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ABSTRACT 

 

In recent years, the industrial applications of the wireless transmission of data acquired 

through sensors have been growing. Addressing the challenges or requirements that 

come with this needs the integration of new product designs and manufacturing tech-

niques with automation devices. Factors like development time, security, reliability, 

transmission in an industrial environment, data rate, battery life with energy harvesting 

capabilities, etc. are of major concerns. 

 

This thesis is based on the Wärtsilä smart NOx sensor case study which investigates the 

possibility of replacing the existing wired CAN bus connection between the smart NOx 

sensor and the rapid control prototyping system speedgoat and possibly in the future the 

Engine Control Unit (ECU) with a wireless communication solution. The designed pro-

totype would wirelessly transmit the smart NOx sensor data. The smart NOx sensor data 

is received using a CAN bus integrated with a wireless transmitter module. The wireless 

receiver module receives the data and then relays the CAN frames through an integrated 

CAN Bus to the speedgoat. A matlab simulink module has been programmed into the 

speedgoat to receive the CAN frames, calculate O2% and NOx ppm values and display 

the results on a monitor connected to the speedgoat. Criteria like transmission in indus-

trial environments, packet loss, RSSI, bit error rate, reliability and security of the wire-

less solution are analyzed. According to the analysis done and best practices, a wireless 

solution is recommended and implemented. The wireless-CAN prototype is installed on 

the Wärtsilä W4L20 diesel engine in VEBIC for monitoring and observation. 

______________________________________________________________________ 

KEY WORDS:  BLE, CAN Bus, Engine Control Module (ECM), LoRa,  

RSSI: Received Signal Strength Indicator, Smart NOx sensor, 

Speedgoat, Wi-Fi, Wireless Communication, ZigBee  
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1. INTRODUCTION 

 

Modern industries’s rapid development and increase in the economics of scale leads to 

production and industrial automation. These brings about the need to transfer data and 

the integration of data. This can be achieved using wireless communication, therefore, 

analysis of some well-known wireless communication solutions is crucial in achieving 

reliable and flexible data transfer. (Gao, Huang, Chen, Jin, & Luo 2013.) 

 

Wireless connectivity offers multiple advantages such as easy installation and mainte-

nance, better flexibility and scalability and long communication range. However, wire-

less communication introduces new challenges and risks such as noise and interference 

which might cause transmission errors, delays or connection drops. It is also prone to 

malicious attackers that might attempt to spy, hack into to controls or interfere with and 

jam communications. Therefore, careful considerations and field testing is required to 

verify if a wireless solution can deliver the expected robustness and security compared 

to the wired solution. 

 

1.1. Motivation 

 

The approach taken in this thesis is based on the case study of Wärtsilä’s smart NOx 

sensor. They are interested in limiting hard wire cabling and possibly moving to wire-

less communication between the sensors and the speedgoat or Engine Control Module 

(ECM). In our case study, the smart NOx sensor is connected to the engine control unit 

(ECU) with a wired CAN bus connection. Data is transmitted using SAE J1939 protocol 

which is built on top of CAN Networks. SAE J1939 is developed specifically for use in 

heavy duty environments, with an emphasize on achieving reliable and fault tolerant 

communications. 
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1.2. Objectives 

 

This thesis investigates the possibility of replacing the existing wired CAN bus connec-

tion between the smart NOx sensor and the rapid control prototyping system speedgoat 

and possibly in the future the Engine Control Unit (ECU) with a wireless communica-

tion solution. For the purpose of comparison, some wireless protocols are implemented 

and analyzed with the aim of coming up with recommended wireless solutions. These 

recommendations mut achieve and agree with some criteria like transmission in indus-

trial environments, packet loss rate, RSSI, bit error rate, reliability and security of the 

wireless solution etc. 

 

Guidelines: The designed prototype should wirelessly transmit the smart NOx sensor 

data. The smart NOx sensor data is received using a CAN bus integrated to a wireless 

transmitter module. The wireless receiver module receives the data and then relays the 

CAN frames through integrated CAN Bus to the speedgoat. A matlab simulink module 

has been programmed into the speedgoat to receive CAN frames, calculate O2% and 

NOx ppm and display the results on a monitor connected to the speedgoat. 

 

Specifications: According to the prototype design plan, the following are to be consid-

ered; development time, overall cost, transmission in industrial environment, transmis-

sion rate, battery life with energy harvesting capabilities and low energy consumption, 

lifetime of the technology, future prospect of the technology, backwards compatibility 

of the technology and the feasibility of implementing the solution as a final product. 

 

1.3. Methods 

 

The smart NOx is connected to the CAN bus at the transmitter side. The CAN bus is 

interfaced with the wireless device (BLE, ZigBee, WiFi and LoRa) over an expansion 

board or multi-protocol radio shield which allows for connection of two communication 

modules at the same time. The hardware setup is programmed to read the data coming 

from the smart NOx sensor through the CAN bus and transfer the data through SPI to 

the wireless module for wireless transmission to the receiver side. At the receiver side, 
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the device is programmed to transfer the data received by the wireless module to the 

CAN bus and then the data is sent from the CAN bus to the speedgoat which is connect-

ed to it. Each wireless solution is implemented separately in turns and analyzed. To 

achieve this, measurements such as Receiver Signal Strength Indicator (RSSI), packet 

delivery rate, bit error rate, and latency were taken and used for comparing the imple-

mented wireless protocols. 

 

1.4. Thesis Structure 

 

This thesis has five chapters. Chapter 1 introduces the research topic presenting the ob-

jective and motivation of this thesis as well as the methods used. 

 

Chapter 2 presents the theoretical review of how the smart NOx sensor and the speedg-

oat works. It also presents the Control Area Network (CAN) protocol with details about 

the CAN standard and its features and the selected wireless communication protocols. 

The wireless communication protocols used in this thesis includes BLE, LoRa, WiFi 

and ZigBee. A comparison of the wireless communication protocols in terms of fre-

quency, range, maximum data rate, power sources options and most appropriate uses of 

the wireless solution is done. 

 

Chapter 3 presents the description of the thesis topic and how the wireless communica-

tion between the smart NOx sensor and the speedgoat can be achieved for each of the 

wireless solution. Chapter 4 describes the interfacing of the smart NOx sensor and the 

speedgoat to each wireless module using an external CAN bus. It also presents simula-

tion and analysis of the results obtained for each wireless protocol as well as specific 

measurements such as latency, delivery rate and bit error rate, etc. The research conclu-

sion, recommendations and possible future study based on the results in chapter 4 are 

presented in chapter 5. 

 

The appendix contains the pictures of the hardware implementations done as well as 

extracts from the codes used in programming the transmitter and receiver wireless CAN 

communication modules. 
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2. INTRODUCTION OF PROTOCOLS AND MAJOR COMPONENTS 

 

This chapter presents the theoretical background of the communication protocols used 

as well as the major components and principles applied in this thesis. Section 2.1 intro-

duces the control area network, section 2.2 introduces the wireless protocols used in the 

thesis work and section 2.3 briefly presents other components like the smart NOx sen-

sor, speedgoat and Engine Control Module (ECM). 

 

 

2.1. Controller Area Network (CAN) 

 

Unlike USB or Ethernet that sends large blocks of data point-to-point from a node A to 

node B with supervision from a central bus master, CAN network broadcast several 

short messages like temperature reading, or RPM to the entire network. This provides 

data consistency in every node of the system. The controller area network (CAN) is 

suitable for the various high-level industrial protocols embracing CAN and the ISO 

11898:2003 standard as their physical layer. It has tremendous flexibility in system de-

sign due to its cost, performance, and upgradeability. (Texas Instrument 2016.) 

 

CAN is a solution for automation industries and the CAN protocol is used in systems 

that need to transmit and receive a small amount of data with real-time requirements. 

CAN protocol has been stipulated as an international standard by 150 International 

Standard Organizations. (Wan, Xing & Cai 2009.) 

 

CAN transmits signals on the CAN network using two wires, CAN-High and CAN-

Low. These 2 wires operate in different mode carrying inverted voltages which decrease 

noise interference. The standard being used determines the voltage level and other char-

acteristics of the physical layer. The two standards are the ISO11898 (CAN High 

Speed) standard and the ISO11519 (CAN Low Speed) standard. (Nilsson 2018.) 

 

The international standard ISO11898 definition of CAN bus state that, it is a fully digi-

tal field control devices connection bus, which can efficiently support the serial com-
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munication of distributed control and real-time systems. CAN bus is widely used with 

sensors for data acquisition, industrial control systems and is an instrument with high 

reliability and flexibility. (Texas Instrument 2016.) 

 

2.1.1. The CAN Bus 

 

Robert Bosch developed the automotive CAN Bus. It is a multi-master message broad-

cast system that gives a maximum signaling rate of 1 Megabit per second (Mbps). Au-

tomotive components use it to communicate on a single or dual-wire networked data 

bus. CAN is a serial bus protocol used to connect individual systems and sensors and it 

is an alternative to conventional multi-wire looms. (Texas Instrument 2016.) 

 

           

            

          

    

 

 

 

Figure 1. CAN Bus Architecture (Github 2018). 
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Figure 1 shows the CAN Bus Architecture. The maximum signaling rate of 1Mbps is 

achieved with the High-Speed ISO11898 standard specifications having a bus length of 

40m and maximum of 30 nodes. The cable could be a shielded or unshielded twisted-

pair having a 120-Ω resistor at each end. This standard uses a single line of twisted-pair 

cable as the network topology as presented in figure 1. A 120-Ω resistors is used to ter-

minate both ends matching the characteristic impedance of the line to prevent signal re-

flections. Using RL on a node should be avoided based on the ISO 11898 because the 

node will be disconnected from the bus and the bus lines would lose termination. (Texas 

Instrument 2016.) 

 

2.1.2. CAN Standard 

 

The ISO 11898:2003 CAN communication protocol gives details on how information is 

transmitted from one device to another on a network and comply with the Open System 

Interconnect (OSI) model. The Open System Interconnect (OSI) model is defined in 

terms of layer where the physical layer of the module defines the actual communication 

between devices connected by the physical medium. The last two layers of the OSI/ISO 

model’s seven layers are defined by the ISO 11898 architecture as the data-link layer 

and the physical layers respectively as shown in figure 2. (Texas Instrument 2016.) 

 

 

 

Figure 2. ISO11898 Architecture (Github 2018). 
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Choosing between the Standard or Extended CAN 

 

Message Frames are used to transmit and receive data in the CAN system. The Message 

frames carry data from a transmitting node to one, or more, receiving nodes. The Mes-

sage Frame formats supported by CAN protocol are the Standard CAN (CAN 2.0A) 

which uses 11-bit identifiers and the Extended CAN (CAN 2.0B) which uses 29-bit 

identifiers. The “standard” 11-bit identifier, providing 211 or 2048 different message 

identifiers and the “extended” 29-bit identifier, providing 229 or 537 million identifiers. 

However, both provide signaling rates from 125kbps to 1Mbps. (Texas Instrument 

2016.) 

 

Standard CAN (CAN 2.0A) 11-bit identifiers. 

 

 

 

Figure 3. CAN 2.0A - Standard CAN Frame 11-Bit Identifier. 

 

The standard CAN frame in figure 3 consists of the following bit fields: SOF – Start of 

Frame, Identifier – the standard CAN 11-bit identifier , RTR – Remote Transmission 

Request (RTR), IDE – Identification extension (IDE), r0 – Reserved bit, DLC – data 

length code, Data – allows up to 64bits (8bytes) of data to be sent, CRC – 16-bits (15-

bits plus delimiter) cyclic redundancy check (CRC) containing the checksum used for 

error detection, ACK – Acknowledge bit, EOF – End of Frame bit has 7-bits and marks 

the end of a CAN frame (message) and disables bit stuffing and IFS – 7-bits interframe 

space bit contains the time required by the controller to move a correctly received frame 

to its appropriate position in a message buffer area. (Texas Instrument 2016.) 
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Extended CAN (CAN 2.0B) 29-bit identifiers. 

 

 

 

Figure 4. CAN 2.0B - Extended CAN Frame 29-Bit Identifier. 

 

The Extended CAN in figure 4 is the same as the standard CAN message in figure 3, 

however, the Extended CAN message has additional bit fields such as: SRR – Substitute 

remote request (SRR) bit. It replaces the RTR bit in the standard message location as a 

placeholder in the extended format, IDE – When we have a recessive bit in the identifier 

extension (IDE), this implies that additional identifier bits follow the IDE of the 11-bit 

identifier, that is, the 18-bit extension which follows the IDE. It is an additional reserve 

bit included ahead of the DLC bit.  (Texas Instrument 2016.) 

 

Most CAN 2.0A controllers transmit and receive only Standard format messages, alt-

hough some (known as CAN 2.0B passive) will receive Extended format messages but 

then ignore them. However, CAN 2.0B controllers can send and receive messages in 

both formats. (Texas Instrument 2016.) 

 

The CAN Message Frame format used in this thesis was determined by the smart NOx 

sensor used. The smart NOx sensor has an Extended CAN ID of 0x18FEDF00. 

 

2.1.3. CAN Messages 

 

CAN messages can be said to be contents-addressed, that is, the content of the message 

implicitly determines their address. The messages are short – maximum utility load of 

94 bits with no explicit address in the message. (Kvaser 2018a.) 
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CAN transmits message signals on the CAN network using two wires, CAN-High and 

CAN-Low. In a scenario of several sensors (nodes) need to send their data, the CAN 

bus implements a message priority identifier. The message with higher priority (lower 

binary message identifier number) wins the bus access. The bus access is a random 

event-driven process and if two nodes try to occupy the bus simultaneously, access is 

implemented using a nondestructive, bit-wise arbitration. Nondestructive implies that 

the node that wins the bus access continues with its message transmission without the 

message being destroyed or corrupted by the other nodes. The priority allocation feature 

makes CAN to be attractive in its application to real-time control environment. (Texas 

Instrument 2016.) 

 

CAN controller uses an arbitration process to handle the message transmission priority 

as each node continuously monitors its own transmissions. For example, in figure 5 

node B's recessive bit is overwritten by node C’s higher priority dominant bit and node 

B detects that the bus state does not match the bit that it transmitted, therefore it pauses 

its transmission allowing node C to continue with transmitting its message. Node B then 

makes another attempt to transmit its message when node C has completed its message 

transmission and the bus is free. This functionality is present entirely within the CAN 

controller as it is part of the ISO 11898 physical signaling layer and it is completely 

transparent to a CAN user. (Texas Instrument 2016.) 

 

 

 

Figure 5. Arbitration on a CAN Bus (Texas Instrument 2016). 
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On a CAN bus, the CAN message/frames are of four types namely data frame, remote 

frame, error frame, and overload frame. They are not discussed here in details as they 

are not part of the scope of the research. (Kvaser 2018b.) 

 

The CAN Bus is a reliable and robust bus because of its error handling capability. The 

CAN protocol uses five techniques of error checking. It uses three at the message level 

and two at the bit level. A message that fails any one of these error detection techniques 

is not accepted leading to the generation of an error frame from the receiving node. 

When this happens, the transmitting node is forced to retransmit the message until it is 

received correctly. However, for a faulty node that hangs up a bus when its continuously 

in error, its ability to transmit is disabled by its controller when an error limit is reached. 

 

 

2.2. Wireless Communication Protocols 

 

In this chapter, some available wireless solutions being used to connect remote sensors 

and devices to a central monitoring system are analyzed. These wireless solutions can 

be applied in several areas, however, selecting the right solution and using it in the right 

application is very crucial and can be a tough task having several associated risks. 

 

All wireless communication comprises of the following components; a transmitter, re-

ceiver, antennas, channel, and the environment. The transmitter sends signals to an an-

tenna for transmission and the radio transmitter encodes data in RF waves having signif-

icant signal strength (power output) to transmit the signal to a receiver. The receiver 

collects and decodes the data arriving at the receiving antenna. At the receiver, assigned 

RF signals are received and decoded while discarding the unwanted signals. Different 

radiation patterns are generated by antennas depending on their design and application. 

The antenna also has a gain which is a measure of how much energy is focused in a di-

rection. (DIGI 2016.) 

 

In describing the wireless communication environment or path, there are two types of 

LOS generally used namely Visual LOS – which is the ability to see from one point to 

the other. A straight linear path between two points is required. RF LOS – this need not 
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only visual LOS, but also requires a Fresnel zone (football-shaped path) that has no ob-

stacles so that data can travel optimally from point A to point B. The Fresnel zone can 

be assumed to be a tunnel between two sites that provide a path for RF signals as illus-

trated in figure 6. (DIGI 2016.) 

 

 

 

Figure 6. Fresnel zone illustration (Frolic 2016). 

 

2.2.1. Factors that affect wireless communication 

 

Wireless applications typically require burst transmission, reduced overhead, and they 

use a very small amount of data per node, therefore, the bandwidth is not the main re-

quirement. Some applications require coverage of large areas; reliability, availability, 

bounded latency for real-time behavior and energy efficiency as some key performance 

indicators. (Khan & Turowski 2016.) 

 

Industrial environments differ significantly when compared to the office and home envi-

ronments.  Certain challenges exist like high temperatures, very high airborne particu-

lates, multiple obstacles and long distances between equipment and systems, making it 

hard to place and get access to sensors, transmitters, and other data communication de-

vices. These and several other factors make setting up of data communication channels 

that is reliable, long-lasting, and cost-effective, a rare, complex, and costly challenge. 
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From past surveys, according to B&B Electronics, for several reasons such as noise, 

channel interference, and signal echo etc,  wireless I/O has typically not performed well 

enough to endure the harsh demands of industrial applications  (Advantech B+B 

SmartWorx 2018.) 

