.3803 6.64 1175.22%%**
MAC -0.0316 1.0082 0.0767 5.94 736.32%%%*
OVX 0.0040 2.0999 0.9304 14.42 11350.10%**
GVZ -0.0070 2.2781 1.0154 9.97 4469.57%**
VXSLV -0.0159 2.0307 1.7826 17.89 19872.47%**

Notes: This table reports the summary statistics for daily series. SD: Standard Deviation. JB: Jarque-Bera. ***

indicates statistical significance at 1% level.



These results are also confirmed by the Jarque-Bera statistics. Moreover, amongst the volatility

indexes, GVZ has the highest amount of volatility followed by OVX and VXSLV. Additionally,

none of the implied volatility series satisfies the normality assumption.

Table 2 shows the results of the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests.

The null hypothesis for these tests is that the series under study is not stationary. Results show that

each of the six series under study is stationary even at levels.

Table 2: Results of standard stationarity tests

ADF Test PP Test

Levels Logarithmic Levels Logarithmic

differences differences

ECO -3.65 (L00)*** 42 73 (.00)*** -3..41 (L02)** -42.72 (.00)***
SPGCE -3.90 (L00)***  -37.83 (.00)*** -3.66 (L00)*¥**  -37.84 (.00)***
MAC -3.94 (L00)***  -41.67 (.00)*** -3.82 (.00)***  -41.69 (.00)***
ovX -3.44 (.00)***  -28.92 (.00)*** -3.15 (.02)** -49.59 (.00)***
GVZ -4.84 (.00)***  -48.12 (.00)*** -4.22 (.00)*¥** 54,98 (.00)***
VXSLV -4.01 (.00)***  -47.90 (.00)*** -3.32 (.02)** -55.14 (.00)***

Notes: This table presents the results for the ADF and PP tests. p-values are given in parentheses. *** and ** denote

statistical significance at 1% and 5% levels.



It is noteworthy that the results of the traditional stationary tests could be misleading when the data
used have structural breaks (Perron, 1989). Accordingly, an ADF test taking structural changes
into account is applied, and the results are reported in Table 3. The results indicate that once the
structural breaks are taken into account, the ECO and OVX indexes are no longer stationary at
levels. All the indexes, however, become stationary after taking the logarithmic differences.
Accordingly, the empirical analyses are conducted with the log differences of the six series (ECO,

SPGCE, MAC, OVX, GVZ, and VXSLV).

Table 3: ADF test accounting for structural breaks

Levels Logarithmic differences
ECO -4.18 (.11) 43.33 (.00)***
SPGCE -5.11 (.00)*** 38.44 (.00)***
MAC -5.32 (.08)*** 42.28 (.00)***
OVX -4.03 (.14) 29.53 (.00)***
GVZ -6.28 (.00)*** 48.52 (.00)***
VXSLV -6.08 (.00)*** 37.50 (.00)***

Notes: This table presents the results of ADF stationarity test after accounting for structural breaks. p-values are given

in parentheses. *** denotes statistical significance at 1% level.

4. Econometric methodology

This study applies the bivariate DCC-GARCH process of Engle (2002). In fact, the empirical

superiority of DCC-GARCH models over other multivariate GARCH models is documented in



prior studies (Sadorsky, 2012b)¢. The DCC-GARCH process estimates the correlation matrix
directly by utilizing the standardized residuals which reduces the number of parameters to be
estimated. This notable process is suitable to study time-varying correlations and make inferences
regarding the hedging effectiveness (Sadorsky, 2012b). A robustness analysis is also applied based

on an asymmetric DCC-GARCH (ADCC-GARCH) process.

