
Utilization of adjacency
model in graph analysis

TEEMU MÄENPÄÄ

ACTA WASAENSIA 335

COMPUTER SCIENCE 14

Reviewers Professor Ismo Hakala
Kokkola University Consortium Chydenius
Talonpojankatu 2 B
P.O.Box 567
FI-67701 Kokkola

Professor Eljas Soisalon-Soininen
Aalto University
Department of Computer Science and Engineering
P.O. Box 15400
FI-00076 Aalto, Finland

 III

Julkaisija Julkaisupäivämäärä
Vaasan yliopisto Syyskuu 2015
Tekijä(t) Julkaisun tyyppi
Teemu Mäenpää Monografia

Julkaisusarjan nimi, osan numero
Acta Wasaensia, 335

Yhteystiedot ISBN
Vaasan yliopisto
Teknillinen tiedekunta
Tieto- ja tietoliikennetekniikka
PL 700
65101 Vaasa

978-952-476-642-5 (painettu)
978-952-476-643-2 (verkkojulkaisu)
ISSN
0355-2667 (Acta Wasaensia 335, painettu)
2323-9123 (Acta Wasaensia 335, verkkojulkai-
su)
1455-7339 (Acta Wasaensia. Tietotekniikka 14,
painettu)
2342-0693 (Acta Wasaensia. Tietotekniikka 14,
verkkojulkaisu)
Sivumäärä Kieli
163 englanti

Julkaisun nimike
Vierekkyysmallin hyödyntäminen graafien analysoinnissa
Tiivistelmä
Puolirakenteinen tieto oli laajasti tutkittu aihe vuosituhannen vaihteen molemmin
puolin. Monimutkaiset ja jäsentymättömät tietorakenteet ovat nousseet tutki-
musteemaksi tekniikoiden kuten web 2.0:n ja big datan yleistyessä. Tässä tutki-
muksessa etsitään keinoja, joiden avulla monimutkaiset tietorakenteet voidaan
esittää relaatiotietokannan muodossa ja siten saada niiden tietosisällöt helpom-
min hyödynnettävään muotoon.

Vierekkyysmalli on malli tiedon esittämiseen. Mallin keskeinen komponentti on
vierekkyysrelaatiojärjestelmä, joka on matemaattinen kuvaus joukkoihin kuuluvi-
en elementtien vierekkyyksistä. Vierekkyysrelaatiojärjestelmä voidaan kuvata
graafina, jossa elementit esitetään graafin solmuina ja solmuja yhdistävä sivu
kuvaa elementtien välistä vierekkyyttä. Tämän tutkimuksen tavoitteena on kehit-
tää menetelmä tällaisten graafien käsittelyyn ja analysointiin.

Vierekkyyden käsitettä on sovellettu muun muassa geometrisen mallintamisen
tutkimuksessa. Vierekkyysmalli mahdollistaa vierekkyyden käsitteen hyödyntä-
misen relaatiotietokantojen mallintamisessa. Aiemmat tutkimukset ovat osoitta-
neet relaatiomallin ja vierekkyysmallin käsitteelliset samankaltaisuudet.

Tässä tutkimuksessa hyödynnetään graafiteorian peruskäsitteistöä vierekkyys-
mallin ja relaatiomallin samankaltaisuuksien analysoinnissa. Analysoitavat tieto-
kannat esitetään vierekkyysrelaatiojärjestelmänä ja graafeina. Analyysitulosten
perusteella graafeista tunnistetaan relaatiotietokantojen keskeisiä elementtejä
kuvaavat osat ja niiden ominaisuudet.

Tutkimuksessa määritetään kriteeristö tietokannan osien tunnistamiseen sitä
esittävästä graafista. Kriteeristö mahdollistaa graafin muuntamisen takaisin tie-
tokannaksi. Lisäksi tutkimuksessa pohditaan monitavoiteoptimoinnin hyödyntä-
mistä graafien analysoinnissa.
Asiasanat
tiedon mallinnus, relaatiomalli, vierekkyysmalli, graafianalyysi

 V

Publisher Date of publication
University of Vaasa September 2015
Author(s) Type of publication
Teemu Mäenpää Monograph

Name and number of series
Acta Wasaensia, 335

Contact information ISBN
University of Vaasa
Faculty of Technology
Computer Science
P.O. Box 700
FI-65101 Vaasa
Finland

978-952-476-642-5 (painettu)
978-952-476-643-2 (verkkojulkaisu)
ISSN
0355-2667 (Acta Wasaensia 335, print)
2323-9123 (Acta Wasaensia 335, online)
1455-7339 (Acta Wasaensia. Computer Science 14,
print)
2342-0693 (Acta Wasaensia. Computer Science 14,
online)
Number of pages Language
163 English

Title of publication
Utilization of adjacency model in graph analysis
Abstract
Data without fixed schema was widely studied topic in late 90s and in early
2000s. The introduction of concepts such as web 2.0 and big data foreground-
ed complex and loosely structured data as a research theme. This study exam-
ines ways to process complex data structures to make them operable for rela-
tional databases.

Adjacency model is a model representing data. Key concept of the model is ad-
jacency relation system, which is mathematical representation of adjacency be-
tween elements belonging to certain sets. Adjacency relation system can be
visualized as a graph. The goal of this study is to develop framework for graph
analysis. Early applications for the concept of adjacency focused on the bounda-
ry structures. The adjacency model aimed to generalize the concept of adjacen-
cy. Studies have shown that adjacency model and relational model have concep-
tual similarities. Based on the similarities a method for modeling relational da-
tabases with adjacency model was developed.

This study utilizes the graph theory in the analysis of the similarities between
adjacency model and relational model. Databases were modeled with adjacency
model and represented as adjacency relation system based graphs. The graphs
were analyzed and typical properties for the database elements in the adjacency
model were defined. This study focused on adjacency model and the expression
of the concepts of relational model in the model. This study provided properties
for database elements in adjacency model and a method for converting adja-
cency model into database was given. Also, the usage of multi-objective optimi-
zation in manipulation of graphs was discussed.
Keywords
data modeling, relational model, adjacency model, graph analysis

 VII

ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervisor Professor Merja Wanne for her
guidance and support throughout the writing process. I also would like to thank
Dr. Jari Töyli for his insightful comments regarding the topic of the thesis. I
would like to thank Professor Ismo Hakala and Professor Eljas Soisalon-Soininen
for reviewing this thesis and their valuable feedback and remarks about the work.