 

The typical open radio frequencies such as the 900 MHz and 2.4 GHz are used in recent 

wireless data communication applications and can go through office cubicles walls, 

drywall, wood and other materials which are found in homes or offices. However, they 

are usually deflected by larger objects, metals, and concrete.  As a result, it can change 

the data signal path returning it to the original transmitter and thereby resulting in an 

“echo” or “multi-path”.  In the first-generation wireless systems, this led to the cancella-

tion of the transmission as the system becomes confused with this type of bounce inter-

ference.  This resulted in a state called “radio null” and prevents data communication. In 

the case of noise, large motors create electromagnetic emissions while heavy equip-

ment, high power generation, and usage, and other typical industrial machinery can 

generate very high levels of “noise” which in turn interferes with early wireless equip-

ment.  In these “noisy” environments, transmitters and remote nodes were unable to 

communicate with each other, resulting in frequent data loss. (Advantech B+B Smart-

Worx 2018.) 

 

The radio frequency space becoming very crowded has led to the challenge of channel 

sharing and interference. This means that the frequency spectrum approved by the FCC 

were shared amongst many devices, which includes the devices using IEEE 802.11 and 

IEEE 802.15.4. This resulted in frequent data mix up as receivers and nodes received 

and transmitted information on the same channel as the other devices in the area. The 

wide distances between the central control systems and remote sensors made it not fea-

sible for the early wireless systems with ranges of several hundred feet or more to allow 

communication. The era of wireless communication also created many security issues 

and it continues to require a high level of counter-measures to ensure the safety of data 

and business systems. (Advantech B+B SmartWorx 2018.) 
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There are modulation and transmission schemes that have been developed to cater for 

the effects of these challenges and interference. The two most optimum to look for are 

FHSS (Frequency Hopping Spread Spectrum) which requires narrow bandwidth. In this 

scheme, data is transmitted through a single channel at a time, but the channel is con-

stantly and rapidly changing or hopping. However, for DSSS (Direct Sequence Spread 

Spectrum), this scheme requires large bandwidth. Data is transmitted simultaneously 

over every available channel, this makes it a bit more reliable in noisy environments. 

(Advantech B+B SmartWorx 2018.) 

 

2.2.2. Types of Wireless Communication Protocols 

 

It is important to take caution when designing wireless networking systems, all wireless 

transmitters, nodes and equipment most support the same transmission scheme. There 

are many proven wireless standards out there that can be implemented and developed 

into a design that takes into consideration the features like signal reliability, security, 

distance, speed, and efficiency. Trying to find out the best solution would depend on 

where it is to be applied and the needs involved. The wireless protocols available has its 

uses and advantages. Identifying the one that suits your application in a given industrial 

application begins with finding the best match for packet delivery rate, number of de-

vices, distance, data rates, cost, power consumption, and most importantly reliability 

and security. (DIGI  2016.) 

 

There are different communication technologies aimed at low power and wireless IoT 

communication and there are categorized into two namely: 

 

Low Power Local Area Networks which has less than 1000 meters range. This category 

includes IEEE 802.15.4 (for example, ZigBee), WiFi and Bluetooth/BLE, etc., applica-

ble directly in short-range personal area networks, body area networks and if well orga-

nized in a mesh topology, also in larger areas. 

 

Low Power Wide Area Networks has a greater coverage range than 1000 meters are es-

sentially low-power versions of cellular networks, with each “cell” covering thousands 
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of end-devices. These include LoRa (LoRaWAN), and protocols, like Sigfox, DASH7, 

etc. 

 

Sections 2.2.3 to 2.2.6 presents some of the most industrially relevant wireless protocol 

options with some corresponding pros and cons. 

 

2.2.3. Bluetooth Low Energy (BLE) 

 

Bluetooth is first briefly discussed before presenting the BLE protocol. Bluetooth wire-

less communication protocol technology with is a short-range and a frequency range of 

2.4 to 2.485 GHz made as a substitute for wired connections and applied in many devic-

es such as headphones, and speakers, etc. 

 

It was created by Ericson Mobile in 1994 as a substitute for wired cables and its spread 

spectrum technology is frequency-hopping based. This also means that devices keep 

their link preserved even when there is no data flow. When the device goes to sleep it is 

in Sniffer mode which reduces power consumption and provides up to several months 

of battery life even at Peak transmit current of typically around 25mA. Bluetooth con-

sumes a significantly small amount of power than other radio standards, but it is howev-

er not low enough for smaller battery cells like the coin battery cells and energy harvest-

ing applications. (Bluetooth SIG 2018a.) 

 

Bluetooth Low Energy is a short-range wireless protocol used for applications that does 

not require handling large amounts of data (throughput) and can therefore remain on 

battery power for years. BLE is made to provide considerably reduced power consump-

tion, and low cost while maintaining very similar communication range to standard 

Bluetooth; otherwise known as, radio coverage. However, BLE is not backward-

compatible with previous Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) proto-

col sometimes referred to as "classic". The Bluetooth 4.0 specification permits devices 

to implement either or both LE and BR/EDR systems. (Adafruit Industries 2018.) 

 

BLE does not have data throughput because BLE does not support streaming data. 

When a connection has been established (paired), BLE spends most of the time in sleep 
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mode waiting to send or receive the next set of device status information referred to as 

‘expose state’, such as the Battery Level. It has a data rate of 1Mbps which allows for 

quick data transfer of small chunks or data packets (kB), exposing the state of the device 

to retrieve the information. The status update interval rate delay can be programmed 

from 7ms up to 4s between data polls. Once data has been transferred, a few millisec-

onds, the BLE goes back to sleep to conserve battery; whereas, standard Bluetooth stays 

on the entire time even when information is not being transferred. (Adafruit Industries 

2018.) 

 

The main features of BLE that differ from standard Bluetooth are described in table 1. 

 

Table 1. Main Features of BLE that differ from standard Bluetooth. 

 

Features Details 

The PHY or physical layer has parts that were derived from the Blue-

tooth Radio 

Advertising altered to simplify the discovery and con-

nection 

Asynchronous connection-less MAC used for fast transactions with low laten-

cy, (e.g. 3ms from start to finish) 

 

Generic Attribute Profile (GATT) has been simplified between the devices 

and software 

Asynchronous Client / Server archi-

tecture 

redesigned to have the lowest cost and 

ease of implementation 

BLE was designed for exposing state 

of devices and retrieving the infor-

mation 

data can be read at any time by a client, 

such as a Smartphone App; it’s good at 

small, discrete data transfers and data can 

be triggered by local events 

 

Figure 7 shows a graphical representation of the frequency spectrum used on BLE. 
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Figure 7. Bluetooth Low Energy Frequency Channels (Argenox Technologies 2018). 

 

BLE Security - Bluetooth Core Specification provides several features to ensure data 

encryption, data integrity and data privacy. The first feature is a pairing mechanism in 

which the devices participating in the communication exchange information about their 

identity to set up trust and prepares an encryption keys for future data exchange. The 

second feature is the public/private key generation which is performed by the Host on 

each low energy device independent of any other device and each device involved in 

pairing contributes to the generation of the Secure Connection Key. BLE uses the third 

feature called AES-CCM cryptography which generates a 128-bit data encryption algo-

rithm for the encryption of data. The fourth feature is the signed data where BLE uses a 

Message Authentication Code generated by the signing algorithm and a counter to se-

curely send authenticated data over an unencrypted communication channel. Lastly, the 

fifth feature is privacy in which the ability to track a LE device over a period of time is 

reduces as a result of the frequent changing address of the BLE device. This frequently 

changing address is referred to as the private address and it can be resolved by the trust-

ed devices. (Bluetooth SIG 2018b.) 

 

Some essential BLE Radio features are described in table 2. 
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Table 2. BLE Radio feature. 

 

Features Description 

Range ~150m open field. Increased modulation index provides a larger 

range > 100m 

Output Power ~10mW (10dBm) 

Max Current ~15mA 

Latency allows an application to form a connection and then transfers the 

authenticated data within a few milliseconds 

Topology Star configuration allows for one-to-many connections 

Data 

Transfers 

data packets (8 octet min up to 27 octets max) are transferred at 1 

Mbps 

Connections > 2 billion devices use a 32-bit access address on every packet 

Modulation GFSK @ 2.4 GHz ISM Band for all Data Transfers 

Robustness Adaptive Frequency Hopping, 24-bit CRC on all packets ensuring 

the robustness 

Security 128bit AES CCM provide strong encryption and authentication of 

data packets 

Sleep current ~ 1µA 

Modes Broadcast, Connection, Event Data Models Reads, Writes 

Sniffer advanced sniff-sub rating achieves ultra-low duty cycles, conserving 

battery life 

 

Pros – This wireless solution has a lower power requirement in the market compared to 

other design such as the WiFi, LoRa and ZigBee. It also has, when compared, the low-

est cost, and perhaps has the fastest development platform available. Cons – Since it is 

designed for low energy, the communication rate was not a factor in the design, so in-

formation is only transmitted in small bursts of data; of course, this could be considered 

a ‘Pro’ or an advantage depending on the specific use of this technology. (Advantech 

B+B SmartWorx 2018.) 
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2.2.4. Zigbee (IEEE 802.15.4) 

 

Another short-range wireless protocol is the ZigBee, which is a standard for personal-

area networks developed by ZigBee Alliance aiming at providing a low cost, low power 

consumption, reliable and two-way wireless communication standard for short-range 

applications. ZigBee is a decentralized network which is very similar to the internet and 

having support for self-healing mesh networking. It allows the nodes to find new routes 

throughout the network when one route fails, thereby making it a robust wireless solu-

tion. (Texas Instrument 2013.) 

 

ZigBee was designed by ZigBee Alliance with the purpose of providing low-cost, low-

power consumption, two-way and reliable wireless communication standard for short-

range applications. It is a personal area network standard that is completely open and 

was ratified by the Institute of Electrical and Electronics Engineer (IEEE) in 2003. It 

has a protocol stack based on the IEEE 802.15.4 standard and has advantages such as 

long battery lifetime, supports many nodes (up to 65000) in a network, ease of deploy-

ment, low-cost, and global usage. (ZigBee Alliance 2012.) 

 

The ZigBee stack architecture has four layers namely Physical Layer (PHY), Medium 

Access Control Layer (MAC), Network Layer (NWK) and Application Layer (APL). 

 

Each layer is applied to a specific set of services for the previous layer above. A data 

entity provides a data transmission service and a management entity provides all other 

services. The first two layers namely the Physical Layer (PHY) and Medium Access 

Control Layer (MAC) are defined by the IEEE802.15.4-2003 standard, while the Net-

work Layer (NWK) and the frame for the application layer, which consist of the Appli-

cation Support sub-layer (APS) and the ZigBee device objects (ZDO), are built by the 

ZigBee Alliances. (ZigBee Alliance 2012.) 

 

Figure 8 shows the ZigBee packet structure. 
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Figure 8. Zigbee Packet Structure (Zybuluo 2018). 

 

ZigBee operates on two separate frequencies ranges, 868/915 MHz and 2.4 GHz. The 

lower frequency PHY layer covers the 868 MHz European band and the 915 MHz band 

which is used in counties like the United States and Australia. The higher PHY layer 

frequency is used worldwide. (ZigBee Alliance 2012.) 

 

ZigBee protocol supports 3 nodes types namely ZigBee Coordinator ZC, ZigBee Router 

(ZR) and ZigBee End Device (ZED). The ZC initiates the network, protects it and gen-

erates the control functions needed. After the initiation of the network, the PAN coordi-

nator works as a ZigBee Router (ZR). If the network is operating in the beacon-active 

mode, the ZC periodically sends beacon frames to be able to synchronize the rest of the 

network.  While in cluster free topology, all the ZRs receive beacons from their parents 

and sends their own beacons to the nodes in their cluster. The ZR directs the data de-

tected to the sink node. It can perform a multiple node hooping role and does this by 

having a relation to the ZC or ant previous ZR. The ZED serves one purpose only and 

that is, being normal nodes without any routing features. (Vançin & Erdem 2015.) 

 

Figure 9 shows the outline of the ZigBee stack architecture. 
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Figure 9. ZigBee Protocol Stack Architecture (3dfury 2012). 

 

The topologies used by ZigBee are star, tree and mesh as shown in figure 12. The tree 

topology in figure 12 is suitable for wireless sensor networks due to its low power con-

sumption and cost. Its power protection process is provided by the 

IEEE802.15.4/ZigBee Mac frame. However, it has drawbacks related to restrict routing 

process and band usage and any disconnection in the tree topology bring delay in data 

flow and a heavy workload is created in the recovery process. This topology is better 

than mesh topology with respect to usage of memory since a single rout is used from the 
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source node to the destination node and the excess memory is not saved. (Vançin & Er-

dem 2015.) 

 

The star topology has a communication structure that is centrally managed with its ar-

chitecture based on a central node. The ZEDs do not interact with each other directly 

but communicate with each other through the ZC in the center. The ZC has a PAN ID 

that is not defined in any other ZigBee network in the environment. However, since the 

star topology consumes battery power rapidly because it points towards the center and 

the ZigBee clustering is cumbersome while addressing large-scale networks, it is not 

suitable for wireless sensor networks. The mesh topology is more power efficient when 

using batteries than the star topology. It is a centralized structured topology were any 

node can reach other nodes in the network and communicate directly, thereby, giving 

the network high flexibility but also introduces the complexity of end-to-end communi-

cation. (Vançin & Erdem 2015.) 

 

ZigBee finds its application in the following areas such as Building Automation, Health 

Care, Home Automation, Input Devices, Remote Control, Retail Services and Smart 

Energy and Telecom Services. (ZigBee Alliance 2012.) 

 

ZigBee Security 

 

The three security modes supported by ZigBee standard are residential security which 

requires a network key to be shared among the source and destination devices, the 

standard security which adds several optional security enhancements over the residential 

security, including an APS layer link key and the high security which adds entity au-

thentication and other features not widely supported. 

 

ZigBee security is divided into two levels. The application layer security and the net-

work layer security. The AES-128-bit encryption algorithm is used for the security. The 

security is used to ensure message integrity, confidentiality and entity authentication. 

(Mukherji & Sadu 2016.) 
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Application layer security - The APS layer security is used to encrypt the application 

data using a key that is shared between source and destination devices. APS security is 

optional and provides end-to-end security using APS key that is known only to the 

source and destination devices, whereas, network layer security is applied to all the data 

transmission and is decrypted and re-encrypted on a hop-by-hop basis. When the APS 

security is enabled, the data are encrypted as shown in figure 10 below. (DIGI  2018.) 

 

 

 

Figure 10. Application Layer Security (DIGI  2018). 

 

Network layer security - The network key is used in encrypting the APS layer and ap-

plication data. Apart from encrypting application messages, network security can also 

be applied to route request and reply messages, APS commands, and ZDO commands. 

However, network encryption is not applied to MAC layer transmissions such as beacon 

transmissions. When you enable security on a network, all the data packets are encrypt-

ed with the network key as shown in figure 11 below. (DIGI  2018.) 

 

 

Figure 11. Network Layer Security (DIGI 2018). 
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The packets encrypted by network layer key are encrypted and decrypted by each hop in 

the network. On receiving a packet with network encryption, the receiving device will 

decrypt the packet and authenticate the packet. If the device is not the expected destina-

tion, it encrypts the packet using its details and sends to the next hop. (DIGI 2018.) 

 

Application and Network layer security - Applying both application and network lay-

er security at the same time is possible. Figure 12 demonstrates the authentication and 

encryption performed on the final Zigbee packet when both are applied. (DIGI  2018.) 

 

 

Figure 12. Application and Network Layer Security (DIGI 2018). 

 

Pros – It is much more power efficient when compared to WiFi and Bluetooth as a re-

sult of its advanced sleep and sniffs capabilities. It operates with an even smaller physi-

cal footprint than Bluetooth and has a higher penetrating power. Cons – ZigBee's poor 

interoperability is a disadvantage as well as its low data rate of 720 kbit/s. It is relatively 

unpopular and efforts are still been made by hardware developers to improve its archi-

tecture. (Advantech B+B SmartWorx 2018.) 

 

2.2.5. WiFi (IEEE 802.11 b/g/a) 

 

Wireless fidelity (WIFI) is a wireless networking technology which utilizes radio waves 

to provide a wireless high-speed internet and network connections. 
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The IEEE 802.11 (b/g/a) standards are presented as follows. The IEEE 802.11b has an 

operating frequency of 2.4GHz radio spectrum with a range of 100 -150 feet. It is the 

most popular and least expensive. Since 802.11b uses the same unregulated radio sig-

naling frequency (2.4 GHz) as original 802.11 standard 802.11b devices can have inter-

ference from other appliances using the same 2.4 GHz range such as microwave ovens 

and cordless phones, etc. However, when you install 802.11b devices with an adequate 

distance from other appliances, the interference can easily be avoided. The IEEE 

802.11a standard is less popular and has an operating frequency of 5GHz with a shorter 

range of 50 -75 feet due to its higher frequency. It is more expensive and is not compat-

ible with 802.11b. 802.11a supports bandwidth up to 54 Mbps. Its higher frequency also 

implies that 802.11a signals penetrate walls and other obstructions with more difficulty. 

IEEE 802.11g combines the features of both 802.11b and 802.11a with a range of 100 -

150 feet and operates at a radio frequency of 2.4GHz. It is compatible with 802.11b. 

(Symmetry Electronics 2018.) 

 

When connected to the internet, WiFi gives a full TCP/IP stack. The integration of WiFi 

to most technologies of today such as laptops, smart phones, tablets and TVs makes it a 

well-established standard. Most WiFi networks operate on the 2.4 GHz band. It has a 

capability of operating at 5 GHz giving clearer signal with more channel space. Howev-

er, the range of 5 GHz is shorter than 2.4 GHz, which is why the 2.4 GHz is often used 

in homes. Power consumption of WiFi has been an issue making it not efficient for IoT 

devices, however, this issue can be negligible when the WiFi module is combined with 

a powerful microprocessor making it capable of consuming power less than other mod-

ules like the 433 MHz. (Darshana, Wilkie & Irvine 2016.) 

 

WiFi is not usually utilized in the building IoT nodes due to its high-power consump-

tion interfaces. It consumes 40 times the power during transmission and 10 times more 

than a Bluetooth Low Energy node when receiving. New technologies like WiFi and 

4G-LTE internet access has contributed to the growth of the information communica-

tion network. The IP addresses and the domain names are the fundermental assets of 

Internet used to identify and get the position of the networking equipment in the Inter-
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net. However, services like information retrieval become important infrastructure of In-

ternet to maintain all applications of Internet. (Walia, Kalra, & Mehrotra 2016.) 