The mean equation of the bivariate process is given by:
T‘t =L+TT‘t_1+€t (1)

/

1
& = H, 1y ()

where 7; is a matrix of logarithmic differences for the commodity implied volatility and clean
energy stock indexes, L designates a matrix of fixed parameters, 7 is a matrix of coefficients

gauging the influence of own-lagged and cross mean transmission, &, indicates the noise term, 7,

1
is a matrix of 7id innovations. Moreover, H, /2 refers to the matrix of conditional volatilities. The

covariance matrix is expressed as:
Hy = DR Dy 3)
where D; = diag(,/h;,+/h{) is a diagonal of time-varying standard deviations, and h{ and h{ are

the conditional volatilities of clean energy stock and commodity markets, respectively. They are

defined as:

¢ The authors of this paper have decided not to use other multivariate GARCH models such as VAR-AGRCH or
BEKK as they might be subject to the so-called “curse of dimensionality” resulting from the increase in the number

of covariance terms, which makes the estimation of the covariance matrix very difficult.
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hi = d? + bf1h§—1 + b%1h§—1 + a%1352,t—1 + a%15c2,t—1 4)

c _ g2 2 1s 2 1c 2 .2 2 .2
¢ =d¢ +bihi_q + by hi o + Ai2€s5t—1 T A228c -1 5)

R; is the conditional correlation matrix of the standardized returns &;. It is expressed as:

R, = diag(Qt)‘l/thdiag(Qt)‘l/z (6)

As for Q,,it is the time-varying conditional correlation of residuals as given by:

Q: = 1- 0, — 92)6 + 91ft—1€£—1 + 60,0Q:-1 (7)

where 6, and 8, are non-negative scalar parameters such that 6; + 6, < 1 for the model to be
stationary, and Q, refers to the matrix of unconditional correlations for the standardized noise &,.
The parameters of the DCC-GARCH models are estimated via the quasi-maximum likelihood
estimation technique. Further details regarding the estimation of the dynamic conditional

correlations are given in Engle (2002).
5. Empirical Results
5.1. Time-varying correlations

The time-varying correlations obtained from the DCC-GARCH process are discussed in this
subsection. Table 4 shows the descriptive statistics for the pairwise time-varying correlations,
while Figures 1-3 plot the time-varying correlations. Looking at the numbers presented in Table
4, it appears that the mean correlation is negative suggesting that commodity volatilities and clean
equity returns move in opposite directions. That is, a decrease in clean energy stock returns is

associated with an upsurge in crude oil or metal price volatility. Accordingly, during a downturn
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in the market of clean energy stocks, a long position in any of the implied volatility indexes

generates profits useful to offset the losses of investments in clean energy stocks.

Table 4: Summary statistics of time-varying correlations

Mean Standard Deviation Maximum Minimum
ECO/OVX -0.338 0.137 -0.902 0.089
ECO/GVZ -0.268 0.128 -0.835 0.181
ECO/VXSLV -0.234 0.139 -0.747 0.207
SPGCE/OVX -0.269 0.175 -0.889 0.311
SPGCE/GVZ -0.268 0.124 -0.725 0.608
SPGCE/VXSLV -0.210 0.094 -0.700 0.449
MAC/OVX -0.271 0.111 -0.646 0.218
MAC/GVZ -0.269 0.118 -0.716 0.618
MAC/VXSLV -0.189 0.119 -0.600 0.333

Notes: This table presents the summary statistics for the time-varying correlations between commodity VIXs and

clean energy stocks.

Figures 1-3 demonstrate that these correlations tend to vary over time and, hence, they are not

constant. Moreover, such time-varying correlations are observed in both positive and negative

regions indicating a time-dependent connection between these markets. To sum up, these findings

suggest that clean energy stock price risks can be diversified if investors include both renewable

energy assets and commodity volatility indexes in their portfolios.
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Fig. 1: Time-varying correlations between ECO and commodity VIX indexes
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5.2. Hedging effectiveness

This subsection focuses on the effective role of commodity volatility indexes in hedging the
downside risk of clean energy stock indexes. More specifically, it explores whether combining
commodity volatility indexes and renewable energy equities in a portfolio reduces the risk of the

resultant portfolio. The hedging effectiveness (HE) is defined as’:

HE = Varynhedged—Varhedged (8)

Varynhedged

where Varyppeqgeq designates the variation in returns for clean energy equities, while Varyeqgeq

is the variation in returns for the commodity-equity portfolio defined as:

Varheagea = (Wi*)*hi + (1 = (wi))hi + 208 (1 — 0f*)h® )

where hi and h{ are given respectively in Equations 4 and 5, h{® is the conditional covariance
between the commodity and equity indices, and wf® refers to the optimal weight of commodity

volatility indexes in a portfolio comprising stock and commodity volatility indexes at time :

hE_pes

cS t t

w§s = —+ L — (10)
hE—2hES+hs

Note that a higher HE results in better portfolio risk reduction, signifying that the selected

investment policy should produce superior risk-adjusted returns.