I would like to express my appreciation to my past and present colleagues, Simo,
Vesa, Hannu, Johanna, Jouni, Laura, Teemu S., and many others for support,
insights, fruitful discussions, and encouragement.

Finally, I would like to thank my wife Suvi. Her encouragement, support, and
love were the solid foundation that made this dissertation possible.

 IX

Table of Contents

ACKNOWLEDGEMENTS .. 7

1 INTRODUCTION ... 1

2 RESEARCH PROCESS ... 3
2.1 Design research approach ... 4
2.2 An overview of the study ... 5

3 GRAPH THEORY CONCEPTS .. 8
3.1 Connectivity, walks, and paths ... 9
3.2 Components in undirected graph ... 9
3.3 Tree .. 10
3.4 Matrix representation for a graph .. 10
3.5 Adjacency matrix for directed graph 11
3.6 Vertex – dominating set of a graph .. 12

4 DATA STRUCTURES AND MODELS .. 14
4.1 Data structures, data models, and ontologies 14
4.2 Network data model .. 15
4.3 Hierarchical data model ... 16
4.4 Entity-Relationship data model – ER Model 18
4.5 Relational data model .. 20
4.6 Semantic link network – SLN .. 23

5 ADJACENCY MODEL ... 25
5.1 Adjacency schema ... 30
5.2 Modeling adjacency relation systems with AdSchema 31

6 UTILIZATION OF ADJACENCY MODEL IN DATAMODELING 34
6.1 Modeling graphs with Adjacency Model 34
6.2 Graph-based modeling of the relational data 37
6.3 Modeling relational data with adjacency model 38
6.4 Modeling relational database schema with AdSchema 40
6.5 Extended AdSchema .. 42

7 ANALYZING GRAPH REPRESENTATION OF RELATIONAL DATABASE ... 46
7.1 Identifying dependencies, tuples, and relations 47
7.2 Extended analysis of ARS based graphs 48
7.3 Database reconstruction .. 51

7.3.1 Complex dependencies in adjacency relation system55
7.3.2 Facts table in adjacency relation system 67
7.3.3 Reconstructing the database 72

8 UTILIZATION OF MULTI-OBJECTIVE OPTIMIZATION IN GRAPH
ANALYSIS .. 88
8.1 Multi-objective optimization .. 88
8.2 Recognizing keys with multi-objective optimization 89

X

8.3 Utilization of goal functions in key identification 94

9 CONCLUDING REMARKS ... 97

REFERENCES ... 100

APPENDIX ... 105

Figures

Figure 1. A structured-pragmatic-situational approach for case studies
(Pan & Tan 2011: 164). ... 3

Figure 2. The Generate/Test Cycle (Simon 1996: 129; Hevner, March,
Parka & Ram: 89). ... 4

Figure 3. Graph G. ... 8
Figure 4. Graph G’ represtents a subgraph of G. 8
Figure 5. Graph G with components A and B. 9
Figure 6. A tree with six vertices and five edges. 10
Figure 7. Directed graph. .. 11
Figure 8. Graph G for example 3. ... 13
Figure 9. Sample database for supplier-product data. 16
Figure 10. Data-structure diagram for a sample database. 16
Figure 11. Database tree. .. 17
Figure 12. Tree-structure diagrams. .. 17
Figure 13. Expression of many-to-many relationship. 18
Figure 14. Attribute mappings for Product entity set. 19
Figure 15. Entity-relationship diagram for the Product entity type. 19
Figure 16. Relationship between Product and Supplier entities. 20
Figure 17. Referential relationship between Product and Supplier

relations. .. 22
Figure 18. Database schema diagram. ... 22
Figure 19. Semantic link network. ... 23
Figure 20. Graph representation of adjacency relation system. 26
Figure 21. Symmetric ARS portrayed by undirected graph. 27
Figure 22. Sequence of elements depicting transitive adjacency

between elements y1 and z2. .. 28
Figure 23. Unique ARS. .. 29
Figure 24. AdSchema. ... 31
Figure 25. Graph representation for ARS of example 7. 33
Figure 26. AdSchema for example 7. ... 33
Figure 27. Supplier relation as OEM-graph. .. 34
Figure 28. Adjacency relation system representation of OEM -graph. ... 35
Figure 29. A simple SLN (Zhuge et al. 2005: 229). 36
Figure 30. ARS representation of example SLN. 37
Figure 31. Supplier relation as a graph. ... 38
Figure 32. Supplier-product database. ... 39
Figure 33. An ARS representation of the supplier-product database. 40
Figure 34. Database schema. ... 41

 XI

Figure 35. AdSchema representation of the database schema. 42
Figure 36. Extended AdSchema with directed edges. 43
Figure 37. Extended AdSchema with undirected edge. 45
Figure 38. Attributes and their values in ARS based graph. 46
Figure 39. Expressions of dependencies in ARS. 47
Figure 40. AdSchema of an ARS. .. 49
Figure 41. Reconstructed database. ... 55
Figure 42. Customer order database. .. 56
Figure 43. Adjacency relation system for Customer-order database. 57
Figure 44. AdSchema for Customer-order database. 58
Figure 45. Customer order database with changed Order_Product -

relation. .. 60
Figure 46. ARS for Customer-Order database. 61
Figure 47. AdSchema for Customer-Order database. 61
Figure 48. Customer order database. .. 63
Figure 49. Adjacency relation system for Customer order database. 64
Figure 50. AdSchema for Customer order database. 64
Figure 51. Customer order database. .. 66
Figure 52. ARS for Customer order database. 67
Figure 53. AdSchema for Customer order database. 67
Figure 54. Star schema for sales data. ... 68
Figure 55. Tables of sales data warehouse. .. 68
Figure 56. ARS for data warehouse. ... 69
Figure 57. AdSchema for data warehouse. ... 69
Figure 58. AdSchema with multiple attributes in facts table. 71
Figure 60. Adjacency relation system for the database. 73
Figure 61. AdSchema of the ARS. ... 74
Figure 62. Relationship relation. .. 83
Figure 63. The relationship definitions for relations R1,

course_schedule_id and Rrel2. .. 84
Figure 64. The schema of the reconstructed database. 85
Figure 65. Reconstructed database. ... 86
Figure 66. Foreign key duplication. .. 86
Figure 67. AdSchema representation of relational database. 91
Figure 68. AdSchema representation of relational database. 93