 

Three main reasons why WiFi networks do not support sensor networks sufficiently are 

first lack of power saving mechanisms - The peculiar energy constraints of sensor net-

works are not considered in the IEEE 802.11 standard; energy saving mechanisms spe-

cially designed for these types of devices are not included in the standard, secondly us-

ing unsuitable bands - Based on their short wireless range and high obstruction losses, 

current WiFi bands need to make use of intermediate nodes which makes the network 

more complex. Implicitly, this means that there is a lack of an implementation of a band 

in the IEEE 802.11 standardized that will be suitable for low-rate and long-range net-

works and lastly, availability of low-cost alternatives - Due to the low usage of WiFi for 

data communication between low-capability and battery-powered nodes, there has been 

a rise in the development of low power alternatives such as IEEE 802.15.4, 6LoWPAN, 

Zigbee, and sub-1GHz proprietary protocols, all referred to as WSNs. (Adame, Bel, 

Bellalta, Barcelo & Oliver 2014.) 

 

WiFi finds its application in several areas such as military and aerospace, medical elec-

tronics, network and server equipment, automotive car electronics, industrial and home 

networking and mobile phones, etc. 

 

WiFi Security - The WiFi network security requirements can be categorized into three 

main components, first is authentication which involves user authentication and server 

authentication and second is integrity involving the maintenance of the accuracy and 

consistency of data and the third is privacy. Security ensures message integrity and con-

fidentiality. WiFi network makes use of certain encryption algorithms to provide securi-

ty, allowing the control of who connects, and privacy, preventing unauthorized persons 

to read the transmitted data. During wireless communication, to ensure maximum secu-

rity the network should include only devices with the latest security technology. It can 

use the AES-128-bit encryption algorithm to provide security. Others include 

SSL3/TLS1, HTTPS, RSA, AES-256, 3DES, RC-4, SHA-1, MD-5, WEP, WPA and 

WPA2 accelerated in hardware: AES, 3DEC and SHA. (Lin 2014.) 
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Pros – This is the typical method of networking for businesses, homes, and offices. 

WiFi is widely used for its high data transfer rates between 12MB/s up to 54 MB/s. It 

provides advantages like mobility, ease of installation, flexibility, cost, reliability, secu-

rity, use unlicensed part of the radio spectrum, roaming and speed. Cons – However, 

complying with this standard requires excessive overhead in relations to power con-

sumption, processor resources, short range (160m max), software, and the physical 

component size, making it less than effective in most situations. (Advantech B+B 

SmartWorx 2018.) 

 

2.2.6. LoRa (Long Range) 

 

LoRa is a “Long Range” wireless communication protocol marketed by LoRa Alliance. 

LoRaWAN uses the MAC layer protocol to provide a medium access control mecha-

nism which enables many end-devices to communicate with a gateway making use of a 

proprietary LoRa modulation. However, the LoRaWAN is an open standard that is be-

ing developed by LoRa Alliance. LoRa is a new, private spread-spectrum modulation 

technique that allows sending data at extremely low data rates to extremely long ranges. 

The low data rate, which goes down to few bytes per second, and LoRa modulation lead 

to very low receiver sensitivity as low as -134dBm, which when combined to an output 

power of +14dBm implies extremely large link budgets of up to 148dB. This implies 

more than 22km (13.6 miles) in LOS links and up to 2km (1.2miles) in NLOS links for 

urban environment which can go through buildings. LoRa uses the Sub-1 GHz spec-

trum, that is, the 900MHz ISM band in the U.S. and the 868MHz ISM band in Europe, 

to provide the long-range connectivity. (LoRa Networking Guide 2017.) 

 

LoRa was originally designed for IoT slow sampling rate, long distance communication. 

The LoRaWAN defines the Data Link (DL) layer above the Physical Layer (PHY) de-

fined by LoRa radio. LoRaWAN has a good scalability, cellular architecture and central 

coordination function. These two-parted systems can work together when several sensor 

nodes are involved. The physical layer is implemented using LoRa that exploits the 

Chirp Spread Spectrum (CSS) modulation using specialized transceivers. The chirp 

symbol can encode a variable number of bits represented by Spreading Factor (SF). A 
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Forward Error Correction (FEC) is also implemented as a Hamming Code H (M, K) 

where M= {5, …, 8} is the codeword length and K=4 is the block length. The Lo-

RaWAN defines the coding rate as CR=K/M and the typical chirp bandwidth in the 868 

MHz band is B [125, 250] kHz; but the spreading factor varies from SF [7, 12]. (Rizzi, 

Ferrari, Flammini, Sisinni & Gidlun 2017.) 

 

LoRa was defined to provide a variable chirp duration Tc as seen in equation 3 and BW 

is not affected by the SF, therefore, the raw bit rate Rb can be computed using equations 

1 and 2. 

            

                                𝑇𝑐  =
2𝑆𝐹

𝐵𝑊
               (1) 

 

  𝑅𝑏  =  𝑆𝐹 ∗
𝐵𝑊

2𝑆𝐹 ∗
𝐾

𝑀
                     (2) 

 

where Rb is the raw bit rate, SF is the spreading factor, BW the bandwidth, K the block 

length, and M the codeword length. 

 

The Value of Rb can vary from 366 bps (BW=125 kHz and SF=12) to 11 bps (BW=250 

kHz and SF=7). One thing to note is that different SF are pseudo-orthogonal, meaning 

that packets using SF=i and SF=j can still be decoded even if they overlap in time and 

frequency provided that i≠j and the received packet’s signal to Interference plus Noise 

Ratio (SINR) is above the isolation threshold which is a function of I and j. These pa-

rameters affect the decoder sensitivity. An increase in bandwidth lowers the receiver 

sensitivity, whereas, an increase of the spreading factor increases the receiver sensitivi-

ty.  

 

When the code rate is reduced, the Packet Error Rate (PER) also reduces when there is a 

short outpour of interference, that is, a packet transmitted with a code rate of 4/8 will 

tolerate interferences more than a signal transmitted with a code rate of 4/5. Table 3 tak-

en from the SX1272 datasheet shows the device Variants and Key Parameters. (Semtech 

SX1272 LoRa Datasheet 2017, Rev. 3.1.) 
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Table 3. LoRa Device Variants and Key Parameters taken from LoRa SX1272/73 

   Datasheet, Rev. 3.1. Semtech, 2017. 

 

Part 

Number 

Frequency 

Range 

LoRaTM Parameters 

Spreading 

Factor 
Bandwidth Effective Bitrate Sensitivity 

SX1272 860 – 1020 MHz 6 - 12 125 – 500 kHz 0.24 – 37.5 kbps -117 to -137 dBm 

 

The LoRa symbol rate Rs is defined in equation 3 as: 

 

       𝑅𝑠  =
1

𝑇𝑐
=

𝐵𝑊

2𝑆𝐹
    (3) 

 

Where Tc is the chirp duration, BW is the programmed bandwidth and SF the spreading 

factor. The transmitted signal is a constant envelope signal. Equivalently, one chip is 

sent per second per Hz of bandwidth. 

 

LoRa Packet structure and Payload 

 

The LoRa TM modem uses two types of packet format namely the explicit and implicit 

formats. The explicit packet includes a short header that contains information about the 

number of bytes, coding rate and whether a CRC is used in the packet. Figure 13 shows 

the LoRa packet structure. (Semtech SX1272 LoRa Datasheet 2017, Rev. 3.1.) 

 

 

 

Figure 13: LoRa Packet Structure (Semtech SX1272 LoRa Datasheet 2017, Rev. 3.1). 

 

The three elements of the LoRa packets are: 
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A preamble - The preamble is used in synchronizing the receiver with the incoming 

data flow. The default configuration of the packet is a 12-symbol long sequence. This is 

programmable to make the preamble length extendable in applications where reducing 

the receiver duty cycle is needed in receive intensive applications. The transmitted pre-

amble length is adjusted using the registers RegPreambleMsb and RegPreambleLsb 

from 6 to 65535 with total preamble lengths of 6+ 4 to 65535 + 4 symbols once the 

overhead of the preamble data is considered. (Semtech SX1272 LoRa Datasheet 2017, 

Rev. 3.1.) 

 

An optional header - The header type is dependent on the mode of operation chosen, 

the header type is selected using the ImplicitHeaderModeOn bit found within the Reg-

ModemConfig1 register. The Explicit header mode is the default header mode and we 

also have the Implicit header mode. (Semtech SX1272 LoRa Datasheet 2017, Rev. 3.1.) 

 

The data payload - The packet payload of LoRa is a variable-length field that contains 

the actual data coded at the packet error rate either as specified in the header in explicit 

mode or in the register settings in implicit mode. An optional CRC may be appended to 

it. Using a given combination of spreading factor (SF), coding rate (CR) and signal 

bandwidth (BW), the total on-the-air transmission time of a LoRa packet can be calcu-

lated as illustrated below. (Semtech SX1272 LoRa Datasheet 2017, Rev. 3.1.) 

 

The definition of the symbol rate leads to the definition of the symbol period in equation 

4. 

      𝑇𝑠  =
1

𝑅𝑠
           (4) 

 

However, the LoRa packet duration is the sum of the duration of the preamble and the 

transmitted packet. Where the preamble length is computed as in equation 5. 

 

    𝑇𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 = (𝑛𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 +  4.25) ∗  𝑇𝑠𝑦𝑚       (5) 
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where npreamble is the programmable preamble length, taken from the register RegPream-

bleMsb and RegPreambleLsb. The payload duration is dependent on the header mode 

that has been enabled. The number of payload symbols is given by the equation 6. 

 

𝑛𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 8 + max (𝑐𝑒𝑖𝑙 [
8𝑃𝐿−4𝑆𝐹+28+16𝐶𝑅𝐶−20𝐼𝐻

4(𝑆𝐹−2𝐷𝐸)
] (𝐶𝑅 + 4), 0)     (6) 

 

where PL is the number of bytes of payload, SF is the spreading factor, IH = 1 when 

implicit header mode is enabled and IH = 0 when explicit header mode is enabled. 

When DE is set to 1, it indicates the use of the low data rate optimization, while 0 indi-

cates its disabled. CRC shows the presence of the payload; CRC = 1 when on and 0 

when off. CR is the programmed coding rate from 1 to 4. The ceil function indicates 

that the portion of the equation in square brackets should be rounded uo to the next inte-

ger value. While the max function compares the evaluated ceil value result and returns 0 

or the result depending on which one is higher. (Semtech SX1272 LoRa Datasheet 

2017, Rev. 3.1.) 

 𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑 =  𝑛𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ∗  𝑇𝑠    (7)

    

Equation 7 is used to compute the total payload. Therefore, the total on-the-air transmis-

sion time of a LoRa packet is the addition of the preamble duration and payload dura-

tion as shown in equation 8. 

 

     𝑇𝑝𝑎𝑐𝑘𝑒𝑡 =  𝑇𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 +  𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑   (8) 

According to the LoRa SX1272/73 Datasheet, Rev. 3.1. Semtech, 2017, the LoRa mod-

ule utilizes frequency hopping spread spectrum (FHSS) typically used when the dura-

tion of a single packet could exceed the regulatory requirements relating to the maxi-

mum allowed channel retention time. This is, however, most noticed in the case of the 

US operation where the 902 to 928 MHz ISM band which makes provision for frequen-

cy hopping is used. LoRa modem enables the FHSS by setting the FreqHop-pingPeriod 

bit to a non-zero value in the register RegHopPeriod. The time in which the transmis-

sion will dwell in any channel is determined by the FreqHoppingPeriod which is an “in-

teger” multiple of the symbol periods as illustrated in equation 9. 
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                                 𝐻𝑜𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑[𝑠] =  𝑇𝑠 ∗  𝐹𝑟𝑒𝑞𝐻𝑜𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑  (9) 

 

 

 

Figure 14. A Simplified SX1272 Block Diagram (SX1272 LoRa Datasheet 2017). 

 

A Simplified SX1272 Block Diagram is illustrated in figure 14. LoRa and LoRaWAN 

can meet the requirements of industrial environments particularly when application sce-

nario needs cycle time in the order of one minute and for a large number of sensor 

nodes. LoRa is focused on applications where the end devices have limited energy ( bat-

tery-powered) and where end devices do not require transmission of more than a few 

bytes of data at specific time and where the initiation of data traffic can be done by ei-

ther the end-device (for example, when the end-device is a sensor) or by an external en-

tity that wants to communicate with the end-device (like when the end-device is an ac-

tuator). (LoRa Alliance White Paper 2015.) 

 

LoRa physical layer which was developed by Semtech operates on the 433, 868 and 915 

MHz ISM band depending on the region in which it is to be deployed. In Europe, the 

868 MHz ISM band is used. The payload on each transmission can vary from 2 to 255 

octects and the data rate reaches up to 50Kbps when the channel aggregation is em-

ployed. The modulation technique used is proprietary to Semtech. LoRaWAN gives a 

medium access control mechanism, enabling many end-devices to communicate with 

the gateway using the LoRa modulation. The LoRaWAN is an open standard being de-



46 

 

veloped by LoRA Alliance unlike the LoRa modulation which is proprietary. (Semtech 

SX1272 LoRa Datasheet 2017, Rev. 3.1.) 

 

The typical LoRa network uses “star-of-stars” topology as seen in figure 15. 

 

 

 

 

 

 

 

 

 

 

Figure 15. LoRa Network Architecture (ResearchGate 2018). 

 

From figure 15, the end-devices communicate with gateways using LoRa with the Lo-

RaWAN. The gateways forward raw LoRaWAN frames from the devices to a network 

server over a back-haul interface with a higher throughput, using Ethernet or 3G. Con-

sequently, gateways are only bidirectional relays, or protocol converters, with the net-

work server being responsible for decoding the packets sent by the devices and generat-

ing the packets that should be sent back to the devices. There are three classes of LoRa 

end-devices (nodes), which differ only with regards to the down-link scheduling which 

is based on a cellular-like architecture where several base stations hosting the packet 

forwarder provide point-to-point link to end-devices on the field. Three different node 

“flavors” exist, where Class A is the basic one, Class B uses Beacon messages for time 

synchronization and Class C allows for continuous node listening. (ResearchGate 2018.) 

 

LoRa Security - Both signing and encryption are provided by the LoRaWAN protocol 

for parts of the LoRaWAN packets and are performed using symmetric keys that both to 

the Node and to the Network Server knows and possibly also known to Application 

Servers located behind the Network server depending on requirements. The keys are 
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shared in a way that is based on how a node joins the network. The AES128-bit data 

encryption algorithm is used to encrypt data. The MAC Payload section of messages is 

signed to hinder the manipulation of the cipher-text, or of other values. (Miller 2016.) 

 

Pro – LoRa is a much better choice for devices or sensor nodes transmitting every 10 or 

15 minutes in networks with a low or medium number of nodes. LoRa is also the very 

good option for very wide networks, having long-range links. Other communication 

modules cannot get more than a few km. Cons – LoRa is not very good for projects 

which require high data-rate and/or very frequent transmissions (like every 10 seconds) 

and LoRa is probably not suitable for highly populated networks. But this depends on 

the number of nodes as well as on the number of packets per hour that each node sends. 

LoRa node should be powered by a solar panel, or better, connected to mains electricity 

as power consumption is a major challenge. Lastly, note that due to the low bandwith, 

LoRa by itself does not support Over the Air Programming (OTA), but can be done us-

ing 3G, GPRS or WiFi modules that allow OTA as a second radio for OTA purposes. 

(Libelium Communication Distribution 2018.) 

 

2.2.7. Comparing the Wireless Communication Protocols 

 

The analysis of some few papers and several online articles led to the findings from 

available publication for different estimations and evaluation results regarding the speci-

fications and performance of wireless protocols.This is because these specifications are 

gotten from the implementation performed by the producers of these devices and stand-

ards. As a result, some main wireless modules from well-known manufacturers are illus-

trated based on the wireless protocols used in this thesis. Table 4 summarizes some of 

the main features of the wireless protocols taken from the respective datasheets of each 

wireless protocol devices used. The references to the datasheets and networking guide 

of these wireless protocols are given at the reference section of this document. 
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Table 4. Comparing BLE, XBee, WIFI and LoRa Wireless Protocols. 

 

Technical 

Specification 
BLE 

Zigbee 

(IEEE 

802.15.4) 

WiFi LoRa 

Device Family Bluetooth 

v4.0 

/Bluetooth 

Smart  

Chipset: 

BLE112 

XBee-PRO 

802.15.4 EU 

WiFi PRO 

module 

 

Semtech 

SX1272 Mod-

ule 

Frequency 

bands 

2400–2500 

MHz 

 

 

ISM 2.4 GHz 2.4GHz IEEE 

802.11 b/g/a 

 

863-870 MHz 

(Europe) 

 

902-928 MHz 

(US) 

Transmission 

Power 

[-23 dBm, +3 

dBm] 

+10 dBm  

 

802.11b: 17 

dBm 

802.11g: 14 

dBm 

802.11a: 12 

dBm 

+14dBm 

 

RX sensitivity -103 dBm  -100 dBm 802.11b@11Mb

ps PER<8%: -

87 dBm 

802.11g@54Mb

ps PER<10%: -

73 dBm 

802.11a MCS0 

PER<10%: -86 

dBm 

-134 dBm 

Transmission 

Range (at max-

imum TX pow-

er) 

100 m 750 m <300m LOS = 22km 

(13.4miles) 

NLOS = +2km 

(1.2miles) 
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Maximum 

over the air 

data rate 

1Mbps 

 

250 Kbps Max 72.2Mbps 

(IEEE 802.11n 

HT) 

Not mentioned 

 

Tx current 

@3.3 VDC 

36 mA 215mA 350 mA Not mentioned 

 

Rx current 

@3.3 VDC 

8 mA 55mA 130 mA Not mentioned 

Encryption AES 128 AES 128 AES-128/256, 

3DES, 

SSL3/TLS1, 

HTTPS, RSA, 

WEP, WPA and 

WPA2 

AES 

128/192/256 

Authentication Not men-

tioned 

 Not mentioned WPA-TKIP 

128-bit WPA2 

CCMP (AES)  

 

Not mentioned 

Topology Scatternet Star, tree, mesh Star Star 

 

2.2.8. Choosing a Wireless Protocol 

 

In choosing a wireless solution we need to consider several points and provide answers 

to relevant questions that arises to ensure that the wireless communication link will per-

form satisfactorily. Such questions are as follows; Is it possible to get a clear line-of-

sight propagation? Else, can we overcome attenuation and multipathing to provide reli-

able communication? Do we have an ideal and acceptable location to mount the antenna 

and equipment? What is the best frequency range for the application? Have the client 

provided enough information and support to aid with getting the answers to these ques-

tions? Since we want to develop an industrial wireless link and we need to consider the 

distance, reliability and configurability, we are going to make use of a proprietary RF 

system. (Conley 2018.) 