7 See Ku, Chen, and Chen (2007) for more details.
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Table 5: Hedging effectiveness obtained from DCC-GARCH estimates

Varynneagea Varheagea HE (%)

Panel A: ECO index

ECO/OVX 0.50 0.38 24%
ECO/GVZ 0.50 0.32 36%
ECO/VXSLV 0.50 0.35 30%
Panel B: SPGCE index

SPGCE/OVX 0.30 0.21 30%
SPGCE/GVZ 0.30 0.22 27%
SPGCE/VXSLV 0.30 0.22 27%
Panel B: MAC index

MAC/OVX 1.02 0.61 40%
MAC/GVZ 1.02 0.71 30%
MAC/VXSLV 1.02 0.70 31%

Notes: Varyppeagea 1 the variance of the returns on the portfolio of stocks and Vary.qgeq refers to the variance of

returns of the commodity-stock portfolio. Hedging effectiveness (HE).

The results obtained from equation (8) are presented in Table 5, shown in three panels (Panel A
for ECO index; Panel B for SPGCE index; Panel C for MAC index). These results suggest that
investors holding assets in renewable energy stock markets should include the implied volatility
index of crude oil or precious metals in their portfolios for hedging clean energy equity risks. This
is because a significant amount of risk reduction is observed when such portfolios are formed. For
both SPGCE and MAC indexes, the HE associated to OVX is substantially higher than that

associated with GVZ and VXSLV. Specifically, the risk for the OVX-stock portfolio is reduced

17



by 30% and 40% for SPGCE and MAC, respectively. However, the risk for the GVZ-stock and
VXSLV-stock portfolios is reduced by around 27% and 31%, respectively. These results suggest
that OVX frequently appears to be the most suitable asset to hedge the risks of clean energy stock
indexes. For the ECO index, GVZ is the best asset for hedging renewable energy stock indexes,
followed by VXSLV and OVX. To be specific, the risk for the GVZ-stock portfolio is reduced by
36%. For OVX and VXSLYV, the risk reduction is 24% and 30% respectively. Note that Ahmad et
al. (2018) also document that OVX is among the best assets to hedge clean energy equities. The
analysis in this paper, however, differs from this earlier research in several aspects. First, Ahmad
et al. (2018) have not considered the application of precious metal volatility indexes in hedging
clean energy equities. Second, they use only the ECO index to track clean energy stock prices,
while this current paper conducts a more comprehensive research by including SPGCE and MAC
indexes in the empirical analyses. Third, this current paper shows that for the ECO index, both
GVZ and VXSLV are hedging instruments, and they perform better than the OVX. Overall, the
findings of this paper confirm the effective role of oil and precious metal volatility indexes in
hedging clean energy stocks. It is worth mentioning that these results are also supported by those
reported in Table 4, which shows that the average correlations between commodity implied
volatility indexes and clean energy stock market returns are negative. Such negative correlations

typically indicate more portfolio risk reduction.

5.3. Robustness test

For testing the robustness of the findings, the ADCC-GARCH process is employed. This
asymmetric specification is adopted as financial time-series are often non-linear in nature. In the

ADCC-GARCH model, h{ and h{ are defined as:
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hi = di + bihi_y + b31hi 1 + af1A(&se-1)* + a31A(Ect-1)* + Bl(€56-1) X ((€s,¢-1) < 0)]
(1)

hZ = d¢ + bihi 1 + b5 hi 1 + afrA(esr-1)? + a3, A(ece-1)" + Bl(ec-1) X ((eci-1) < 0)]
(12)

where, A(gs;—1)? and B[(&sp—1) X ((€s¢-1) < 0)] along with A(e.;—1)* and B[(gcr—1) X
((ect-1) < 0)] respectively specify the connection between one market volatility and own past

positive (negative) returns.