Tables

Table 1. The design research framework. 5
Table 2. Correspondences between ER model and relational model

(according to Elmasri & Navathe 2007: 224). 23
Table 3. Semantic link primitives. .. 24
Table 4. Properties for ARS vertices/elements. 49
Table 5. Properties for AdSchema vertices/types. 50
Table 6. Basic properties for relational model concepts expressed

in Adjacency Model or AdSchema. 51
Table 7. Adjacent elements in sets A and B.................................. 53
Table 8. Adjacency matrix for the elements of set A. 54

XII

Table 9. Adjacency of elements in A1 and A2. 54
Table 10. Dependency between r2 and r1. 55
Table 11. Adjacency of elements between types Product_id and

Units_per_order. ... 59
Table 12. Adjacencies between elements of types Order_id and

Units_per_order. ... 59
Table 13. Adjacencies between Product_id and Order_id. 62
Table 14. Adjacencies between the elements of types Order_id and

Customer_id... 65
Table 15. Adjacencies between Date_id and Units_sold. 70
Table 16. Adjacencies between Product_id and Units_sold. 70
Table 17. Adjacencies between Store_id and Units_sold. 71
Table 18. Vertex properties in ARS graph. 74
Table 19. Vertex properties in the AdSchema graph. 77
Table 20. Adjacencies between elements of the types

course_offering_id and staff_id. ... 79
Table 21. Dependency between relations R3 and R2. 80
Table 22. Adjacencies between elements of types staff_id and

date_from. ... 80
Table 23. Dependency between relations R3 and R4. 80
Table 24. Adjacencies between elements of types project_id and

date_from. ... 81
Table 25. Dependency between relations R5 and R4. 81
Table 26. Adjacencies between elements of types project_id and

area_of_research_id. .. 81
Table 27. Dependency between relations R6 and R5. 81
Table 28. Adjacencies between the elements of types staff_id and

area_of_research_id. .. 82
Table 29. Dependency between relations R3 and R6. 82
Table 30 Dependency between relations R6 and R3. 82
Table 31. Adjacencies between the elements of types student_id and

course_schedule_id. .. 83
Table 32. Dependency between relations R1 and course_schedule_id.83
Table 33. Dependency between relations course_schedule_id and R1.84
Table 34. Adjacencies between course_schedule_id and type

course_offering_id. .. 84
Table 35. Dependency between relations R2 and R7. 85
Table 36. Value mappings for parameter p1. 90
Table 37. Value mappings for parameter p2. 90
Table 38. Value mappings for parameter p3. 90
Table 39. Value vectors for vertices representing the values of key

attributes in ARS based graph. 95
Table 40. Value vectors for vertices representing the key attributes

in AdSchema based graph. ... 96

1 INTRODUCTION

Data models for unstructured data were vastly and intensively studied topic from
mid-90s to early 2000s. Unstructured or semistructured data is data that is not
raw data, but it is not strictly typed, and it does not have an accurate schema
(Abiteboul 1997, Suciu 1998). The traditional data models do not handle unstruc-
tured data properly, so the research efforts strived to integrate such data and to
develop efficient structures and models for unstructured data. Typically such
data is depicted with graph-based representation methods such as the Object
Exchange Model (Papakonstantinou, Garcia-Molina & Widom 1995) and deter-
ministic data model (Buneman, Davidson & Suciu 1995).

Early applications of the concept of adjacency focused on the boundary structures
(Weiler 1985; Ni & Bloor 1994). Wanne (1998) introduced a structure called Ad-
jacency Relation Systems (ARS). It is a mathematical structure for data represen-
tation, and it also provides graph visualizations of data. ARS is based on the adja-
cency of elements that are members of certain sets of entity types. Wanne (1998)
applied ARS in the field of planar graphs. ARS was further developed into Adja-
cency Model (AM). It is a framework for such concepts as adjacency relation sys-
tem, adjacency defining type and relation combination (Wanne and Linna 1999;
Töyli 2002). Furthermore, research works done with the AM has produced meth-
ods and models, which made it possible to utilize ARS in modeling of unstruc-
tured data.

After the introduction of AM, both ARS and AM have been utilized in various
application domains. In Töyli, Linna and Wanne (2002a and 2002b) and Töyli
(2002 and 2006) adjacency relation systems were applied in modeling relational
data and semistructured data. Adjacency relation systems have also been used in
modeling wind power production and distributed energy production (Heikkinen
& Linna 2004; Nyrhilä, Mäenpää, Linna & Antila 2005a and 2005b). The adja-
cency relation systems have also been employed in modeling semantic link net-
works (Mäenpää & Nyrhilä 2013a and 2013b). Besides, the modeling usage, the
concept of adjacency has been utilized in algorithm development for applications
in computational geometry (Zadravec, Brodnik, Mannila, Wanne & Zalik 2008).

After the emergence of Web 2.0 and especially Semantic Web, the graph-based
models and structures, such as Resource Description Framework (Manola &
Miller 2004) and Semantic Link Network (Zhuge 2004), have become more
widely utilized. Furthermore, the elements of graph-structures are more inter-
connected, and thus the structures are more complex. In order to make data
more actionable and usable, for example, systems based on the relational data

2 Acta Wasaensia

model, there should be methods and frameworks for analyzing graph-structures
and data. Based on the result generated by the framework researchers and devel-
opers could determine if a given graph is a suitable foundation, for example, for a
database.

The methods for graph processing discussed in this work continue the research
work started by Wanne (1999) and Töyli (2002 and 2006). Töyli’s framework for
modeling relational data with adjacency model, and as well Wanne’s work both
suggest that elements of the adjacency relation system correspond to the ele-
ments of relational database. To widen the utilization potential of the adjacency
model to analyzing graphs, there should be precise criteria and systematical
method for recognizing the database elements from the ARS based graph. The
previous studies have provided a method for modeling relational databases with
adjacency model, this study adds the method for reconstructing the database
from the ARS based graph into the Adjacency Model framework.