 

Wireless connectivity offers multiple advantages such as easier installation and mainte-

nance, better flexibility and scalability and a long communication range, and not having 

to worry about the wires wearing or getting tangled together. However, when selecting 
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any specific wireless solution, we need to perform a site assessment. It is important to 

perform some analysis on the communication environment. A site assessment is an 

analysis of the distance, terrain, obstacles, foliage, potential RF Interference sources and 

other factors that can affect the optimum operation of the communications link. The site 

assessment done is based on the challenges inherent in the application especially for 

more complex or critical applications. For an ideal situation where there is a clear line-

of-sight between the transmitter and receiver antennas, there can be good assurance that 

a wireless link will operate successfully given adequate power in the appropriate fre-

quency range. Still, it is required to put into consideration the probability of the envi-

ronmental conditions changing seasonally, or other changes in the industrial area and 

carryout proper investigation on the presence of sources of RF interference nearby. 

(Conley 2018.) 

 

Wireless protocols are also prone to malicious attackers which might attempt to spy and 

hack into the network to control or interfere with and jam communications. Therefore, 

careful considerations and field testing is needed to test if a wireless solution can deliver 

the required robustness, reliability and security compared to the wired solution. 

 

2.2.9. Basic Network Attacks 

 

The network security has become an important topic to note due to the frequency and 

variety of existing attacks along with the potential threat of new and more destructive 

future attacks. Attackers make different types of network attacks based on their interest 

as some may not only be interested in exploiting software applications, but also want to 

get unauthorized access of the network and the devices connected to the network. Some 

types of network attacks are eavesdropping, Data Modification, Identity Spoofing (IP 

Address Spoofing), Password-Based Attacks, Denial-of-Service (DoS)Attack, Man-in-

the-Middle Attack, Compromised-Key Attack, Sniffer Attack and Application-Layer 

Attack etc. (VSkills 2018.) 

 

These attacks may be classified into passive monitoring of communications, active net-

work attacks, close-in attacks, exploitation by insiders, and attacks through the service 



51 

 

provider, Distributed Attack (Distributed DoS) and Hijack attack etc. Any of these at-

tacks can be used to cause damage to the network and gain unauthorized access of the 

network and the devices connected to the network. The attacker may be able to control 

the devices or make unwanted modification to it and its data. (VSkills 2018.) 

 

Security measures should be taken to protect the data and ensure reliability and authen-

ticity of data. Based on the IEEE 802.16e standard, the security measure used should 

provide strong support for authentication, key management, encryption and decryption, 

control and management of data protection and security protocol optimization. (VSkills 

2018.) 

 

Figure 16 shows some type of network attacks. 

 

 

 

Figure 16. Types of network attacks (PCtech24 2017). 
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2.2.10.   Encryption and Authentication 

 

Wireless communication links certainly comes with an intrinsic vulnerability to security 

risks and therefore the right steps should be applied to mitigate them. Therefore, we 

need to make use of wireless systems that has a trusted and accepted security features 

and capability. Wireless communication links should be able to provide security for data 

transmission, for example using AES with 128- or 256-bit encryption. In over-the-air 

transition of data, the US government for example has adopted the AES encryption as 

the required standard for the secure data transition (Conley 2018).  

 

Therefore, AES encryption can be applied to the smart NOx CAN data to ensure the se-

cure transmission of the data. 

 

 

2.3. Smart NOx Sensor, Speedgoat and Engine Control Module (ECM) 

 

In this section, we discuss the components used such as smart NOx sensor, speedgoat 

and the engine control module (ECM). 

 

2.3.1. Smart NOx Sensor 

 

The smart NOx is a sensor that measures the oxygen (O2) percentage and nitrogen ox-

ides (NOx) ppm in the exhaust of combustion engines. Oxygen is measured as a per-

centage while NOx concentration is measured in ppm. (Ina & Bertrand 2010.) 

 

Nitrogen Oxides (NOX) are a group of poisonous, highly reactive gases of which two 

occur naturally namely nitric oxide (NO) and nitrogen dioxide (NO2). The combustion 

of fossil fuels is the most common source of NOX emissions. The amount of emission 

depends on the air-fuel mix ratio as well as the amount of nitrogen in the fuel. At high 

temperatures and conditions that encourage oxidation NOx formation in combustion is 

favored. NO2 has adverse effects on human health and at high concentrations it can lead 

to the inflammation of the airways. NO2 is also responsible for the formation of second-
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ary particulate aerosols and ozone (smog (O3)) in the atmosphere. These are noticeable 

air pollutants because of their severe impacts on human health. (European Environment 

Agency (EEA) 2018.) 

 

NOx can also lead to acid rain and eutrophication. Eutrophication leads to the occur-

rence of potential changes in the quality of soil and water. This leads to devastating ef-

fects on the aquatic ecosystems in rivers and lakes and causes damage to forests, crops 

and other vegetation. Eutrophication can also bring about decreased biodiversity, 

changes in species composition and dominance, and toxicity effects. NOx therefore has 

both directly and indirectly effects on human health. Sources NOx include automobiles, 

trucks and various non-road vehicles such as construction equipment, boats, etc. Other 

sources are industrial sources such as power plants, industrial boilers, cement kilns, and 

turbines. Stationary sources of NOx were required to install and operate reasonably 

available control technology (RACT) by May 31, 1995 according to the Clean Air Act 

Amendments of 1990 for the United States. (United States Environmental Protection 

Agency (EPA) 2018.) 

 

Similarly, according to the Department of Communications, Climate Action and Envi-

ronment, the EU Clean Air Policy has an interim objective to reduce health and envi-

ronmental impact up to 2030, these objectives include avoiding 58,000 premature 

deaths, saving 123,000km2 of ecosystems, (including 56,000km2 protected Natura 2000 

sites) from nitrogen pollution, and saving 19,000km2 forest ecosystems from acidifica-

tion. 

 

The commercial NOx sensors applied in automotive are basically zirconia (YSZ) elec-

trochemical sensors of the amperometric type. The NOx sensor’s fundamental principle 

of operation is illustrated in figure 17. The sensor makes use of two or three electro-

chemical cells in adjacent chambers. The first cell electrochemically pumps O2 out of 

the sample to avoid the O2 interfering with the NOx measurement in the second cell. 

The removal of the O2 makes this type of NOx sensor to have a dual function; it can al-

so be used in detecting of the O2 level in the exhaust. (Carstens & Majewski 2018.) 
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Figure 17. Schematic representation of an amperometric NOx sensor. 

      (Carstens & Majewski 2018.) 

 

NOx sensors comprise of a minimum of two oxygen pump cells (see figure 17) - one 

removes excess oxygen from the exhaust gas, and the other measures the resultant oxy-

gen concentration from the decomposition of NOx. When the O2 in the first cell is re-

duced, it produces O ions which are pumped through the zirconia electrolyte by the ap-

plication of a bias of approximately -200mV to -400mV. The O2 concentration is deter-

mined from the pumping current because it is proportional to the pumping current. The 

second cell collects the remaining gases where the NOx decomposes into N2 and O2 us-

ing a reducing catalyst. Like the first cell, a bias of -400 mV is applied to the electrode 

to separate the O2 produces and then pumps out the O2 from the cell; the second cell’s 

pumping current is proportional to the amount of oxygen from the NOx decomposition. 

To help control the NOx sensing cell, an additional electrochemical cell can be applied 

as a Nernstian lambda sensor. To avoid interference, all HC and CO in the exhaust gas 

is oxidized before reaching the NOx sensing cell and any NO2 in the sample is convert-

ed to NO before the NOx sensing begins to guarantee that the sensor output is propor-

tional to the NOx concentration. (Carstens & Majewski 2018.) 

 

The NOx sensor has been applied recently in urea-SCR (Selective Catalytic Reduction) 

systems for light- and heavy-duty diesel engines. SCR systems basically makes use of a 

NOx sensor downstream of the SCR catalyst to satisfy various OBD (on-board diagnos-
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tics) requirements. Excessive NOx or ammonia concentrations in the SCR outlet leads 

to an OBD malfunction notification because NOx sensors are sensitive to NOx and 

ammonia gases. The SCR is a system that injects a solution like AdBlue through a cata-

lyst in the exhaust to react with the nitrogen oxide gas produced by the combustion pro-

cess. AdBlue is a solution made up of urea and water injected into the engine/vehicle’s 

exhaust system to breakdown the harmful nitrogen oxide into harmless nitrogen and ox-

ygen gases before it comes out of the exhaust pipe. However, note that the NOx sensor 

measures the NOx concentration before the NOx is reduced or broken down. (Parkers 

2018.) 

 

In the Wärtsilä’s smart NOx sensor case, the current installation has the smart NOx sen-

sor connected to the engine control unit (ECU) with a wired CAN bus connection. The 

smart NOx sensor data is transmitted using the SAE J1939 protocol which is built on 

top of CAN Networks. SAE J1939 was developed specifically for use in heavy duty en-

vironments, with the aim on achieving reliable and fault tolerant communications. The 

objective of the test case in this thesis is to investigate and simulate the possibility of 

replacing the existing wired connection between the smart NOx sensor and the rapid 

control prototyping system (speedgoat), and possibly in the future the Engine Control 

Unit (ECU) with a wireless communication solution. 

 

2.3.2. Acquiring data from the Smart NOx sensor 

 

According to the datasheet of the smart NOx sensor provided by Wärtsilä, SAE J1939 is 

used, with extended 29-bit CAN frame identifiers and a transfer rate of “250kBaude”. 

The smart NOx sensor transmits data using the address “18F00F52h” when pin5 is 

open. A new CAN frame is transmitted every 50ms. Table 5 illustrates the format of 

data bytes in each transmitted CAN frame. Further details about status bytes are availa-

ble in the datasheet. (Ina & Bertrand 2010.) 

 

To obtain correct readings, the sensor needs to be heated first. Heating must be initiated 

externally by sending the 8 bytes hexadecimal heating signal “04h” at a repetition rate > 

100ms. 
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Table 5. Payload in smart NOx CAN frames. 

 

 

 

2.3.3. Testing the Smart NOx sensor 

 

To test if the obtained sensor had been connected and powered correctly as well as to 

examine the transmitted CAN frames, a Kvaser Leaf Light HS v2 USB to CAN inter-

face was used. The sensor is powered by a regulated DC power supply at 24V. Sending 

the 8 bytes hexadecimal heating signal “04h” to the smart NOx sensor with a Receive 

ID 0x18FEDF00 makes the smart NOx sensor to start heating and then sends back its 

CAN frames through the CAN Bus to the wireless module for transmission to the re-

ceiver module where the Kvaser Leaf Light HS v2 USB to CAN Bus interface is used to 

view the data. Repeating the 8 bytes hexadecimal heating signal “04h” every 100ms will 

maintain the heating of the smart NOx. The result is shown in figure 18. (Ina & Ber-

trand 2010.) 

 

Figure 18. CAN frame to start heating smart NOx. 
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2.3.4. Calculating O2% and NOx ppm 

 

According to the smart NOx sensor datasheet by Ina & Bertrand 2010, O2 percentage 

can be calculated from O2 bytes in table 5 using equation 12. 

 

    𝑂2(𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) = 0.000514% × 𝑂2 − 12   (12) 

 

NOx ppm can be calculated from NOx bytes in table 5 using equation 13. 

 

𝑁𝑂𝑥(𝑝𝑝𝑚) = 0.05 × 𝑁𝑂𝑥 − 200    (13) 

 

2.3.5. Speedgoat and the Engine Control Module (ECM) 

 

This thesis investigates the possibility of replacing the existing wired CAN bus connec-

tion between the smart NOx sensor and the rapid control prototyping system speedgoat 

and possibly in the future the Engine Control Unit (ECU) with a wireless communica-

tion solution. The speedgoat applies Real-time systems with Simulink Real-Time™ 

from MathWorks to various applications across many industries, in the lab, field, class-

room, or embedded in machinery. Speedgoat solutions and simulink are seamlessly in-

tegrated and allows for fast test run of simulink software designs with hardware. 

(Speedgoat GmbH 2007-18.)  

 

The Engine Control Module (ECM) in figure 19 which can also be called Engine Con-

trol Unit (ECU) is a kind of electronic control unit that manages the control of series of 

actuators on an internal combustion engine to ensure that the engine’s performance is 

optimal. This is done by reading the values from all the sensors within the engine bay 

and interpreting the data using multidimensional performance maps (referred to as 

lookup tables) and adjusting the engine actuators accordingly. (Wikipedia 2018a.) 
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Figure 19. Engine Control Unit of a 1996 Chevrolet Beretta (Wikipedia 2018b). 

 

 

3. SMART NOX AND SPEEDGOAT WIRELESS COMMUNICATION 

 

This thesis is based on the case study of Wärtsilä’s smart NOx sensor. Its aimed at in-

vestigating the possibility of using a wireless protocol to send the data of the smart NOx 

sensor located on diesel engines to the speedgoat/Engine Control Module (ECM). 

 

The project is aimed at being a low powered wireless solution that will be used to 

transmit data (CAN frames) of the smart NOx sensor (connected to the wireless trans-

mitter module) to the wireless receiver module. The receiver module will then relay the 

CAN frames through an external CAN controller to the speedgoat – performance real-

time target machine. A matlab simulink module has been programmed into the speedg-

oat to receive CAN frames, calculate O2% and NOx ppm and display the results on a 

monitor connected to the speedgoat. 

 

Regardless of if you are making the changes to an existing system or equipment or if 

you are developing a new infrastructure, distance, barriers and interference can be a 

challenge. Sometimes the use of remote monitoring and control can be expensive, how-
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ever, the cost of having hardwired connections can make an application non-feasible as 

well as non-viable. Also, hardwiring is basically not achievable in some situations. 

When adding I/O within an existing system, long distances may not be considered, 

however, the cost and difficulties accompanying the addition of conduit and wiring to 

an existing system may exceed the cost and flexibility of making use of a wireless 

communication link. (Conley 2018.) 

 

3.1. System Architecture 

 

There are some factors considered during the implementation of each wireless protocol 

such as Receiver Signal Strength Indicator (RSSI), packet loss, bit error rate, latency 

and power consumption. Also, the aim is to have a designed prototype that is cost effec-

tive, robust and reliable, therefore, the choice of the components and products used were 

carefully carried out. 

 

The list of the hardware components used includes smart NOx sensor, speedgoat, CAN 

Bus module, Multiprotocol Radio Shield, Arduino development board, Waspmote de-

velopment board, Waspmote expansion board, XBee PRO module, XBee Explorer 

USB, X-CTU tool, LoRa module, WIFI PRO module and BLE module. These compo-

nents are discussed briefly in this section and the connection and programming of the 

components are discussed in subsections 3.2.1 to 3.2.11. 

 

The CAN Bus Module used for XBee, LoRa and WIFI protocol implementation is a 

CAN 2.0B - Extended CAN frame with 29-Bit identifier from Libelium. (See figure 20.)  

It has a CAN controller MCP2515 and a CAN transceiver MCP2551. The technical de-

tails of the CAN Bus are mentioned in table 6. 
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Figure 20. CAN Bus Module (Cooking-Hacks 2018). 

 

Table 6. Technical details of the CAN Bus Module. (Cooking-Hacks 2018). 

 

CAN Bus 

Standard ISO 11898 

Cabling Twisted pair 

Connector DB9 

Network Topology Multi-master 

Speed 125 to 1000 Kbps 

Signaling Differential 

Voltage Levels 0-5V 

Signals Half Duplex 

 

The CAN Bus modules in figure 20 also provides a 120-ohm termination resistor. The 

schematic is like the schematic of Mikroelectronika CAN SPI click board illustrated in 

APPENDIX 1. A new CAN Bus API was written for the Libelium CAN Bus module of 

figure 20 to implement the 29-bits extended ID of the smart NOx sensor. 



61 

 

 

 

 

Figure 21. Multiprotocol Radio Shield v2.0 (Cooking-Hacks 2018). 

 

The Multiprotocol Radio Shield can be used as an interconnection shield for Arduino 

and was designed to allow the connection of two communication modules at the same 

time. With its SPI bus connections, it can be used to combine any of the following RS-

485, CAN Bus, LoRa modules, LoRaWAN, RFID, XBee and Bluetooth. See the Multi-

protocol Radio Shield in figure 21. (Cooking-Hacks 2018). 

 

The Arduino development board used is the Arduino UNO Rev3 (see figure 22). It is an 

open-source microcontroller board developed by Arduino.cc based on the Microchip 

ATmega328P microcontroller. There are some sets of pins on the board, digital and ana-

log input/output (I/O) pins that can be interfaced with various expansion boards and 

shields and other circuits for various applications. The Arduino IDE in figure 23 makes 

use of a version of C++ that has been simplified to make programming it easier. (Spark-

fun 2018.) 
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Figure 22. Arduino UNO Rev.3 (Sparkfun 2018). 

 

 

 

Figure 23. Arduino IDE. 
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The structure of the Arduino IDE code is divided into two basic parts namely setup and 

loop. They are executed in a sequential order with the setup being the first part of the 

code that is run only once on initialization of the code. This is the part of the code where 

it is recommended to include the initialization of the modules which are to be used. The 

loop part of the code runs continuously, in an infinite loop. This is where the main part 

of the code to perform the desired function is included. (Tutorialspoint 2018.) 