Table 6: Hedging effectiveness obtained from ADCC-GARCH estimates

Varynhedgea Varpeagea HE (%)

Panel A: ECO index

ECO/OVX 0.50 0.38 24%
ECO/GVZ 0.50 0.34 32%
ECO/VXSLV 0.50 0.36 28%
Panel B: SPGCE index

SPGCE/OVX 0.30 0.23 23%
SPGCE/GVZ 0.30 0.21 30%
SPGCE/VXSLV 0.30 0.23 23%
Panel B: MAC index

MAC/OVX 1.02 0.63 38%
MAC/GVZ 1.02 0.71 30%
MAC/VXSLV 1.02 0.67 34%

See notes to Table 5.
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Table 6 presents the findings from the analyses based on the ADCC-GARCH model. The findings
mimic those shown in Table 5. That is, commodity market volatility indexes act as hedging tools
against clean energy stock market risks. The only discrepancy is that for the SPGCE index, GVZ
now outperforms other volatility indexes. In summary, the overall findings are generally robust as

they do not alter much depending on the specification of the DCC-GARCH models used.

6. Discussion and implications for sustainable development

While previous studies examine how clean energy stocks interact with other assets regarding return
correlations and volatility spillovers, what is lacking, however, is a complete understanding of how
investors in clean energy stocks can hedge their investments. (see Table A1l). Sadorsky (2012b),
for instance, shows that oil can be used to hedge the risk associated with clean energy equities.
Bouri et al. (2019), however, argue that oil is no longer a good hedge for clean energy stock
markets. Additionally, Dutta et al. (2018) find that the EU allowance market is an effective tool
for hedging the downside risk clean energy equities. Ahmad et al. (2018), on the other hand,
demonstrate that the US equity VIX and oil volatility index act as a more effective hedge for clean
energy equities compared to oil, gold and allowance markets. Therefore, the findings of previous
studies are somewhat mixed and hence how to hedge clean energy assets merits further
investigation.

The present study aims to explore the possibilities of hedging an investment in clean energy stocks
with the implied volatility indexes of oil, gold and silver markets. Since earlier studies evidence
that traditional assets such as oil and gold no longer act as an active hedging instrument for
renewable energy stocks, this empirical work, therefore, investigates the hedging effectiveness of

the abovementioned VIX indexes. Given that different VIX indexes have a negative linkage with
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stock prices (Basher and Sadorsky, 2016), the application of commodity market VIX series could
thus diversify the risk associated with clean energy equity markets.

Using the dynamic conditional correlation model, the results show that commodity volatilities and
clean energy equity prices move in opposite directions. Based on the hedging effectiveness, each
of the three volatility indexes performs as an effective tool for reducing the risk of clean energy
equity indexes. Hence the findings of this empirical investigation confirm the superiority of
implied volatility indexes over the traditional assets like oil, gold and silver when hedging the
downside risk of clean energy equity markets. These results are partially consistent with those
reported by Ahmad et al. (2018) who show that implied volatility indexes are the best assets to
hedge clean energy equities. Unlike Ahmad et al. (2018), we examine the role of gold and silver
volatility series in diversifying the risk associated with clean energy equity markets. This is an
important contribution considering that gold is frequently used to hedge equity market risks and
silver represents a precious metal that is heavily utilized in the photovoltaic process for the purpose
of generating solar energy®.

The main takeaway from this research is that OVX provides the most effective hedge for clean
energy stock prices followed by gold and silver volatility indexes. Therefore, from a hedging
perspective, alternative energy assets are more closely affected by oil price volatility than precious
metal volatilities. This finding can be explained in light of the positive association between crude
oil and clean energy stocks (e.g., Sadorsky, 2012b), which has its root in the fact that clean energy

is regarded as a substitute to the dirty energy such as crude oil. Accordingly, and given that crude

8 Dutta (2019) also argues that it is important to observe if including precious metal in portfolios of alternative energy

stocks could successfully diversify the portfolio risk.
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oil prices and the oil implied volatility index generally move in opposite directions’, the implied
volatility of crude oil prices exhibit a more (consistent) negative correlation with clean energy
stock indices than the volatility of metals, which makes the implied volatility of crude oil to
provide more diversification benefits and thereby to act as a more effective hedging tool. In light
of the above rationale, lower crude oil prices reduce the attractiveness and economic viability of
investment in clean energy projects, which leads to a halt in the development of clean energy and
thus to adverse impacts on the stock price of clean energy firms. Therefore, when crude oil price
declines, the price of clean energy stocks declines also, whereas the implied volatility of crude oil
increases, implying an ability of the oil implied volatility index to hedge the downside risk of clean
energy stock indices.