This work aims to broaden the utilization areas of the Adjacency Model. The
work focuses primarily on the possibilities that are tied to the similarities and
analogies between adjacency model and relational model. This work seeks ans-
wers to the following questions.

1. What are the requirements under which adjacency model can be used for
analyzing, structuring and representing heterogeneous data?

2. What are the solutions that enhance the data processing capabilities of the
adjacency model?

3. What are the means to improve the adjacency model’s capabilities to con-
vey information about the relationships between data elements in a given
structure?

For data gathering and analyzing purposes a framework that combines the prin-
ciples of the adjacency model, the relational model, graph theory and multi-
objective optimization (Price, Storm & Lampinen 2005) were developed. In this
work will be given identification criteria for recognizing the essential elements of
the relational database from an adjacency relation system based graph. Moreo-
ver, the reconstruction method from an adjacency relation system to the database
is given. In addition, some adjustments to definitions within the adjacency model
are proposed.

 Acta Wasaensia 3

2 RESEARCH PROCESS

The research overall approach to this study combines the features of theory creat-
ing case research and design research. Järvinen (2012: 66) states that the theory
creating research is suitable for situations where the research is fairly new, and
there is little knowledge about the phenomenon. The research process utilizes the
guidelines (figure 1) for the case study provided by Pan and Tan (2011: 164).

Figure 1. A structured-pragmatic-situational approach for case studies (Pan &
Tan 2011: 164).

Pan and Tan (2011: 165) emphasize that their framework has a practical view-
point. So, at the start of the research process it is typically more pragmatic to se-
lect an interesting case, and then define the research problem and questions. Pan
and Tan state that usually, the selected case clarifies and guides the research
problem definition. After the case is selected, the framework proceeds to the
framing cycle, which consists of steps 2, 3 and 4. The second step builds a mental
concept of the case phenomenon by reviewing the theoretical background of the
phenomenon.

The purpose of the third step is to validate and modify the mental concept. The
actions of this step include data collecting and organizing it into themes by com-
parisons, examinations, and categorizations. The fourth step builds the prelimi-
nary theory. Pan and Tan suggest that the key theories of the research should be
recognized and broken into components in order to construct a theoretical lens.
The lens guides the data collection and analysis. The framing cycle iterations end
when the theoretical confidence is reached. Theoretical confidence means that
the essence of the phenomenon is captured, and the contributions of the study
can be derived from the data. (Pan & Tan 2011:167-169; Strauss & Corbin 1998:
101; Walsham 2006: 325.)

The augmenting cycle begins with confirming and validating data (Step 5). Dur-
ing this step, theoretical lens is transformed into the theory, and the validity of
the data is ensured. Pan and Tan (2011: 169) underline that the sufficiency of

4 Acta Wasaensia

data and validity of data must be ensured. The transformation of the theoretical
lens to theory is continued in the selective coding step. Selective coding corrobo-
rates and integrates the conceptual categories of the theoretical lens with the case
data. The last step of the augmenting cycle ensures the theory-data-model align-
ment by recursive iterations between existing theories, data, and the emergent
model. This phase answers to the following questions (Pan & Tan 2011: 171).

(1) Do the existing theories explain the data?

(2) Does the data support the new model and

(3) Do the existing theories support the new model?

The augmenting cycle ends when the theoretical saturation is gained. The deci-
sion, whether the study is mature enough depends on the researcher. The final
step of the SPS –frameworks writing the case report, i.e. the key phases and find-
ing of the study are reported in a systematical way. (Pan & Tan 2011: 169-172;
Strauss & Corbin 1998: 143.)

2.1 Design research approach

Design research is a feasible approach for research, which aims to build innova-
tions by utilizing the results of basic research (Järvinen 2012: 98). Van Aken
(2004: 224) states that the goal of design research is to construct new solutions
and artefacts based prior knowledge. Design research aims to improve the per-
formance of existing entities.

Simon (1996: 129) has characterized the design research process with the “The
Generate/Test Cycle” shown in figure 2.

Generate
design alternatives

Test alternatives against
requirements/constraints

Figure 2. The Generate/Test Cycle (Simon 1996: 129; Hevner, March, Parka &
Ram: 89).

 Acta Wasaensia 5

March and Smith (1995: 255) have provided a research framework for design
research. The framework describes the key research outputs and research activi-
ties (Table 1) of design research.

Table 1. The design research framework.

Research activities

Build Evaluate Theorize Justify

Research outputs

Constructs

Model

Method

Instantiation

Constructs give the vocabulary and concepts for problem description within the
domain, and they provide solutions for the problems. Relationships between con-
structs are represented by the model. Model can be seen as statement for prob-
lems and solutions. Respectively, the method provides guidelines or algorithms
for performing the given task. An instantiation according to March and Smith is
the realization of an artifact in its context.

March and Smith (2004: 258) state that the design research builds innovation for
a particular purpose and evaluates how the innovation works. At theorizing phase
of the framework, the features of the artifact and its interaction with the envi-
ronment are analyzed. Generalizations and theories need to be justified, which
means that evidence must be gathered to test and explain the theories. (March
and Smith 2004: 259.)

The relationships between the selected research approaches and the conducted
study are discussed in the next section.

2.2 An overview of the study

This section discusses confluences between the research process of this study and
the SPS –framework for theory creating case studies. Because the main research
efforts of this study focus on Adjacency Model (AM) and the framework of con-
cepts build around it, this study can be characterized as case research. In addi-
tion, this study combines features of design research and theory-creating re-
search.

6 Acta Wasaensia

The concepts and techniques of AM and multi-objective optimizations are
utilized in the construction of tools for data collecting and analysis. Study also
produces additions to the AM.

In the first step, the case was selected, and a preliminary draft of the research
problem was given. A data representation method called Adjacency Model was
selected as the primary case for this study. The preliminary research task at this
point was to develop and enhance the adjacency model and its data representa-
tion capabilities.