 

The Waspmote development board uses the Atmel ATmega1281 microcontroller. The 

board has some features that improves its performance and application such as the hi-

bernate mode, sleep mode, watchdog and indication LEDs used for several debugging 

and application purposes. The Waspmote development board is presented in figure 24. 

(Libelium 2018a.) 

 

 

Figure 24. Waspmote development board (Libelium 2018a). 

 

In the Waspmote IDE illustrated in figure 25, the structure of the codes is divided into 

two basic parts namely setup and loop. Their function is the same as in the case of the 

Arduino IDE. 

 

socket 1 

socket 0 

http://www.tutorialspoint/
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Figure 25. Waspmote IDE. 

 

The Waspmote expansion board in figure 26 allows the connection of two communica-

tion modules at the same time. This means it can be used to combine any of the follow-

ing RS-485, CAN Bus, LoRa modules, LoRaWAN, RFID, 802.15.4, ZigBee, 

DigiMesh, 868 MHz, 900 MHz, LoRa, WiFi, GPRS, 3G, 4G, Sigfox, LoRaWAN, Blue-

tooth Pro, Bluetooth Low Energy and RFID/NFC which are available for Waspmote. 

(Libelium 2018b.) 

 

 

 

Figure 26. Waspmote Expansion Board (Cooking-Hacks 2018). 
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The XBee-PRO modules in figure 27 add functionalities such as the node discovery 

(were specific information is appended to the packet headers so that they can discover 

other nodes in the same network) and duplicated packet detection to the physical level 

as well as the link level (MAC layer) already defined by the standard IEEE 802.15.4 

which the XBee PRO module complies with. It uses the free frequency band of 2.4 

GHz, utilizing 12 channels with a bandwidth of 5 MHz per channel as shown in table 7. 

(Libelium 2017a.) 

 

Table 7. XBee 802.15.4 Channel Number Frequency. (Libelium 2017a). 

Channel Number Frequency 

0x0C – Channel 12 2.405 – 2.410 GHz 

0x0D – Channel 13 2.410 – 2.415 GHz 

0x0E – Channel 14 2.415 – 2.420 GHz 

0x0F – Channel 15 2.420 – 2.425 GHz 

0x10 – Channel 16 2.425 – 2.430 GHz 

0x11 – Channel 17 2.430 – 2.435 GHz 

0x12 – Channel 18 2.435 – 2.440 GHz 

0x13 – Channel 19 2.440 – 2.445 GHz 

0x14 – Channel 20 2.445 – 2.450 GHz 

0x15 – Channel 21 2.450 – 2.455 GHz 

0x16 – Channel 22 2.455 – 2.460 GHz 

0x17 – Channel 23 2.460 – 2.465 GHz 
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Figure 27. XBee PRO Module (Cooking-Hacks 2018). 

 

 

XBee Explorer USB in figure 28 is used with a configuration tool such as XCTU to 

configure the XBee modules to talk to each order. It is used to hold the XBee module as 

illustrated in figure 29. 

 

 

 

 

Figure 28. XBee Explorer USB (ES Electronics-Shop 2018). 

 

 

 

 

Figure 29. XBee PRO Module on XBee Explorer USB. 
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The X-CTU tool in figure 30 is a utilities configuration and testing tool. It is used to 

pre-configure the XBee modules to the same channel and PAD ID. This is done to get 

the XBees to communicate with each other. Further detail is presented in section 3.1.5. 

 

 

 

Figure 30. XCTU tool. 

 

The LoRa module in figure 31 provides an optimum range performance due to its re-

ceiver sensitivity developed by LoRa™ technology. The module also has a library 

which enables addressable, reliable and robust communications with ACK, re-tries or 

time-outs strategies. The frequency can be selected and set with pre-defined channels 

based on the country in which it is used, that is, it works for both 868 (Europe) and 900 

MHz (USA) ISM bands. (Libelium 2017b.) 
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Figure 31. LoRa Module (Cooking-Hacks 2018). 

 

The LoRa Module specification is presented in table 8. 

 

Table 8. LoRa specification. (Cooking-Hacks 2018.) 

 

LoRa 

Module SX1272 

Dual Frequency Band 863-870 MHz (Europe) and 902-928 MHz (US) 

Transmission Power 25 mW 

Sensitivity -134 dBm 

Channels 8 (868MHz) and 13 (900MHz) 

Range LOS = 21km (13.4miles) and NLOS = +2km (1.2miles) 

 

The WIFI PRO module shown in figure 32 is an 802.11 b/g radio with 32-bit processor, 

TCP/IP stack, real-time clock, crypto accelerator, power management unit and analog 

sensor interface. It is managed by UART and it can be connected to SOCKET0 or 

SOCKET1 of the Waspmote development board. It supports the SSL3/TLS1 protocol 

used for secure sockets while it supports WEP, WPA and WPA2 WiFi encryption on 

the WLAN interface. It can connect to any standard router which has been configured as 

Access Point (AP) and can send data to other devices in the same network as well as 

send data directly to a web server located on the Internet. (Libelium 2017c.) 
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Figure 32. WIFI PRO Module. 

 

The WIFI PRO module supports the following features ten simultaneous TCP/UDP 

sockets, DHCP client/server, DNS client, HTTP client, HTTPS client, FTP client, NTP 

client, Multiple SSIDs, Roaming mode and OTA feature. (Libelium 2017c.) 

 

The BLE modules in figure 33 is a short-range wireless protocol which utilizes the 2.4 

GHz band (2402 – 2480 MHz) and it comprises of 37 data channels and  3 advertise-

ment channels with 2MHz spacing between the channels and GFSK modulation. Alt-

hough it differs from Bluetooth classic (BR/EDR), it offers similar benefits namely in-

teroperability, robustness and connectivity with smartphones and PCs. UART is used to 

manage the BLE module and it can be connected on the Waspmote development board 

either on SOCKET0 or SOCKET1. It is made to be applied in very low power applica-

tions and it conforms with the Bluetooth 4.0 standard, also called Bluetooth Low Ener-

gy (BLE). The main features of the module are listed in table 9. (Libelium 2017d.) 

 

 

 

Figure 33. Waspmote Bluetooth Low Energy module (Libelium 2017d). 
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Table 9.  Main features of the BLE module. 

 

BLE Module 

Protocol Bluetooth v4.0 / Bluetooth Smart 

Chipset BLE112 

RX Sensitivity -103 dBm 

TX Power [-23 dBm, +3 dBm] 

Antenna 2 dBi/5 dBi antenna options 

Security AES 128 

Range 100 meters (at maximum TX power) 

Consumption sleep (0.4 uA) / RX (8 mA) / TX (36 mA) 

 

The smart NOx sensor in figure 34 measures the O2 % and NOx ppm in the exhaust of 

combustion engines. The NOx sensor performance specification according to the Conti-

nental smart NOx sensor datasheet is presented in table 10. (Ina & Bertrand 2010.) 

 

Table 10. NOx sensor performance specification. 

 

Output 

Type 

Measurement Range Definition Data Update 

Rate 

NOx -200 – 3012 [ppm] 

signal: unsigned integer 

NOx-concentration detected by 

the NOx-Sensor is transmitted. 

The transmission is in 0.05 ppm 

NOx/bit + 200 ppm. (i.e. 7500 

corresponds to 7500 * 0,05 – 

200 = 175 ppm) 
50ms interval  

@250 kBaud 
O2 -12 – 21 [%] 

signal: unsigned integer 

Signal of the actual oxidation 

factor (% O2): The transmission 

is in 0.000514%/bit + 12%. (i.e. 

64202 corresponds to 64202 * 

0.000514 – 12 = 21 % O2) 
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Figure 34. Smart NOx sensor from Wärtsilä. 

 

In this thesis, all the test cases for each wireless solution has the receiver module relay-

ing the CAN frames through an external CAN controller to the speedgoat shown in fig-

ure 35. A matlab simulink module has been programmed into the speedgoat to receive 

CAN frames, calculate O2% and NOx ppm and display the results on a monitor con-

nected to the speedgoat. 

 

 

 

Figure 35. Speedgoat in VEBIC. 
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The Matlab Simulink model in figure 36 was created for the speedgoat to handle re-

ceived CAN frames. The Simulink model is used to continuously poll the client/receiver 

CAN module 4 times per second, extract data bytes, calculate O2 % and NOx ppm and 

display a continuously updated sliding graph on a monitor connected to the speedgoat. 

 

 

 

Figure 36. Simulink model to receive smart NOx CAN frames (Storm 2017). 
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3.2. System Overview 

 

The system consist of the 24V power supply for the smart NOx sensor, the smart NOx 

sensor is connected to the CAN Bus of the wireless-CAN module (transmitter) and the 

wireless-CAN modules (receiver) is connected to the speedgoat, the speedgoat has a 

Matlab Simulink model used to calculate, monitor, and display the O2 % and NOx ppm. 

APPENDIX 2 presents the picture of the Smart NOx, XBee-CAN Module and Speedg-

oat system overview. 

 

3.2.1. Connecting the Smart NOx Sensor 

 

The smart NOx sensor is connected to the CAN Bus at the transmitter side of the wire-

less protocol (BLE, XBee, WIFI or LoRa). The CAN High (+) and CAN Low (-) pins of 

the smart NOx sensor is connected to the CAN High (+) and CAN Low (-) pins of the 

CAN Bus respectively. The NOx 24-volt pin of the smart NOx sensor is connected to a 

24-volt power supply and the NOx ground pin of the smart NOx sensor is grounded. 

 

The pin labeling of the smart NOx sensor is shown in table 11. 

 

Table 11. Smart NOx sensor pin labeling. 

 

Pin Description 

1 NOx  24-Volt 

2 NOx Ground 

3 CAN Low (-) 

4 CAN High (+) 

 

 

3.2.2. The BLE-CAN bridge Hardware 

 

The hardware components used are the BLE module, CAN Bus, Waspmote PRO exten-

sion board and Waspmote PRO development board. A Bluetooth Low Energy commu-

nication has been setup with the smart NOx sensor using a BLE module connected to an 
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external CAN controller. An Android app “nRF Connect” was downloaded and used to 

test and debug the BLE-CAN implementations. The app can connect to the BLE-CAN 

server node as a client and subscribe to the notifications of the BLE-CAN server node 

that is connected to the smart NOx sensor. It displays readings and status signals sent by 

the smart NOx sensor over BLE. The setup in figure 37 provides a proof of concept that 

can be further developed into a prototype. 

 

 

 

Figure 37. Hardware setup of BLE-CAN bridge. 

 

At the transmitter side, the CAN Bus module is interfaced with the BLE module using 

the two sockets on the Waspmote development board, SOCKET0 and SOCKET1 which 

make use of UART. The CAN Bus module is used to interface the transmitter BLE 

module with the smart NOx sensor. The smart NOx sensor is connected to the CAN Bus 

using twisted pair cables (CAN High and CAN Low). At the receiver side, the CAN 

Bus module is interfaced with the BLE module using the two sockets on the Waspmote 

development board, SOCKET0 and SOCKET1 which make use of UART.  The 

speedgoat is connected to the CAN Bus using twisted pair cables (CAN High and CAN 

Low). 

Receiver Transmitter 
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Figure 38 is a block diagram of the hardware setup of BLE-CAN bridge. 
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Figure 38. Block diagram for the hardware setup of BLE-CAN bridge. 
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3.2.3. The BLE-CAN bridge Software 

 

The transmitter and receiver code flowcharts are presented in figure 53 and 54 respec-

tively. The programming of the on the BLE server/transmitter module is such that the 

CAN Bus was programed to send the 8 bytes hexadecimal heating signal “04h” to the 

smart NOx sensor to start heating the sensor. The CAN Bus also receives the CAN data 

sent from the smart NOx sensor after it starts heating and transfers the data through 

UART to the BLE module for wireless transmission. 

 

The transmitter code has the header file ConfigBLEServer.h which is used to configure 

the BLE Server node to give it a friendly name “BLESenderServer” and initialize the 

BLE module. The header file BLESendCANDataAES.h implements the required C func-

tions to write the start heating command and extract the 8 data bytes from the received 

CAN frame. It sends the 8 bytes hexadecimal heating signal “04h” to start heating the 

smart NOx sensor powered by 24V supply. The smart NOx sensor has a 29-bit CAN ID 

(0x18FEDF00 equivalent in decimal is 419356416) used to send the heat signal from 

the transmitter side through the CAN Bus to the smart NOx sensor. It also makes the 

BLE Server node discoverable and connectable, the BLE Server node waites for incom-

ing connections. Once connected, it waits for notification subscribing events and, when 

they are found, the subscribed attribute is written to allow the master to receive the noti-

fication events. It can be programmed to accept incoming connection from only a spe-

cific BLE device having the required MAC address (of the BLE Client). The smart NOx 

sensor and BLE-CAN transmitter setup is presented in figure 39. 

 

The code of the receiver also contains the header file ConfigBLEClient.h which is used 

to configure the BLE Server node to give it a friendly name “BLERecvClient” and ini-

tialize the BLE module. The BLE client/receiver module has been programed using the 

header file BLERecvCANDataAES.h to receive the smart NOx sensor data by first look-

ing for the BLE Server node device and then connecting to it. It has been programmed 

to connect to only a specific MAC address (of the BLE Server node). It then subscribes 

to notifications of a certain characteristic and wait for notifications from the BLE Serv-

er/slave. The BLE client/receiver module receives the data and transfers the data 
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through UART to the CAN Bus. The CAN Bus is connected to the speedgoat using two 

twisted pair cable (CAN High and CAN Low). The data is sent to the speedgoat for 

analysis using the CAN Bus. The Kvaser Leaf Light HS v2 USB can be used to view 

and debug the CAN data before connection to the speedgoat. The BLE-CAN receiver 

and Kvaser Leaf Light HS v2 USB setup is shown in figure 40. 

 

 

 

Figure 39. Smart NOx sensor and BLE-CAN transmitter. 

 

 

 

Figure 40. BLE-CAN receiver and Kvaser Leaf Light HS v2 USB. 
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3.2.4. The XBee-CAN bridge Hardware 

 

The hardware components used are the XBee PRO module, CAN Bus, Multiprotocol 

Radio Shield and Arduino development board. The XBee-CAN communication has 

been setup with the smart NOx sensor using a XBee module connected to an external 

CAN Bus with the help of a multiprotocol radio shield connected over the Arduino Uno 

rev 3 board. 

 

The code to test and debug the XBee and CAN implementations can send the 8 bytes 

hexadecimal heating signal “04h” to heat the smart NOx sensor and read signals sent by 

the smart NOx sensor through the CAN Bus. The data is then sent over XBee PRO 

module. The setup in figure 41 provides a proof of concept that can be further devel-

oped into a prototype. 

 

 

 

Figure 41. Hardware setup of Xbee-CAN bridge. 

 

At the transmitter side, the Multiprotocol Radio Shield is connected over the Arduino 

board and the CAN Bus module is placed in socket 0 of the Multiprotocol Radio Shield 

while the XBee PRO module is placed in socket 1. The CAN Bus module is used to in-

terface the transmitter XBee module with the smart NOx sensor using twisted pair ca-

bles (CAN High and CAN Low). 

Transmitter Receiver 
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Figure 42 is a block diagram of the hardware setup of XBee -CAN bridge. 
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Figure 42. Block diagram for the hardware setup of XBee-CAN bridge. 
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At the receiver side, the Multiprotocol Radio Shield is connected over the Arduino 

board and the CAN Bus module is placed in socket 0 of the Multiprotocol Radio Shield 

while the LoRa module is placed in socket 1. The CAN Bus module was used to inter-

face the receiver XBee PRO module with the speedgoat using twisted pair cables (CAN 

High and CAN Low). 

 

3.2.5. The XBee-CAN bridge Software 

 

The programming was done on the Arduino IDE environment as seen in APENDIX I. 

At the transmitter side, the CAN Bus is programed to send the 8 bytes hexadecimal 

heating signal “04h” to the smart NOx to start heating the sensor to get the data frames 

from the smart NOx sensor. The CAN Bus also receives the data sent from the smart 

NOx after it starts heating and transfers the data through SPI to the XBee PRO for wire-

less transmission. The smart NOx sensor and XBee-CAN transmitter setup is illustrated 

in figure 43. 

 

 

 

Figure 43. Smart NOx sensor and XBee-CAN transmitter. 
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At the receiver side, the XBee PRO is programed to receive the smart NOx sensor data 

and transfers the data through SPI to the CAN Bus of the receiver module. The CAN 

Bus is connected to the speedgoat using two twisted pair cable (CAN High and CAN 

Low) were the received data are analyzed. The Kvaser Leaf Light HS v2 USB can be 

used to view and debug the CAN data before connection to the speedgoat. The XBee-

CAN and Kvaser Leaf Light HS v2 USB setup is shown in figure 44. 

 

 

 

Figure 44. XBee-CAN receiver and Kvaser Leaf Light HS v2 USB. 

 

The flowcharts for the transmitter and receiver codes are illustrated in figure 53 and 54 

respectively. The XBee PRO modules are pre-configured using the XCTU software. 

This is done to get the XBees to communicate with each other. To achieve this, the PAN 

ID and Channel settings should be the same on each XBee being used. In the case of 

using only two XBees, the Destination Address High is set to 0 and the Destination Ad-

dress Low to the Destination Address Low of the other XBee. However, to broadcast to 

all XBees listening on the same Channel and PAN ID, the Destination High Address is 

set to 0, and the Destination Address Low to FFFF to enable broadcast mode. For AES 

Encryption, using the XCTU, enable the “AES Encryption Enable” and provide a key 

which should be the same for both XBee. Since we are implementing the Xbee using 



82 

 

Arduino, the API Enable should be set to "2", which allows controlling the XBee with 

Arduino using API commands in the Arduino XBee library. 

 

The code of the transmitter contains the header file XBee802SendCANDataAES128.h 

which is used to initialize the XBee PRO and CAN Bus modules at the transmitter side. 