To sum up, commodity market volatility indexes emerge as an effective instrument for hedging
clean energy equities. This is a new finding as earlier studies have not explored the potential role
of commodity market volatility series in hedging clean energy stocks.

These results have important implications for market participants given that there is already a
growing movement among pension funds, university endowments and mutual funds toward
divesting from fossil fuels. In addition, growing concerns about energy security and climate change
also inspire financial institutions invest in alternative energy sectors. The findings are therefore
encouraging for investors who aim to decarbonize their equity portfolio and swap oil stocks for
clean energy stocks.

An understanding of how investors holding assets in clean energy sectors can hedge their

investment is essential for risk management. Knowledge of stock and commodity price interaction

9 There is also empirical evidence that the US VIX is inversely related to the US equity index, the S&P 500 (Ait-
Sahalia et al., 2013).

22



is also helpful for portfolio managers looking to receive diversification benefits and investment
protection against downside risk. Since clean energy equities represent a relatively new class of
assets to invest in, and these assets can be very volatile, a complete understanding of how risk in
clean energy equities can be diversified is of paramount importance. Such knowledge could play
a pivotal role in outlining sustainable business strategies and designing optimal portfolios.

As mentioned earlier, investments in clean energy stocks have positive environmental and socio-
economic impacts that potentially help ensuring a certain degree of sustainability. Hence it is
important to consider the application of modern portfolio theory with a view to gaining proper
knowledge in stock market strategies. The current research provides important implications for
institutional investors who fail to identify the clean energy market risk via proper financial

modeling.

7. Conclusion

Investing in the renewable energy sector has increased significantly over the last decade. Given
this, clean energy stocks have emerged as a new asset class for market participants. Numerous
studies examine the association between clean energy and other asset classes. However, to date
investigating how investors holding assets in clean energy stock markets can hedge their
investments receives very little attention from academia. In order to extend this scarce literature,
this paper aims to investigate whether commodity market volatility indexes can be used as hedging
instruments against the downside risk of clean energy stock indexes. Specifically, crude oil, gold
and silver volatility indexes have been considered in this empirical analysis along with three clean
energy stock indexes. Methodologically, the DCC-GARCH model is applied to study time varying

conditional correlation and the hedging effectiveness is assessed.
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The major findings of this investigation are summarized as follows. First, each of the three
volatility indexes is negatively related to clean energy stock indices, suggesting the ability of
volatility indices to act as an effective tool for hedging clean energy stock indexes. More
practically, a decrease in the returns of clean energy stock indexes can be offset by an upsurge in
the implied volatility of crude oil or precious metals (gold and silver). The application of the
asymmetric DCC-GARCH model also confirms this finding. Second, among the implied volatility
series, the implied volatility of crude oil is the best hedging tool, followed by that of gold and
silver. Third, the pairwise correlations are time-dependent and hence are not constants.
Furthermore, the mean correlation is negative suggesting that commodity volatilities and equity
prices move in opposite directions. Taken together, it is concluded that clean energy stock price
risks can be diversified if investors include both renewable energy assets and commodity volatility
indexes in their portfolios.

Some important implications emerge from the findings as proper knowledge of time-varying
correlations amongst the studied commodity markets and clean energy stock indexes would help
market participants to understand the role of crude oil or precious metal implied volatilities in
hedging the risk linked to clean energy stock indexes. Furthermore, investors might utilize the
information provided in the implied volatility indexes of major commodities to predict clean
energy stock market returns. In addition, policymakers can build on the empirical findings to
articulate policies seeking to avoid the contagion risk stemming from volatile commodity markets.
The findings could also be useful to academics who are engaged in research involving asset pricing
models, with the enhancement of the latter being dependent on a better understanding of the
relationships across assets and markets. Additionally, the findings could serve scholars in their

attempt to understand the market returns associated with clean energy companies.

24



Future studies can further consider the portfolio implications by studying the conditional tail-risk
between commodity implied volatility indexes and clean energy equity indices, while accounting
for regime switching (Ji et al., 2018). Another interesting research avenue is studying the portfolio

implications in the time-frequency space.
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