In the second step base theories and supporting theories of the study were
reviewed. Furthermore, the research problem clarified, and it focused on the
analogies between the relational model and adjacency model. Is it possible to
reconstruct a database modeled as an adjacency relation system into a relational
database and if so can the finding be applied at general level in the analysis of the
different graph-based data representations?

At the third step data collecting and analyzing criteria and tools were crafted. The
crafting process can be seen as design research since the tools and criteria utilize
existing theories such as graph theory, data models, multi-objective optimization
and adjacency model. Crafting process conforms Simon’s generate/test cycle (see
figure 2).

At the fourth step data was collected and analyzed by the tools and criteria de-
fined in the previous step. The tools and criteria were refined in this step accord-
ing to comparisons between collected data and the key theories.

After iterations of the framing cycle, the elements of relational database can be
identified from an ARS- based graph representing the database. Moreover, the
graph representing a database can be reconstructed as a relational database.

The augmenting cycle begins with testing the results of the framing cycle. Test
cases were simplified databases as well as real-life databases. Test material con-
tained databases that represented different features of the relational model such
as dependencies and simple constraints.

In the sixth step, the results of the fifth step were evaluated against the theories
of the study. In addition, a method for ARS to database reconstruction was de-
fined. Furthermore, some additions were made to the definitions of the adjacency
model framework.

At the seventh step was noticed that the case data supported the analogies be-
tween adjacency model and relational model. Case data also shows that the con-

 Acta Wasaensia 7

cepts of the relational model can be identified from the ARS based graph repre-
senting the database.

Finally, by combining the key features of relational model and adjacency model
with the results of this research, a database can be modeled as ARS. Further-
more, the database can be reconstructed from the ARS. Moreover, the general
applicability of the method introduced in this research was discussed in this step.
Aim of the eighth step is to represent and report the research process and its
findings.

8 Acta Wasaensia

3 GRAPH THEORY CONCEPTS

In this section the essential graph theory concepts that are utilized in this work
are introduced. Graph is ordered pair (𝑉,𝐸), where 𝑉 represents the finite
nonempty set of elements called vertices. 𝐸 consists of two-element subsets of 𝑉,
such that {𝑝, 𝑞} ∈ 𝐸, and 𝑝, 𝑞 ∈ 𝑉. The elements of 𝐸 are called edges. Edges join
the elements of 𝑉, denoted by 𝑝 𝑒 𝑞. It is said that the vertices are incident to the

edge and the elements joined by an edge are said to be adjacent or neighbors.
Thus, an edge e can be denoted by 𝑒 = 𝑝𝑝. The graph 𝐺 is said to be complete if
each vertex is adjacent to each other i.e. each vertex in 𝐺 are connected by an
edge with each other vertex of 𝐺. When a certain part of a graph is examined, it is
useful to construct a subgraph of given graph. A subgraph 𝐺’ of 𝐺 is defined as
follows 𝐺′ = (𝑉′,𝐸′) where 𝑉′ ⊂ 𝑉 and 𝐸′ ⊂ 𝐸. (Savolainen 1978: 20; Foulds
1992:9-12; Jungnickel 2013: 2-3.)

Example 1. Let 𝐺 be a graph (𝑉,𝐸) where 𝑉 = {𝑣1,𝑣2, 𝑣3, 𝑣4} and 𝐸 =
{𝑣1𝑣2,𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1,𝑣2𝑣4}. A subgraph 𝐺’ contains 𝑉′ = {𝑣1,𝑣2, 𝑣3} and 𝐸′ =
{𝑣1𝑣2,𝑣2𝑣3}. Graphs 𝐺 and 𝐺’ are depicted in figures 3 and 4.

Figure 3. Graph 𝐺.

Figure 4. Graph 𝐺’ represtents a subgraph of 𝐺.

 Acta Wasaensia 9

3.1 Connectivity, walks, and paths

A graph is said to be connected if it has a connection, called walk, between any
two vertices. Walk in a graph 𝐺 is a sequence of edges and vertices. For example
(𝑒1, … , 𝑒𝑛) is an edge sequence in a graph. If there exist vertices 𝑣0, … , 𝑣𝑛 such that
𝑒𝑖 = 𝑣𝑖−1𝑣𝑖 where 𝑖 = 1, … ,𝑛, the edge sequence is called a walk. The walk is
closed if 𝑣0 = 𝑣𝑛. A closed walk containing at least three different vertices is
called a cycle. If all the edges in a walk are unique the walk is called a trail. If the
walk does not visit a vertex that it has visited before it is called path (or self-
avoiding path). The length of a walk is the number of edges in it. Walk W from 𝑣0
to 𝑣𝑛 can be notated as follows 〈𝑣0,𝑣1, … , 𝑣𝑛〉. (Foulds 1992:17-18; Jungnickel
2013: 5-6; Goodaire & Parmenter 2006: 304-306; Newman 2010: 136.)

For example a walk from 𝑣1 to 𝑣4 in figure 3 can be formed as 〈𝑣1,𝑣2, 𝑣3, 𝑣2, 𝑣4〉
and respectively a path from 𝑣1 to 𝑣4 can be stated as 〈𝑣1, 𝑣2, 𝑣4〉.

3.2 Components in undirected graph

A graph can be divided into subgraphs 𝐴 and 𝐵. If there does not exist a connec-
tion between vertices in graphs 𝐴 and 𝐵, the subgraphs are called components.
Furthermore, within a component there must be at least one path from each ver-
tex to each other vertex. (Newman 2010: 142.)

Example 2. Let 𝐺 be a graph 𝐺 = (𝑉,𝐸) where 𝑉 = {𝑣1, 𝑣2,𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} and
𝐸 = {𝑣1𝑣5, 𝑣2𝑣5,𝑣4𝑣5, 𝑣3𝑣7, 𝑣6𝑣7}. Graph 𝐺 is depicted in figure 5.

Figure 5. Graph 𝐺 with components 𝐴 and 𝐵.

The graph 𝐺 in figure 5 has two components because, the vertices of subgraph 𝐴
cannot be reached from subgraph 𝐵.