It also implements the required C functions to write the start heating command and ex-

tract the 8 data bytes from the received CAN frame through SPI interface. It sends the 8 

bytes hexadecimal heating signal “04h” to start heating the smart NOx sensor which is 

powered by 24V supply. The smart NOx sensor has a 29-bit CAN ID (0x18FEDF00 

equivalent in decimal is 419356416) used to send the heat signal from the transmitter 

side through the CAN Bus to the smart NOx sensor. The header file 

XBee802SendCANDataAES128.h is also used read the data from the smart NOx, com-

pute a checksum for error detection, compute a sender error detection number (used as 

a preamble) which is the sum of the received smart NOx data plus checksum (this is 

compared with the receiver error detection number from the receiver module) and im-

plement AES-128 encryption before transmission of the encrypted data using the XBee 

PRO module. Both the preamble and checksum are appended to the smart NOx data be-

fore encryption and transmission. 

 

The code of the receiver contains the header file XBee802RecieveCANDataAES128.h 

used to initialize the XBee PRO and CAN Bus modules at the receiver side. It is also 

used to receive the CAN frames from the transmitter module, implement AES-128 de-

cryption on the received data, to compute a receiver error detection number (this is 

compared with the sender error detection number (preamble) from the transmitter mod-

ule for error verification). It is the sum of the received data minus the preamble. The 

header file is also used to transmit the decrypted data to the speedgoat for analysis. The 

receiver code also has the header files XBee802PacketLossAES128.h used for imple-

menting the packet loss measurement and XBee802RecvRSSIAES128.h used for RSSI 

measurement. 
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3.2.6. The WIFI-CAN bridge Hardware 

 

The hardware components used are the WIFI PRO module, CAN Bus, Waspmote PRO 

extension board and Waspmote PRO development board. The WIFI -CAN communica-

tion has been setup with the smart NOx sensor using a WIFI module connected to an 

external CAN Bus with the help of Waspmote expansion and development boards.The 

code to test and debug the WIFI module and CAN module was developed to send the 8 

bytes hexadecimal heating signal “04h” to heat the smart NOx and read signals sent by 

the smart NOx sensor through the CAN Bus. The data is then sent over WIFI. The setup 

in figure 45 provides a proof of concept that can be further developed into a prototype. 

 

 

 

Figure 45. Hardware setup of WIFI-CAN bridge. 

 

At the transmitter side, the Waspmote expansion board is connected on socket 1 of the 

Waspmote development board and the WIFI module is connected to the Waspmote ex-

pansion board. The CAN Bus module is placed on socket 0 of the Waspmote develop-

ment board. The CAN Bus module is used to interface the transmitter WIFI module 

with the smart NOx sensor using twisted pair cables (CAN High and CAN Low). At the 

receiver side, the Waspmote expansion board is connected to socket 1 of the Waspmote 

development board and the WIFI module is connected to the Waspmote expansion 

Transmitter 

Receiver 
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board. The CAN Bus module is placed in socket 0 of the Waspmote development board. 

The CAN Bus module is used to interface the receiver WIFI module with the speedgoat 

using twisted pair cables (CAN High and CAN Low). Figure 46 is a block diagram of 

the hardware setup of WiFi-CAN bridge. 
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Figure 46. Block diagram for the hardware setup of WIFI-CAN bridge. 

C
A

N
 

Smart NOx sensor 

CAN Bus 

WiFi PRO Module 

Transmitter 

socket 0               socket 1 

Waspmote Development Board 

Waspmote 

Expansion Board 

C
A

N
 

Speedgoat 

CAN Bus 

WiFi PRO Module 

Receiver 

socket 0                 socket 1 

Waspmote Development 

Board 

Waspmote 

Expansion Board 

Transmitter 

Receiver 



85 

 

3.2.7. The WIFI-CAN bridge Software 

 

The programming was done on the Waspmote IDE environment as shown in APENDIX 

II. At the transmitter side, the CAN Bus was programed to send the 8 bytes hexadecimal 

heating signal “04h” to the smart NOx sensor to start Heating the sensor to get the NOx 

CAN data frames from the smart NOx sensor. The CAN Bus also receives the CAN Da-

ta sent from the smart NOx after it starts heating and transfers the data via SPI to the 

WIFI for wireless transmission. The smart NOx sensor and WIFI-CAN transmitter setup 

is presented in figure 47. 

 

 

 

Figure 47.  Smart NOx sensor and WIFI-CAN transmitter. 

 

At the receiver side, the WIFI is programed to receive the smart NOx sensor CAN Data 

and transfers the data via SPI to the CAN Bus. The CAN Bus is connected to the 

speedgoat using two twisted pair cable (CAN High and CAN Low) were the received 

CAN Data are analyzed. The Kvaser Leaf Light HS v2 USB can be used to view and 

debug the CAN data before connection to the speedgoat. The WIFI-CAN and Kvaser 

Leaf Light HS v2 USB setup is shown in figure 48. 
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Figure 48. WIFI-CAN receiver and Kvaser Leaf Light HS v2 USB. 

 

The flowcharts for the transmitter and receiver codes are illustrated in figure 53 and 54 

respectively. The code of the transmitter contains the header file ConfigWIFiCANSend.h 

which is used to configure the transmitter WiFi module (to join a specific Access Point: 

ESSID and password must be defined) and to initialize CAN Bus module. The header 

file WIFISendCANDataAES128.h implements the required C functions to write the start 

heating command and extract the 8 data bytes from the received CAN frame through 

SPI interface. It sends the 8 bytes hexadecimal heating signal “04h” to start heating the 

smart NOx which is powered by 24V supply. The smart NOx sensor has a 29-bit CAN 

ID (0x18FEDF00 equivalent in decimal is 419356416) used to send the heat signal from 

the transmitter side through the CAN Bus to the smart NOx sensor. The header file 

WIFISendCANDataAES128.h is also used read the data from the smart NOx, compute a 

checksum for error detection, compute a sender error detection number (used as a pre-

amble) which is the sum of the received smart NOx data plus checksum (this is com-

pared with the receiver error detection number from the receiver module) and imple-

ment AES-128 encryption before transmission of the encrypted data using the WIFI 

module. Both the preamble and checksum are appended to the smart NOx data before 

encryption and transmission. 

 



87 

 

The code of the receiver contains the header file ConfigWiFiCANRecv.h used to config-

ure the receiver WIFI module (to join a specific Access Point: ESSID and password 

must be defined) and CAN module at the receiver side. While the header file WIFIRe-

cvCANDataAES128.h is used to receive the CAN frames from the transmitter module, 

implement AES-128 decryption on the received data, to compute a receiver error detec-

tion number (this is compared with the sender error detection number (preamble) from 

the transmitter module for error verification). It is the sum of the received data minus 

the preamble. The header file is also used to transmit the decrypted data to the speedg-

oat for analysis. The receiver code also has the header files WIFIReceivePacketLos-

sAES128.h used for implementing the packet loss measurement and WIFIReceiveRS-

SIAES128.h used for RSSI measurement. 

 

3.2.8. The LoRa-CAN bridge Hardware 

 

The hardware components used are the LoRa module, CAN Bus, Multiprotocol Radio 

Shield and Arduino development board. The LoRa-CAN communication has been setup 

with the smart NOx sensor using a LoRa module connected to an external CAN control-

ler chip with the help of a multiprotocol radio shield connected over Arduino Uno rev 3 

board. The code to test and debug the XBee and CAN implementations can send the 8 

bytes hexadecimal heating signal “04h” to heat the smart NOx sensor and read signals 

sent by the smart NOx sensor through the CAN Bus. The data is then sent over the Lo-

Ra module. The setup as presented in figure 49 provides a proof of concept that can be 

further developed into a prototype. 

 

 

 

Figure 49. Hardware setup of LoRa-CAN bridge. 

Transmitter Receiver 
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Figure 50 is a block diagram of the hardware setup of LoRa-CAN bridge transmitter. 
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Figure 50. Block diagram for the hardware setup of LoRa-CAN bridge. 
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At the transmitter side, the Multiprotocol Radio Shield is connected over the Arduino 

board and the CAN Bus module is placed in socket 0 of the Multiprotocol Radio Shield 

while the LoRa module is placed in socket 1 of the Multiprotocol Radio Shield. The 

CAN Bus module is used to interface the Transmitter LoRa module with the smart NOx 

sensor using twisted pair cables (CAN High and CAN Low) to connect the smart NOx 

to the CAN Bus. 

 

At the receiver side, the Multiprotocol Radio Shield is connected over the Arduino 

board and the CAN Bus module is placed in socket 0 of the Multiprotocol Radio Shield 

while the LoRa module is placed in socket 1 of the Multiprotocol Radio Shield. The Li-

belium CAN Bus module was used to interface the Receiver LoRa module with the 

speedgoat using twisted pair cables (CAN High and CAN Low) to connect the speedg-

oat to the CAN Bus. 

 

3.2.9. The LoRa-CAN bridge Software 

 

 

 

Figure 51. Smart NOx sensor and LoRa-CAN transmitter. 

 

The programming was done on the Arduino IDE environment. At the transmitter side, 

the CAN Bus was programed to send the 8 bytes hexadecimal heating signal “04h” to 

the smart NOx sensor to start heating the sensor to get the NOx CAN data frames from 

the smart NOx. The CAN Bus also receives the CAN Data sent from the smart NOx af-
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ter it starts heating and transfers the data through SPI to the LoRa for wireless transmis-

sion. The smart NOx and LoRa-CAN transmitter setup is presented in figure 51. 

 

At the receiver side, the LoRa is programed to receive the smart NOx CAN Data and 

transfers the data through SPI to the CAN Bus. The CAN Bus is connected to the 

speedgoat using two twisted pair cable (CAN High and CAN Low) were the received 

CAN Data are analyzed. The Kvaser Leaf Light HS v2 USB can be used to view and 

debug the CAN data before connection to the speedgoat. The LoRa-CAN and Kvaser 

Leaf Light HS v2 USB setup is shown in figure 52. 

 

 

 

Figure 52. LoRa-CAN receiver and Kvaser Leaf Light HS v2 USB. 

 

The flowcharts for the transmitter and receiver codes are presented in figure 53 and 54 

respectively. The code of the transmitter contains the header file CANLoRaTransmit-

terConfig.h which is used to configure the LoRa modules to communicate with each 

other and to initialize the CAN Bus module. The header file Lo-

RaSendCANDataAES128.h implements the required C functions to write the start heat-
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ing command and extract the 8 data bytes from the received CAN frame through SPI 

interface. It sends the 8 bytes hexadecimal heating signal “04h” to start heating the 

smart NOx which is powered by 24V supply. The smart NOx sensor has a 29-bit CAN 

ID (0x18FEDF00 equivalent in decimal is 419356416) used to send the heat signal from 

the transmitter side through the CAN Bus to the smart NOx sensor. The header file Lo-

RaSendCANDataAES128.h is used read the data from the smart NOx, compute a check-

sum for error detection, compute a sender error detection number (used as a preamble) 

which is the sum of the received smart NOx data plus checksum (this is compared with 

the receiver error detection number from the receiver module) and implement AES-128 

encryption before transmission of the encrypted data using the LoRa module. Both the 

preamble and checksum are appended to the smart NOx data before encryption and 

transmission. 

 

The code of the receiver contains the header file CANLoRaReceiverConfig.h used to 

configure the LoRa and CAN Bus modules. While the header file Lo-

RaRecvCANDataAES128.h is used to receive the CAN frames from the transmitter 

module, implement AES-128 decryption on the received data, to compute a receiver 

error detection number (this is compared with the sender error detection number (pre-

amble) from the transmitter module for error verification). It is the sum of the received 

data minus the preamble. The header file is also used to transmit the decrypted data to 

the speedgoat for analysis. The receiver code also has the header files LoRaRecvPack-

etLossAES128.h used for implementing the packet loss measurement and LoRaRecvRS-

SIAES128.h is combined with measurement.h for RSSI measurement. 

 

3.2.10.  Flowchart for codes and Viewing the CAN frames 

 

The flowcharts for the BLE, XBee, WiFi and LoRa transmitter and receiver codes are 

presented in figure 53 and 54 respectively. 

 

 

 



92 

 

 

 

Figure 53. Flowchart for the BLE, XBee, WiFi and LoRa transmitter codes. 

 

The flowchart in figure 53 and 54 represents the codes used to implement the BLE, 

XBee, WiFi and LoRa wireless solution. All wireless modules are programmed in the 

same pattern and step. The logic and process of the extraction of the smart NOx data, 

encrypting it, transmitting it, decryption of the data at the receiver side and sending the 

decrypted data to the speedgoat for analysis is fundamentally the same. 
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Figure 54. Flowchart for the BLE, XBee, WiFi and LoRa receiver codes. 

 

The CAN data of the smart NOx can be viewed and analyzed using Kvaser Leaf Light 

HS v2 USB connected to the CAN Bus of the receiver module for any of the wireless 

protocol and a BUSMASTER software. 

 

The CAN frames are the 8 data byte that represents the measured values of the O2 % 

and NOx ppm. The data can be viewed in hexadecimal and decimal as illustrated in fig-

ure 55 and 56 respectively. The ID is the CAN ID of the smart NOx used for communi-

cation with the CAN Bus. and the message ID shows the device ID of the CAN frames. 

The message ID and CAN ID are always the same for each device in this case the smart 

NOx. The CAN frames are feed to the speedgoat to compute the O2 % and NOx ppm 

values for each receive message. 
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Figure 55. Hexadecimal View of the CAN frames. 

 

 

 

Figure 56. Decimal View of the CAN frames. 
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3.2.11. Connecting to the Speedgoat 

 

The CAN Bus at the receiver side is connected to the speedgoat using twisted pair ca-

bles, CAN High and CAN Low, connected to the CAN I/O slot of the speedgoat. It uses 

CAN port 1 on the IO601 card of the speedgoat as shown in figure 35. This allows the 

speedgoat to read the CAN frames sent through the CAN Bus. The receive filter allows 

only extended CAN frames which has the same frame CAN ID sent by the client node 

CAN controller to be read and analyzed by the speedgoat. 

 

The Simulink model represented in figure 36 continuously polls the client/receiver CAN 

module 4 times per second, extracts data bytes, calculates O2 % and NOx ppm and dis-

plays a continuously updated sliding graph on a monitor connected to the speedgoat. 

Figure 57 is an illustration of the sliding graph displayed on the monitor connected to 

the speedgoat. 

 

 

 

Figure 57. Continuously updated sliding graph for O2% and NOx ppm values. 
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3.3. Wireless Communication Performance Measure 

 

Measuring the performance of each wireless protocol is important to evaluate the quali-

ty of the communication. The term Quality of Service (QoS) can be used to describe the 

expected services and performance of the wireless communication. The QoS is used to 

denote the communication properties such as communication reliability, security, prob-

ability of outage, communication performance (throughput, packet loss, latency and bit 

error rate), communication cost and priority. The QoS depends on the type of communi-

cation which can be categorized into two namely real time data stream from sensors and 

actuators and non-real time data stream from file UP/DOWN loads and internet explor-

ing. (Elmusrati 2017.) 

 

The communication performance analysis where done in three locations including 

Technobothnia and Tervahovi buildings in the University of Vaasa and VEBIC building 

where the speedgoat is installed. The purpose of this was to test the wireless communi-

cation in different environments. However, VEBIC represents the expected environment 

where the wireless solution is expected to be installed and utilized and therefore, com-

parisons will be mostly based on outcomes from VEBIC. 

 

The measurements taken for each wireless protocol includes first the packet loss - 80 

measurements were taken to measure the packet loss at distance of 5, 15, 25 and 30 me-

ters for the Technobothnia and Tervahovi buildings in the University of Vaasa and at 12 

meters in VEBIC building. The second is RSSI - 200 RSSI measurements were taken at 

intervals 5, 10, 15, 20, 25, and 30 meters for Technobothnia and Tervahovi buildings 

and at 12 meters in VEBIC. The third is latency – maximum and minimum latency val-

ues were taken and recorded. The fourth is bit error rate – making use of a checksum, 

the bit error rate can be analyzed. The checksum value is combined with the data at the 

transmitter side and sent along with the data. At the receiver side, the checksum is 

recomputed and compared with the checksum at the transmitter side to determine if the 

data is error free. The fifth is power consumption analysis – power consumption analy-

sis for each wireless protocol was carried out and a comparison was made. The results 

of the performance measure are discussed and analyzed in chapter 4. 
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4. EXPERIMENT AND ANALYSIS 

 

This chapter discusses the results of the experiment and simulations done as well as the 

comparism and analysis of the results for each wireless protocol implemented in this 

thesis. Communication performance such as packet loss, latency and bit error rate, RSSI 

and power consumption are discussed. In section 4.9, only the results from VEBIC’s 

environment where the prototype will be installed was considered. 

 

RSSI - The Received Signal Strength Indicator (RSSI) is the measure of the amount of 

power in a radio signal. It is measured in dBm. The quality of a communication link can 

be determined by measuring the signal strength at the receiving antenna. When a trans-

mitter at a certain distant is moved towards a receiver, the received signal strength at the 

receiving antenna increases (lesser negative value). On the other hand, moving the 

transmitter away from the receiver makes the signal strength at the receiving antenna to 

decrease (greater negative value). RSSI with greater negative value indicates a weaker 

signal. This implies that, -30 dBm is better than -40 dBm. (DIGI 2017.) Receiver sensi-

tivity is the lowest power level at which a receiver can detect an RF signal and demodu-

late the received data. 

 

Bit error rate - In terms of digital transmission, a bit error can be defined as the number 

of bits received from a transmitted data stream through a communication medium that 

has been modified or altered as a result of interference, distortion, noise or bit synchro-

nization errors. While bit error rate (BER) defines the number of bit errors per unit time. 

(Wikipedia 2018d.) 