10 Acta Wasaensia

3.3 Tree

A tree is a connected acyclic graph (figure 6), and the edges of the tree are called
branches (Foulds 1992: 27). Foulds (1992: 29) states the following alternative
definitions for a tree:

1. A tree is a connected graph with n vertices and (n-1) edges.
2. A tree is an acyclic graph with n vertices and (n-1) edges.
3. A tree is a graph in which there is exactly one path between every pair of

its vertices.
4. A tree is an acyclic graph which has the property that if any two of its

vertices that are not adjacent are joined directly by an edge then the re-
sulting graph possesses exactly one cycle.

Figure 6. A tree with six vertices and five edges.

3.4 Matrix representation for a graph

The structure of a vertex labeled graph 𝐺 can be represented with an adjacency
matrix. The adjacency matrix is an n-by-n –matrix 𝐴 = (𝑎𝑖𝑖). If 𝑎𝑖𝑖 = 1 then the
vertex 𝑣𝑖 is adjacent to vertex 𝑣𝑗, otherwise 𝑎𝑖𝑖 = 0. The graph of figure 3 can be

represented with the adjacency matrix shown below. (Foulds 1992: 76; Newman
2010: 110-111.)

𝐴 =

⎣
⎢
⎢
⎢
⎡ 𝑣1 𝑣2 𝑣3 𝑣4
𝑣1 0 1 0 1
𝑣2 1 0 1 1
𝑣3 0 1 0 1
𝑣4 1 1 1 0 ⎦

⎥
⎥
⎥
⎤

According to Foulds (1992:76-77) adjacency matrix 𝐴 depicting graph 𝐺 has the
following properties.

1. 𝐴 is symmetric
2. The sum of entries in each row 𝑖 of 𝐴 equals the degree of 𝑣𝑖.

 Acta Wasaensia 11

3. There is a one-to-one correspondence between labeled graphs with 𝑛
vertices and 𝑛 × 𝑛 symmetric binary matrices with all entries on the
leading diagonal equal to zero.

4. 𝐺 is connected if and only if there is no labeling of the vertices of 𝐺
such that its adjacency matrix is block diagonal matrix.

5. If 𝐴1 and 𝐴2 are adjacency matrices which correspond to different la-
belings of the same graph 𝐺, then for some permutation matrix 𝑃,
𝐴1 = 𝑃−1𝐴2𝑃.

6. The (𝑖, 𝑗) entry of 𝐴𝑚 is the number of walks of length m for vertex 𝑣𝑖
to 𝑣𝑗, in G. This means that,

– if 𝑖 ≠ 𝑗, the (𝑖, 𝑗) entry of 𝐴2 is equal to the number of paths containing
exactly two edges from 𝑣𝑖 to 𝑣𝑗. The (𝑖, 𝑖) entry of 𝐴2 is the degree of
 𝑣𝑖 and that of 𝐴3 is equal to twice the number of triangles containing
the 𝑣𝑖.

– if 𝐺 is connected, the distance between its vertices 𝑣𝑖 and 𝑣𝑗, for 𝑖 ≠ 𝑗,
is the least integer 𝑚, for which the (𝑖, 𝑗) entry of 𝐴𝑚 is nonzero.

3.5 Adjacency matrix for directed graph

In a directed graph (or digraph) each edge has a direction. Edges are represented
as lines with arrows pointing from one vertex to another. An adjacency matrix for
directed graph has the following properties. The value of matrix cell of 𝐴𝑖𝑖 is set 1

if there exist an edge from 𝑖 to 𝑗, otherwise the value is 0. Consider the graph
shown in figure 7 (Jungnickel 2013: 40-41).

Figure 7. Directed graph.

The adjacency matrix 𝐴 for the graph of figure 7 is constructed as follows.

𝐴 =

⎣
⎢
⎢
⎢
⎡ 𝑣1 𝑣2 𝑣3 𝑣4
𝑣1 0 0 0 1
𝑣2 0 0 0 0
𝑣3 0 0 0 0
𝑣4 0 1 1 0 ⎦

⎥
⎥
⎥
⎤

.

12 Acta Wasaensia

3.6 Vertex – dominating set of a graph

In this work the concept of dominating set is utilized in the identification of verti-
ces representing the values of the key attributes of relational database in a graph
𝐺. A vertex in a graph 𝐺 dominates the vertices in 𝐺 that are adjacent to it. In the
graph 𝐺 = (𝑉,𝐸), 𝑈 ⊂ 𝑉, 𝑈 is said to be the vertex dominating set of graph 𝐺, if
the every vertex of 𝑉 belongs to 𝑈 or is covered (dominated) by vertex of 𝑈. Dom-
inating number of 𝐺 is the cardinality of the vertex dominating set with the least
number of elements. Dominating number is denoted by 𝜎0(𝐺) or 𝜎0. A dominat-
ing set of a graph 𝐺 is minimal if none of its proper subsets are dominating. The
dominating set of 𝐺 that has the smallest number of elements among all the dom-
inating sets of the 𝐺 is said to be minimum. Moreover, if 𝐺 contains such set of
vertices that it does not contain any adjacent vertices it is called a vertex inde-
pendent set of 𝐺. (Savolainen 1978: 81-82, Foulds 1992: 130.)

Foulds (1992:131) states the following about the vertex dominating set of a graph
G.

1. A vertex – dominating set for 𝐺 exists.
2. If 𝐺 is complete the 𝜎0 = 1.
3. If 𝐺 is connected with at least one internal vertex, then every mini-

mum vertex – dominating set for 𝐺 does not contain any dependent
vertices.

4. It is possible to remove a subset of vertices (possibly empty) from any
vertex – dominating set for in order to create a minimal (but not nec-
essarily minimum) vertex –dominating set 𝐺.

5. A minimal vertex – dominating set for 𝐺 is not necessarily a vertex
independent set of 𝐺.

6. Every maximal vertex independent set of 𝐺 is a vertex – dominating
set for 𝐺.

Example 3. Let 𝐺 be a graph (𝑉,𝐸) where 𝑉 = {𝑣1, 𝑣2,𝑣3, 𝑣4, 𝑣5} and 𝐸 =
{𝑣1𝑣2,𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1,𝑣2𝑣4, 𝑣3𝑣5}. Graphs 𝐺 is depicted in figure 8.