 

Latency - The delay in a network specifies the duration required to transmit a bit of data 

through the network from one node to another. It is usually measured in multiples or 

fractions of seconds. The delay otherwise called latency can be slightly different de-

pending on the environment where the specific pair of communicating nodes are locat-

ed. (Wikipedia 2018e.) 
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Packet loss – This is the measure of the amount of data packet that is lost before it 

reaches the receiver and it occurs when a data transmission error occurs, usually across 

wireless networks, or due to network congestion. Packet loss is a percentage measure of 

the packets lost with respect to packets sent. (Wikipedia 2018f.) 

 

Power consumption – Because no equipment is 100% efficient, energy used by the 

equipment is more than the energy really needed. This happens as a result of energy lost 

as heat, vibrations and/or electromagnetic radiation. (Wikipedia 2018g.) Most wireless 

RF devices are usually battery-powered. This can introduce a challenge depending on 

the application and the location of the device may make it difficult and/or expensive to 

replace the battery. In many real-world scenarios, extending battery life is important and 

critical. 

 

4.1. Details of Transmitted Payload and LCD Display for XBee-CAN Modules 

 

In all four cases of the wireless protocols implemented, the transmitted payload is a 10 -

byte hexadecimal data comprising of 1-byte preamble, 8-byte smart NOx data and 1-

byte checksum data as illustrated in figure 58. 

 

 

 

Figure 58. Transmitted Smart NOx Payload. 

 

The checksum is computed as shown in equation 15. 

 

   NOx0 +  NOx1 +  NOx2 +  … +  NOx7 =   checksum (15) 

 

The preamble is computed as illustrated in equation 15. 

 

NOx0 +  NOx1 +  NOx2 +  … +  NOx7 +  checksum =   preamble  (16) 
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Both the checksum and preamble are used to verify data integrity, that is, the data is er-

ror free (no bit error) and has not been altered in anyway. 

 

On the XBee-CAN modules, an LCD display has been implemented to view the smart 

NOx sensor CAN ID and CAN data. (See APPENDIX 3.) 

 

 

4.2. Bluetooth Low Energy (BLE) 

 

In the BLE implementation, the communication performance analysis performed are 

discussed in the sub-sections 4.2.1 to 4.2.3. NA* = Not Applicable. The maximum dis-

tance available between transmitter and receiver was less than 15 meters. 

 

4.2.1. BLE RSSI Values 

 

The maximum and minimum measured RSSI values for Technobothnia and VEBIC are 

presented in table 12 and table 13 respectively. At each position 200 RSSI measure-

ments have been taken. The BLE module has a receiver sensitivity of -103 dBm and 

maximum range of 100 meters. 

 

Table 12. BLE maximum and minimum RSSI measurement in Technobothnia. 

 

Distance in meters 5 10 15 20 25 30 

Minimum RSSI value (dBm) -49 -62 -48 -55 -71 -63 

Maximum RSSI value (dBm) -39 -44 -43 45 -49 -52 

 

Table 13. BLE maximum and minimum RSSI measurement in VEBIC. 

 

Distance in meters 5 10 13 20 25 30 

Minimum RSSI value (dBm) -69 -81 -83 NA* NA* NA* 

Maximum RSSI value (dBm) -47 -52 -56 NA* NA* NA* 

 



100 

 

Table 12 and table 13 shows that the RSSI values decreases (greater negative value) as 

the distance increases. This corresponds to the RSSI theory but in an ideal case the RSSI 

values would decrease linearly. This is however more obvious in table 13 for the 

VEBIC building. The nature of the application of this project does not require very large 

distance (maximum required distance is 30 meters), therefore the RSSI at the specified 

maximum distance of the module was not tested. 

 

4.2.2. BLE Packet Loss 

 

A total of 80 measurements (80 packets sent) were taken for the packet loss in Tech-

nobothnia buildings in the University of Vaasa and in VEBIC building at specified dis-

tances as presented in table 14 and table 15 respectively. 

  

Table 14. BLE maximum and minimum Packet Loss measurement in Technobothnia. 

 

Distance in meters 5 10 15 20 25 30 

Total Packet Loss 0% 0% 0% 0% 0% 0% 

Total Packet Received 100% 100% 100% 100% 100% 100% 

 

Table 15. BLE maximum and minimum Packet Loss measurement in VEBIC. 

 

Distance in meters 5 10 13 20 25 30 

Total Packet Loss 0% 0% 0% NA* NA* NA* 

Total Packet Received 100% 100% 100% NA* NA* NA* 

 

In the experiment, table 14 and 15 presents the results. No packet loss was recorded dur-

ing the measurements in both environments (Technobothnia and VEBIC). It had a 0% 

packet loss. This implies all sent packets were received. 
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4.2.3. BLE Latency 

 

The maximum and minimum latency measurement noticed for the BLE implementation 

irrespective of the location are illustrated in the table 16. 

 

Table 16. BLE maximum and minimum latency measurement in milliseconds. 

 

Minimum latency value (ms) 24 

Maximum latency value (ms) 60 

 

 

4.3. XBee (IEEE 802.15.4) 

 

In this XBee implementation, the communication performance analysis performed are 

discussed in the sub-sections 4.3.1 to 4.3.3. NA* = Not Applicable. The maximum dis-

tance available between transmitter and receiver was less than 15 meters. 

 

4.3.1. XBee RSSI Values 

 

The maximum and minimum measured RSSI values for Technobothnia and VEBIC are 

presented in table 17 and table 18 respectively. At each position 200 RSSI measure-

ments have been taken. The XBee module has a receiver sensitivity of -100 dBm and 

maximum range of 750 meters. 

 

In table 17 and table 18, the RSSI values decreases (greater negative value) as the dis-

tance increases. This corresponds to the RSSI theory but in an ideal case the RSSI val-

ues would decrease linearly. The nature of the application of this project does not re-

quire very large distance (maximum required distance is 30 meters), therefore the RSSI 

at the specified maximum distance of the module was not tested. 
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Table 17. XBee maximum and minimum RSSI measurement in Technobothnia. 

 

Distance in meters 5 10 15 20 25 30 

Minimum RSSI value (dBm) -45 -47 -52 -56 -60 -66 

Maximum RSSI value (dBm) -40 -43 -46 -51 -53 -57 

 

Table 18. XBee maximum and minimum RSSI measurement in VEBIC. 

 

Distance in meters 5 10 13 20 25 30 

Minimum RSSI value (dBm) -53 -54 -60 NA* NA* NA* 

Maximum RSSI value (dBm) -42 -47 -52 NA* NA* NA* 

 

4.3.2. XBee Packet Loss 

 

A total of 80 measurements (80 packets sent) were also taken for the packet loss in 

Technobothnia buildings in the University of Vaasa and in VEBIC building at specified 

distances as presented in table 19 and table 20 respectively. 

 

 Table 19. XBee maximum and minimum Packet Loss measurement in Technobothnia. 

 

Distance in meters 5 10 15 20 25 30 

Total Packet Loss 0% 0% 0% 0% 0% 0% 

Total Packet Received 100% 100% 100% 100% 100% 100% 

 

Table 20. XBee maximum and minimum Packet Loss measurement in VEBIC. 

 

Distance in meters 5 10 13 20 25 30 

Total Packet Loss 0% 0% 0% NA* NA* NA* 

Total Packet Received 100% 100% 100% NA* NA* NA* 
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In the experiment, table 19 and 20 records no packet loss during the measurements in 

both environments (Technobothnia and VEBIC). It had a 0% packet loss. This implies 

all sent packets were received. 

 

4.3.3. XBee Latency 

 

The maximum and minimum latency measurement noticed for the XBee implementa-

tion irrespective of the location are illustrated in the table 21. 

 

Table 21. XBee maximum and minimum latency measurement in milliseconds. 

 

Minimum latency value (ms) 102 

Maximum latency value (ms) 106 

 

 

4.4. WIFI (IEEE 802.11 b/g/a) 

 

In this WIFI implementation, the communication performance analysis performed are 

discussed in the sub-sections 4.4.1 to 4.4.3. NA* = Not Applicable. The maximum dis-

tance available between transmitter and receiver was less than 15 meters. 

 

4.4.1. WIFI RSSI Values 

 

The maximum and minimum measured RSSI values for Technobothnia and VEBIC are 

presented in table 22 and table 23 respectively. At each position 200 RSSI measure-

ments have been taken. The WIFI module has a receiver sensitivity of -94 dBm to -

70dBm depending on if you use b/g/n and maximum range of <300 meters. 
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Table 22. WIFI maximum and minimum RSSI measurement in Technobothnia. 

 

Distance in meters 5 10 15 20 25 30 

Minimum RSSI value (dBm) -63 -100 -100 -100 -55 -58 

Maximum RSSI value (dBm) -63 -100 -100 -100 -55 -58 

 

Table 23. WIFI maximum and minimum RSSI measurement in VEBIC. 

 

Distance in meters 5 10 13 20 25 30 

Minimum RSSI value (dBm) -66 -70 -69 NA* NA* NA* 

Maximum RSSI value (dBm) -66 -70 -69 NA* NA* NA* 

 

In table 22 and table 23, the RSSI values decreases (greater negative value) as the dis-

tance increases. This corresponds to the RSSI theory but in an ideal case the RSSI val-

ues would decrease linearly. However, at some points, this did not hold to be true as at 

10meters the RSSI value is a greater negative value than the next higher positions in 

VEBIC building and 10meters to 20meters in Technobothnia. The nature of the applica-

tion of this project does not require very large distance (maximum required distance is 

30 meters), therefore the RSSI at the specified maximum distance of the module was 

not tested. 

 

4.4.2. WIFI Packet Loss 

 

A total number of 80 measurements (80 packets sent) were taken for the packet loss in 

Technobothnia buildings in the University of Vaasa and in VEBIC building at specified 

distances as presented in table 24 and table 25 respectively. 

  

Table 24. WIFI maximum and minimum Packet Loss measurement in Technobothnia. 

 

Distance in meters 5 10 15 20 25 30 

Total Packet Loss 0% 0% 0% 0% 0% 0% 

Total Packet Received 100% 100% 100% 100% 100% 100% 
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Table 25. WIFI maximum and minimum Packet Loss measurement in VEBIC. 

 

Distance in meters 5 10 13 20 25 30 

Total Packet Loss 0% 0% 0% NA* NA* NA* 

Total Packet Received 100% 100% 100% NA* NA* NA* 

 

In the experiment, table 24 and 25 presents the results. No packet loss was recorded dur-

ing the measurements in both environments (Technobothnia and VEBIC). It had a 0% 

packet loss. This implies all packets sent were received. 

 

4.4.3. WIFI Latency 

 

The maximum and minimum latency measurement noticed for the WIFI implementation 

irrespective of the location are illustrated in the table 26. 

 

Table 26. WIFI maximum and minimum latency measurement in milliseconds. 

 

Minimum latency value (ms) 1169 

Maximum latency value (ms) 1213 

 

 

4.5. LoRa (Long Range) 

 

In this LoRa implementation, the communication performance analysis performed are 

discussed in the sub-sections 4.5.1 to 4.5.3. NA* = Not Applicable. The maximum dis-

tance available between transmitter and receiver was less than 15 meters. 

 

4.5.1. LoRa RSSI Values 

 

The maximum and minimum measured RSSI values for Technobothnia and VEBIC are 

presented in table 27 and table 28 respectively. At each position 200 RSSI measure-



106 

 

ments have been taken. The LoRa module has a receiver sensitivity of -134 dBm and 

maximum range of 22 kilometers. 

 

Table 27. LoRa maximum and minimum RSSI measurement in Technobothnia. 

 

Distance in meters 5 10 15 20 25 30 

Minimum RSSI value (dBm) -45 -75 -62 -57 -76 -82 

Maximum RSSI value (dBm) -36 -45 -44 -44 -51 -55 

 

Table 28. LoRa maximum and minimum RSSI measurement in VEBIC. 

 

Distance in meters 5 10 13 20 25 30 

Minimum RSSI value (dBm) -64 -58 -58 NA* NA* NA* 

Maximum RSSI value (dBm) -46 -52 -50 NA* NA* NA* 

 

In table 27 and table 28 the RSSI values seems to decrease (greater negative value) as 

the distance increases. This corresponds to the RSSI theory but in an ideal case the RSSI 

values would decrease linearly. The nature of the application of this project does not 

require very large distance (maximum required distance is 30 meters), therefore the 

RSSI at the specified maximum distance of the module was not tested. 

 

4.5.2. LoRa Packet Loss 

 

A total of 80 measurements (80 packets sent) were also taken for the packet loss in 

Technobothnia buildings in the University of Vaasa and in VEBIC building at specified 

distances as presented in table 29 and table 30 respectively. 

 

Table 29. LoRa maximum and minimum Packet Loss measurement in Technobothnia. 

 

Distance in meters 5 15 25 30 

Total Packet Loss 5% 5% 7% 5% 

Total Packet Received 95% 95% 93% 95% 
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Table 30. LoRa maximum and minimum Packet Loss measurement in VEBIC. 

 

Distance in meters 5 10 13 20 25 30 

Total Packet Loss 0% 0% 0% NA* NA* NA* 

Total Packet Received 100% 100% 100% NA* NA* NA* 

 

In the experiment, table 29 records some packet loss during the measurements in Tech-

nobothnia with maximum packet loss percentage of 7% and no packet loss in VEBIC 

(see table 30). 

 

4.5.3. LoRa Latency 

 

The maximum and minimum latency measurement noticed for the LoRa implementa-

tion irrespective of the location are illustrated in the table 31. 

 

Table 31. LoRa maximum and minimum latency measurement in milliseconds. 

 

Minimum latency value (ms) 2102 

Maximum latency value (ms) 2106 

 

 

4.6. Bit Error Check for all wireless protocols 

 

Bit error check for all the wireless protocols were implemented in the same way. The 

payload is a 10-byte data payload. The payload at the receiver is checked for error using 

a 1-byte preamble (ErrorDectNum) and 1-byte checksum computed and appended to the 

8-byte smart NOx data before transmission. The checksum is the sum of the 8-byte 

smart NOx data only while the preamble is computed from the sum of the 8-byte smart 

NOx data plus the checksum value, that is, smartNOx[8] + checksum[1] = preamble[1]. 

If the preamble and checksum of the sender is the same as the preamble and checksum 

of the receiver, the data is error free. Alternatively, if the sum of the smartNOx[8] + 

checksum[1] at the receiver side equals the preamble at the receiver side of the same 
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payload been considered, the data is error free. The sample output of the transmitter and 

receiver code is illustrated in APPENDIX 4. 

 

 

4.7. Security Implementation 

 

The security implementation used in all four cases of the wireless protocols is the AES-

128 encryption/decryption. The encryption of the data is done using AES encryption 

mode CBC.  The security implementation was done at the code level. That is, a code 

was written to implement the AES128 encryption on the data. However, only the XBee 

module also has the capability of implementing AES128 encryption on the module it-

self. In this case, only the receiver XBee module with the correct decryption key can 

receive and understand the transmitted encrypted data. With this, the XBee module has 

two levels of encryption, one at the XBee module level and the second at the coding 

level. 

 

 

4.8. Power Comsumption 

 

The battery life (power consumption) analysis of the wireless modules are computed by 

dividing the battery capacity (in mAh) by the total average current (in μA). This formu-

la is illustrated in equation 14. (Digi-Key 2018.) 

 

   𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒[𝐻] =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦[𝑚𝐴ℎ]

𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 [µ𝐴]
  (14) 

 

The main element here is the total average current; it is the sum of all events (steady-

state and periodic) as well as the battery self-discharge. The formula is presented in 

equation 15. (Digi-Key 2018.) 

 

𝐼(𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)[µ𝐴] = 

𝐼(𝑠𝑡𝑒𝑎𝑑𝑦 − 𝑠𝑡𝑎𝑡𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)[µ𝐴] +

 𝐼(𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑒𝑣𝑒𝑛𝑡𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)[µ𝐴]    (15) 
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where steady-state current is the sleep current and the periodic event current are the RX 

/TX currents. 

 

Applying the formula in equation 14 and 15, we can calculate the battery life for the 

various wireless protocol modules applied in this thesis. In all four cases (BLE, XBee, 

WIFI and LoRa, a 3.7 V battery with 6600mAh battery capacity is used. The battery life 

for each module is computed as illustrated below. The battery life will be computed for 

the transmitter and receiver modules separately as these modules have only one event 

(transmitting or receiving). From equation 15 we first compute the total average current 

for the transmitter module and then from equation 14 the battery life for the transmitter 

and receiver modules are computed. Table 32 presents the computed values for the ex-

pected bettery life for the wireless modules based on the transmit current, receive cur-

rent specifications in their respective datasheets. 

 

Table 32.  Computed Battery Life of Transmitter and Receiver Modules 

 

Parameters BLE XBee WIFI LoRa 

Sleep current (4 µA) 0.4 µA <10 µA <100 µA NA* 

Transmit current (mA) 36 mA 215 mA 350 mA NA* 

Receive current (mA) 8 mA 55 mA 130 mA NA* 

I(total average current)[µA] 3600.4 215010 350100 NA* 

Receiver Battery Life[Hours] 825 119 51 NA* 

Tramsmitter Battery Life[Hours] 183 31 19 NA* 

NA = Not Applicable > LoRa Module - The power consumption specifications of the 

LoRa module is not mentioned in the datasheet. However, there is a recommendation to 

use solar or mains electricity to power the module.  

 

 

4.9. Comparing the Wireless Solutions Based on the Analysis of Results 

Table 33 is a comparison of the wireless protocols based on the results gotten from sec-

tions 4.1 to 4.4. These comparisons are some key considerations that should influence 

the choice of wireless protocols for a specific application. 



110 

 

Table 33. Comparison of the wireless protocols based on the analysis of results. 