 Acta Wasaensia 13

Figure 8. Graph 𝐺 for example 3.

For the graph 𝐺 shown in figure 8 𝜎0(𝐺) = 2 and the minimum vertex –
dominating set 𝐷 contains vertices 𝑣2, 𝑣3. It is worth noticing that also vertices
𝑣3, 𝑣4 form a minimum vertex –dominating set for graph 𝐺.

14 Acta Wasaensia

4 DATA STRUCTURES AND MODELS

Hislop (2006:15-16) defines data as a result of observation. Data can be, for ex-
ample, raw numbers, words or images. Information can be seen as a refined form
of data. Data is refined into information by organizing it into a meaningful pat-
tern. So, information always includes some intellectual inputs. Both data and
information are basic building blocks of knowledge. Moreover, application, anal-
ysis, and use of data and information are seen as source of knowledge. Hislop
(2006: 15) states that “knowledge is data or information with a further layer of
intellectual analysis added, where it is interpreted, meaning is attached, and is
structured and linked with existing systems of beliefs and bodies of knowledge.”

The successful refinement of data into information and eventually into
knowledge as well the efficient utilization of knowledge requires competent struc-
tures and models. In the following sections, the concepts of data structure and
data models are introduced. Data models are covered at general level. The entity-
relationship and relational models have importance for this study, so they are
discussed in more detailed level.

The purpose of the following sections is to provide a general understanding of the
data models and data representation techniques. The ideas of the models dis-
cussed in the following are utilized later in this work. For example, how to repre-
sent data in a structured form. Typically, data is organized into records, which
are built around elements that identify individual records. Furthermore, the rec-
ords and record collections can be visualized as graphs, that is as vertices and
edges connecting them.

4.1 Data structures, data models, and ontologies

Data consist of single items called elements. Elements can be, for example, val-
ues, codes, and symbols. Williams (1971: 1) states that by storing the elements in
an organized manner they are given a structure. The structure of data enables the
preservation of the relationships between elements. Data structure also provides
access from one element to another. (Williams 1971:1; Falley 2007: 148.)

Data structure refers to how the data is stored in the memory. Main function of
data structure is to ensure algorithm efficiency and conceptual unity (Black
2004). More formally the data structure is a 4-tuple < 𝐷,𝐹, 𝑆,𝐴 >, where 𝐷 rep-
resents the domain or domains defined by the data structure. 𝐹 is a set of func-
tion definitions, which provide operations on values in 𝐷. The variables and their

 Acta Wasaensia 15

relationships are defined in storage structure 𝑆. The set of algorithms (𝐴) realizes
the functions (𝐹) by processing the storage structure. (Hansen 1981: 89.)

Data model provides concepts for describing the structure of the database. The
structure of the database refers to the data types, relationships, and constraints
for the data. Typically, data models are divided into three categories, which are
conceptual data models, physical data models, and representational data models.
Conceptual level models describe the data as users perceive it whereas physical
data models describe how the data is stored in the computer. Representational
data models provide concepts that can be understood by users, but also they are
close to the machine-understandable presentation of the data and, therefore, can
be implemented on a computer system. (Elmasri & Navathe 2007: 30-31.)

Ontology can be considered as a conceptual level data model. It defines a set of
concepts with which the domain of knowledge can be modeled. The concepts are
classes, attributes, and relationships between elements. Ontologies can be seen as
semantic level abstractions about the data where database schemas provide logi-
cal or physical level models of the data. Key application areas of ontologies are
the integration of heterogeneous databases, to enable interoperability between
different systems, and specifications of interfaces to independent, knowledge-
based services. (Gruber 2009.)

4.2 Network data model

The network data model is a logical level data model. Network database is a col-
lection of records, and a record is a collection of attributes. Relationships be-
tween records are represented with links. (Silberschatz, Korth & Sudarshan 2010:
D1.)

Consider a database that has two types of records 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑆𝑆𝑆𝑆𝑙𝑖𝑖𝑖
record contains attributes 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛, and respectively
𝑝𝑝𝑝𝑝𝑝𝑝𝑝 record has attributes 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛 and 𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠.
Formal record definitions are listed below.

type supplier = record
 supplier_id
 supplier_name

end

type product = record

product_id
product_name
units_in_stock

16 Acta Wasaensia

end

Figure 9 represents database with data stored according to definitions of supplier
record and product record. Note that supplier 𝑆𝑆𝑆𝑆 & 𝑆𝑆𝑆𝑆 delivers two products
𝑃1 and 𝑃2. The properties of the relationships between records can be represent-
ed with the data-structure diagram (figure 10).

S1 Sons & Sons

S2 Cheap Products

P1 9" nail 23

P2 bolt 15

P3 hammer 7

Supplies

Supplies

Supplies

Supplier records Product records

Figure 9. Sample database for supplier-product data.

Schema for the sample database is represented by the data-structure diagram.
The nature of the relationship between records can be specified with directed
arrows. Many-to-many relations are depicted with an undirected arrow; one-to-
many relationships are depicted with directed arrows, and bidirectional arrows
are used for denoting one-to-one relationships (figure 10). The relationships be-
tween records can also be named. For example, in this case the relationship could
be named as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. (Bachman 1969: 4-5; Silberschatz et al. 2010: D2-D5.)

Supplier_id Supplier_name Product_id Product_name Units_in_stockMany-to-many relationship

Supplier_id Supplier_name Product_id Product_name Units_in_stockOne-to-many relationship

Supplier_id Supplier_name Product_id Product_name Units_in_stockOne-to-one relationship

Figure 10. Data-structure diagram for a sample database.

4.3 Hierarchical data model

A hierarchical database is a collection of records connected by links. Similarly, to
the network data model records are collections of single-valued attributes. Asso-
ciation between two records is represented as a link. Hierarchical databases are
typically represented as a collection of rooted trees called database trees. Figure
11 depicts a small database for products and their suppliers, where 𝑆𝑆𝑆𝑆 & 𝑆𝑆𝑆𝑆
supplies two products. In the schema level the relationship type is indicated by
directed arrows (figure 12). (Silberschatz et al. 2010: E1-E2.)