 

Considerations BLE XBee (802.15.4) WIFI LoRa 

 Data 

Sheet 

Expt* Data 

Sheet 

Expt* Data 

Sheet 

Expt* Data 

Sheet 

Expt* 

RSSI  

VEBIC  

-103 

dBm 

-83 

dBm 

-100 

dBm 

-60 

dBm 

-94 

dBm 

-70 dBm -134 

dBm 

-64 

dBm 

RSSI  

Technobothnia 

-103 

dBm 

-71 

dBm 

-100 

dBm 

-66 

dBm 

-94 

dBm 

-100 

dBm 

-134 

dBm 

-82 

dBm 

Packet Loss % N/M* 0% N/M* 0% N/M* 0% N/M* 0% 

Min. Latency 

Max. Latency 

N/M 24ms 

60ms 

N/M 102ms 

106ms 

N/M 1169ms 

1213ms 

N/M 2102m

s 

2106m

s 

Power  

Consumption/ 

Battery  

Capacity 

Tx  

36m

A 

Rx 

8mA 

3.7V 

6600 

mAh 

battery 

Tx 

215mA 

Rx  

55mA 

3.7V 

6600 

mAh 

battery 

Tx  

350mA 

Rx  

130mA 

3.7V 

6600 

mAh 

battery 

NM 3.7V 

6600 

mAh 

battery 

Battery Life 

[Hours] 

 Tx 183 

Rx 825 

 Tx  31 

Rx 119 

 Tx 19 

Rx 51 

NM NM 

Security AES 

128 

AES 

128 at 

code 

level 

AES 

128 

AES 

128 at 

Mod-

ule and 

code 

level 

AES 

128/256

, 

SSL3/T

LS1, 

HTTPS, 

RSA, 

3DES, 

WEP, 

WPA 

and 

WPA2 

AES 

128 at 

code 

level 

AES 

128 

AES 

128 at 

code 

level 

*LOS = Line of Sight. Maximum data rates are often not available at the longest range 

* Expt = Experiment Results; *N/M = Not Mentioned; *N/A = Not Measured 
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The theoretical knowledge is that a greater negative value (in dBm) indicates a weaker 

signal. 

 

Technobothnia RSSI - From the table 33, we can deduce that the wireless protocol with 

the best theoretical minimum RSSI value is the WIFI with -94dBm and next is the XBee 

with -100dBm based on their datasheet. However, from the experimental results, XBee 

shows the best minimum RSSI value of -66 dBm. Figure 59 is an illustration of the 

measured minimum and maximum RSSI value for all the wireless protocol done in 

Technobothnia. 

 

 

 

Figure 59. RSSI Measurements for all the wireless protocol in Technobothnia. 
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VEBIC RSSI - From the table 33, we can deduce that the wireless protocol with the best 

theoretical minimum RSSI value is the WIFI with -94dBm and next is the XBee with -

100dBm based on their datasheet. However, from the experimental results, XBee shows 

the best minimum RSSI value of -60dBm. Figure 60 is an illustration of the measured 

minimum and maximum RSSI value for all the wireless protocol done in VEBIC. 

 

 

 

Figure 60. RSSI Measurements for all the wireless protocol in VEBIC. 
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Packet Loss – There were no packet loss for any of the four modules at the maximum 

test range of 30 meters and 15 meters. 

 

Security – Security implementation can be made on all wireless protocols. The XBee 

module has the extra feature of enabling AES128 encryption on the XBee module itself.  

In other modules (BLE, WIFI and LoRa), data encryption is an optional feature provid-

ed by an API library. However, WIFI module also provide the feature of installing Se-

cure Sockets Layer (SSL), it requires installing the corresponding certificate, created by 

a CA (Certification Authority). This makes it more complex than the feature of the 

XBee module. Likewise, the BLE module uses AES-128 link layer encryption for en-

crypting the connection to make the connection processes secure. The data however is 

not encrypted. Since the XBee module provides the feature of AES 128 encryption on 

the module and an implementation of AES 128 encryption API library, this makes the 

XBee module to provide a two level of security of the data compared to the other wire-

less modules. The AES 128 encryption on the XBee modules is done during the config-

uration of the XBee modules, while the AES128 encryption API libraries provided by 

Arduino was used along with C program functions to provide encryption of the data at 

the coding level. LoRa was also implemented on the Arduino development board. In the 

case of WIFI and BLE, Arduino AES 128 API library was modified to be compatible 

with the Waspmote development board on which they were implemented. 

 

Power Consumption - In table 36, the BLE shows a better battery life, next is the XBee 

and the third is the WIFI module. The LoRa module specification recommends power-

ing the LoRa with solar or mains electricity. This is not practicable when dealing with 

wireless sensors depending on the location of the sensor and where the LoRa module is 

to be placed. It also implies that LoRa is not suitable for projects requiring high data-

rate and very frequent transmissions for example, every 10 seconds. (Libelium 2017b.) 

 

However, the advantage of the LoRa module over the other wireless solution is that 

LoRa is the best option when dealing with very wide networks, with long-range links. 

Other communication modules cannot get more than few km. The 3 features of LoRa 

such as good sensitivity, low path loss, good obstacle penetration gives LoRa the ability 
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of transmitting and receiving in very long-range. It significantly reduces the size of the 

backbone network such as repeaters, gateways or concentrators. 

 

Maximizing battery life is critical in wireless sensor applications. There are several 

ways to maximize battery life such as reducing the data transmission rates and putting 

the modules into a cycle where they sleep for one second and then wake for one second 

to transmit the data before sleeping again. This could double the battery life to two days 

specifically in the case of the BLE and XBee modules. Enhancing the cyclically sleep 

and wake event of the BLE and XBee modules could potentially prolong the battery life 

for years. 

 

From the experiments, the XBee had a better RSSI value and security feature over the 

other wireless modules used. These features and the good performance in the packet 

loss test, the ability to enhance the battery life and a better penetrating capability and 

range when compared to the BLE leads to the recommendation of implementing this 

wireless protocol as the main choice in the Wärtsilä smart NOx sensor case study. Table 

gives an overview summary of the results. 

 

 

4.10. Viewing O2% and NOx ppm Values on the Speedgoat 

 

The CAN frame O2% and NOx ppm values are sent to the speedgoat through the CAN 

Bus (CAN High and CAN Low). The general view of the expected results on the moni-

tor connected to the speedgoat is illustrated in figure 61. 

 

From figure 61, the NOx-concentration detected by the NOx-Sensor is transmitted. The 

transmission is in 0.05 ppm NOx/bit + 200 ppm. That means for the value 3966 the 

computed ppm is 3966 * 0.05 – 200 = -1.7 ppm. 

 

Likewise, in figure 61 for signal of the actual oxidation factor (O2%), the transmission is 

in 0.000514%/bit + 12%. That is, the O2% can be computed from the read value of 

63588 to correspond to 63792 * 0.000514 – 12 = 20.78908% or 21%. 
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These O2% and NOx ppm values corresponds to the expected values for any measure-

ment as illustrated in the smart NOx sensor datasheet provided by Wärtsilä. 

 

 

 

Figure 61. Continuously updated sliding graph for O2% and NOx ppm values. 

 

  

4.11. SmartNOx + XBee-CAN Module Test on Wärtsilä W4L20 Diesel Engine 

 

A smart NOx sensor was installed on the Wärtsilä W4L20 Diesel Engine and the O2% 

and NOx ppm values were measure and compared with the readings from the SICK 

MCS100E.  The MCS100E HW is an analyzer system used for extractive measurement 

of up to eight (8) active gas components from an engine. It also can be used for measur-

Sliding 

Graph 

O2% and NOx ppm 

values 

Can Messages 

NOx 

O2% 
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ing water-soluble components such as HCl and NH3. (SICK 2018.) Table 34 illustrates 

the comparison of the values from SICK and smart NOx sensor/speedgoat for the Wärt-

silä W4L20 Diesel Engine for different operation modes (engine is idle, running without 

load and running with a load). 

 

Table 34. Comparison of the values from SICK and Smart NOx sensor for the Wärtsilä  

     W4L20 Diesel Engine for different operation modes. 

 

Measurement Device Engine is Idle Engine running 

without load 

Engine running 

with load 

 NOx 

ppm 

O2 % NOx 

ppm 

O2 % NOx 

ppm 

O2 % 

SICK|MCS 100E NA NA 162 15.09 649 12.65 

Smart NOx and 

Speedgoat 

-2.1 20.89 167 16.18 624.1 12.39 

 

From table 34, it can be deduced that the smart NOx and Speedgoat are giving the read-

ings close to the values from SICK|MCS 100E. 

 

Figure 62 illustrates the results on the speedgoat when the Wärtsilä W4L20 Diesel En-

gine is idle (not running). Figure 63 is the engine status for when is it running without 

load and figure 64 gives the sliding graph of the O2% and NOx ppm values as illustrated 

in figure 65. Similarly, figure 66 is the engine status for when is it running with load 

and figure 67 gives the sliding graph of the O2% and NOx ppm values as illustrated in 

figure 68. 
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Figure 62. Speedgoat result when Wärtsilä W4L20 Diesel Engine is idle. 

 

 

 

Figure 63. Wärtsilä W4L20 Diesel Engine is running without load 
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Figure 64. Speedgoat sliding graph of the O2% and NOx ppm values. 

 

 

 

Figure 65. Speedgoat results for O2% and NOx ppm values. 
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Figure 66. Wärtsilä W4L20 Diesel Engine is running with load 

 

 

 

Figure 67. Speedgoat sliding graph of the O2% and NOx ppm values. 

 

 

 

Figure 68. Speedgoat results for O2% and NOx ppm values. 
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4.12. Applying Additive Manufacturing (3D printing) to the Designed Prototype 

 

Additive manufacturing is a developing technology in industrial production which facil-

itates the creation parts and systems that are lighter and stronger. There are several dif-

ferent types of additive manufacturing such as 3D printing, rapid prototyping and direct 

digital manufacturing (DDM). The term “additive manufacturing” is used to relate to 

the technologies that creates three-dimensional objects one superfine layer at a time 

with each successive layer bonding to the preceding layer of melted or partially melted 

material. The different materials or substances used includes metal powder, thermoplas-

tics, ceramics, composites, glass and even edibles substances such as chocolate. (GE 

Additive 2018.) 

 

Computer-aided-design (CAD) software are used to digitally define the objects by creat-

ing a file with. stl extension which essentially "slices" the object into ultra-thin layers. 

The various steps from the .stl file to the printed 3D object has been revolutionizing 

manufacturing. This has eliminated the intermediary steps such as creation of molds or 

dies, that cost time and money. These advancements in this technology have made a far 

more widespread use of additive manufacturing and still offers exciting possibilities for 

future development. (GE Additive 2018.) 

 

Additive Manufacturing is applied in this project to design the protective casing for the 

designed prototype developed for the wireless communication between the smart NOx 

and the speedgoat. Two protective casings were designed, and 3D printed. The transmit-

ter module and the receiver module were encapsulated in each of these protective cas-

ings respectively as illustrated in APENDIX 4. The Material used in printing the protec-

tive casings is PLA filament. The 3D printer used for the printing is the PRUSA and 

MINIFactory. Both used the following settings during printing: printing temperature of 

200℃ for the extruder and 60℃ for the bed plate and an infill of 20%. The 3D printed 

protective casings are presented in APPENDIX 5 and 6. While the installed XBee-CAN 

Receiver/Transmitter in the 3D printed protective casings are illustrated in figure 69. 
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Figure 69. XBee-CAN Receiver/Transmitter in 3D printed protective casings. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

This thesis work was carried out in line with the expectation of Wärtsilä to investigate 

the possibility of replacing the existing wired CAN bus connection between the smart 

NOx sensor and the rapid control prototyping system speedgoat and possibly in the fu-

ture the engine control unit (ECU) with a wireless communication solution. Implemen-

tations and analyses of some wireless protocols has been done with the attempts to come 

up with a comparison and possible recommendation based on some criteria like trans-

mission in industrial environments, packet loss, RSSI, bit error rate, reliability and secu-

rity of the wireless solution etc. The wireless protocols implemented includes BLE, 

XBee (ZigBee), WIFI and LoRa (Long Range). The hardware setup was done and the 

devices were programmed to meet the required application. Communication Perfor-

mance test was performed in VEBIC and Technobothnia and comparison made to come 

up with a recommendation of the wireless protocol to implement as the final choice for 

the Wärtsilä smart NOx sensor case study. The protective casing for the recommended 

wireless-CAN modules were developed using additive manufacturing technology, pre-

cisely the 3D printing. 

XBee-CAN Receiver                                         XBee-CAN Transmitter 
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From the experiments, the XBee had a better RSSI value and security feature over the 

other wireless modules used. The latency values of the wireless solution has BLE with 

the best value of maximum latency of 60ms, followed by XBee with maximum latency 

value of 106ms which is very good based on what it is been applied to. These features 

and the good performance in the packet loss test, the ability to enhance the battery life, 

and a better penetrating capability and range when compared to the BLE leads to the 

recommendation of implementing this wireless protocol as the main choice in the Wärt-

silä smart NOx sensor case study. The XBee can be used to create a network of sensors. 

This implies that several sensors values can be read and transmitted for monitoring on 

the speedgoat. The XBee network could be made up of several END devices or nodes 

(sensors) and a COORDINATOR device as the ZigBee protocol supports 3 nodes types 

namely ZigBee Coordinator ZC, ZigBee Router (ZR) and ZigBee End Device (ZED). 

The BLE implementation comes up as the second best in respect to the battery life, good 

RSSI value and security feature. In addition, the good performance in the packet loss 

test and the ability to enhance the battery life leads to the recommendation of imple-

menting this wireless protocol as an alternative in the Wärtsilä smart NOx sensor case 

study. 

 

Future work on this could include further research on extending battery life by optimiz-

ing all parameters associated with data rates, current and energy consumption can be 

performed. The research could be based on optimizing the software to improve the bat-

tery life of the present prototype. This can also be achieved by integrating Field Pro-

grammable Gate Arrays (FPGAs) in the Wireless Sensor Node. The advantage of FPGA 

is that it allows processing larger amounts of data, with smaller memory footprint by 

using piplelining to process the data “online” while it is buffered instead of storing it in 

some off-chip memory. Reducing off-chip memory usage will greatly reduce energy 

consumption as well. Processing raw data locally in the node will reduce wireless 

transmission (saving energy) which is desirable in the increasingly crowded unlicensed 

wireless spectrum. Instead of transmitting the whole raw data, it can be processed in the 

FPGA for feature extraction, such as frequency analysis, machine vision, fault detection 

etc. Since most of the power is consumed in wireless transmission, transmitting extract-

ed features only can significantly improve battery life for remotely installed wireless 
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sensor nodes which might be expensive or not possible to replace their batteries. The 

research can also be extended to include the ability to implement Over the Air firmware 

updates. Since FPGAs are Field Programmable Gate Arrays, it is possible to reconfigure 

the hardware in the field to implement new DSP algorithms, fix bugs or improve per-

formance. By integrating FPGA with a wireless module that supports OTA firmware 

updates, it is possible to create a fully reconfigurable wireless sensor node, in which 

both the wireless stack software and the hardware acceleration (FPGA) can be remotely 

upgraded to improve or add new services. This research can be extended to implement 

wireless communication with more than one smart NOx sensor where several sensor 

values are being monitored. 
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APPENDICES 

 

APPENDIX 1. Schematic of Mikroelectronika CAN SPI click board 

 (MikroElektronika 2018). 
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APPENDIX 2. Smart NOx, XBee-CAN Module and Speedgoat system overview 
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APPENDIX 3. LCD Display for Transmitter/Receiver Modules 
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APPENDIX 4. Sample output of transmitter and receiver code 

 

Sample output of receiver code. 

------------------------------------------------------------------------------ 

-> data from XBee transmitter 

0x71 0x9E 0xCF 0x61 0xF2 0x61 0x69 0x4D 0x48 0x62 0xD3 0xC5 0xC2 0x39 0xBD 

0xA9 

-> RSSI Value: 47 

 

Decryption started 128 bits 

 

KEY = 48656c6c6f776f726c64796f75726f63 

CIPHERTEXT = 719ecf61f261694d4862d3c5c239bda9 

0x71 0x9E 0xCF 0x61 0xF2 0x61 0x69 0x4D 0x48 0x62 0xD3 0xC5 0xC2 0x39 0xBD 

0xA9 

Decryption Completed 

PLAINTEXT = 22a60f52f8559f1fff1108a60f45f855 

 

-> Decrypted Data from XBee Transmitter:   

ErrorDectionNumber[10] + Smart NOx Data[1]to[8] + checksum[9]+ PaddingDa-

ta[10]to[15] 

 0x22 0xA6 0xF 0x52 0xF8 0x55 0x9F 0x1F 0xFF 0x11 0x8 0xA6 0xF 0x45 0xF8 0x55  

  

SumofSmartNOxDataFrom_XBeeTransmitter is:  411 

  

  

Data ErrorDectionNumber is:  22 

  

checksumData is:  11 

Receiver Error Detection Number is:  422 

  

-> data to Speedgoat 

CAN ID: 0x18F00F52 

 0xA6 0xF 0x52 0xF8 0x55 0x9F 0x1F 0xFF 

 

Sample output of transmitter code. 

------------------------------------------------------------------------------ 

-> ErrorDectNum[1] + Smart NOx Data[8] + checksum[1]: 

0x22 0xA6 0xF 0x52 0xF8 0x55 0x9F 0x1F 0xFF 0x11   

  

SumofDataFrom_smartNOx:  411 

  

Data ErrorDectionNumber is:  22 

  

checksumData is:  11 

Sender Error Detection Number is:  422 

  

Encryption started 128 bits 

 

KEY = 48656c6c6f776f726c64796f75726f63 

PLAINTEXT = 22a60f52f8559f1fff1108a60f45f855 

 0x22 0xA6 0xF 0x52 0xF8 0x55 0x9F 0x1F 0xFF 0x11 0x8 0xA6 0xF 0x45 0xF8 0x55 

Encryption Completed 

CIPHERTEXT = 719ecf61f261694d4862d3c5c239bda9 

 

-> Encrypted Data for XBee Transmission: 

0x71 0x9E 0xCF 0x61 0xF2 0x61 0x69 0x4D 0x48 0x62 0xD3 0xC5 0xC2 0x39 0xBD 

0xA9  

 

XBee Sending data...  
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APPENDIX 5. 3D printed protective casing body 

 

 

 

 

APPENDIX 6. 3D printed protective casing covers 

 

 

 