 Acta Wasaensia 17

P1 9" nail 23 P2 bolt 15 P3 hammer 7

S1 Sons & Sons S2 Cheap Products

Supplier records

Product records

Figure 11. Database tree.

Hierarchical data model is considered quite rigid (Elmasri & Navathe 2000: 805-
808). For example, situation where a product is supplied by multiple suppliers,
can only be described with record replication that leads to (Silberschatz et al.
2010: E2):

1. data inconsistency when updating and
2. waste of space.

Schema for the hierarchical database is represented with a tree-structure dia-
gram. The nature of relationship between records can be specified with directed
arrows (figure 12). One-to-many and one-to-one relationships can be represented
by single arrows. One-to-many relationships are represented by a directed arrow.
One-to-one relationship is depicted with a bidirectional arrow. (Silberschatz et al.
2010: E2-E4.)

Product_id Product_name Units_in_stock

Supplier_id Supplier_name

Product_id Product_name Units_in_stock

Supplier_id Supplier_name

One-to-many relationship

One-to-one relationship

Figure 12. Tree-structure diagrams.

18 Acta Wasaensia

Many-to-many relationship is depicted with two tree-structure diagrams 𝑇1 and
𝑇2 (figure 13). The diagrams represent one-to-many relationships between sup-
plier record and product record, and vice versa. This kind of expression is needed
in situations where products have multiple suppliers and suppliers supply multi-
ple products. (Silberschatz et al. 2010: E5.)

Product_id Product_name Units_in_stock

Supplier_id Supplier_name Product_id Product_name Units_in_stock

Supplier_id Supplier_name

T1 T2

Figure 13. Expression of many-to-many relationship.

4.4 Entity-Relationship data model – ER Model

The ER model is an abstract representation of the database. The elements of the
model are entity sets, attributes, and relationships. An entity represents an object
in the real world, and similar entities form a group called an entity set. Within an
entity set the entities have their own individual values for the given properties or
attributes. Each entity within an entity type is unique, and it is identified by at-
tribute or set of attributes called keys. (Chen 1976: 10-11; Garcia-Molina, Ullman
& Widom: 2002: 24-25; Elmasri & Navathe 2007:61-62, 65-66.)

Attributes describe the properties of an entity. In the ER model, attributes can be
composite or atomic, single-valued or multivalued and stored or derived. Compo-
site attribute is an attribute that can be divided into attributes having independ-
ent meanings. An attribute that cannot be divided is called atomic attribute. An
attribute that has only one value for an entity is called single-valued, and an at-
tribute having set of values for the same entity is called multivalued. Some attrib-
utes are derivable from attributes, and they are called stored attributes. (Garcia-
Molina et al. 2002: 25; Elmasri et al. 2007; 63-64.)

Chen (1976: 12) states that attribute is a function 𝐹 that connects (figure 14) an
entity set with a value set 𝑓: 𝐸𝑖 → 𝑉𝑖 .

 Acta Wasaensia 19

Entity set

pr1

Attributes Value sets

PR1

(Product)

F1

(Product_id)
V1

(Product.Product_id)
v11

F2

(Product_name)
V2

(Product.Product_name)

V3

(Product.Units_in_stock)

v21

(bolt)

v22

(15)

(p2)

F3

(Units_in_stock)

Figure 14. Attribute mappings for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 entity set.

Connections between entity sets are called relationships. Relationship types 𝑅 are
used for defining associations between 𝑛 entity types 𝐸1,𝐸2, … ,𝐸𝑛. According to
Elmasri and Navathe (2007: 70) 𝑅 is a set of relationship instances 𝑟𝑖, where each
𝑟𝑖 associates 𝑛 individual entities (𝑒1, 𝑒2, … 𝑒𝑛), and each entity 𝑒𝑗 in 𝑟𝑖 belongs to
an entity type 𝐸𝑗 , 1 ≤ 𝑗 ≤ 𝑛. The type of relationship defined on mathematical

relation 𝐸1,𝐸2, … ,𝐸𝑛 and each entity type participates in relationship type 𝑅. Re-
spectively entities 𝑒1, 𝑒2, … 𝑒𝑛 participate in the relationship instance 𝑟𝑖 =
 (𝑒1, 𝑒2, … 𝑒𝑛).

The schema of ER model is represented with Entity-Relationship diagrams
(figure 15), where entity sets are depicted with rectangles, attributes are
portrayed with ovals. Respectively the relationships are represented as diamonds
(figure 16). (Elmasri & Navathe 2007: 80.)

PRODUCT

Product_name

Units_in_stock

Product_id Supplier

Figure 15. Entity-relationship diagram for the Product entity type.

Relationships between different entity types in ER diagram are not usually
represented as an attribute. For example, in figure 15 PRODUCT entity has an

20 Acta Wasaensia

attribute called Supplier which implies that there should be a relationship be-
tween entities PRODUCT and SUPPLIER. An attribute depicting such association
is converted into a relationship type (figure 16). The relationship shown in figure
16 is a binary relationship. Sometimes a relationship can have more participants
these kind relationships are called multiway relationships. (Garcia-Molina et al.
2002: 28; Elmasri & Navathe 2007:70.)

PRODUCT

Product_name

Units_in_stock

Product_id SUPPLIERis-supplied-by
1N

Supplier_id

Supplier_name

Figure 16. Relationship between Product and Supplier entities.

Entity-Relationship diagram contains information about identifying attributes
called keys (underlined attributes in figure 16) and cardinality ratios for binary
relationships. Other constraints such as referential constraints and domain-
specific constraints can be expressed in ER model. (Garcia-Molina et al. 2002:
49-53; Elmasri & Navathe 2007:74-76.)

4.5 Relational data model

In the relational model, the data is represented as a collection of relations. Each
relation is represented as a two-dimensional table. The elements of the table are
tuple (a table row) and attribute (column header). The values of each column are
determined by the domain of possible values. A domain represents a collection of
atomic (indivisible) values. Each domain has predefined data type. (Elmasri &
Navathe 2007:142-143.)

The structure of relation 𝑅 is described by a relation schema. Relation schema
𝑅(𝐴1,𝐴2, … ,𝐴𝑛) consists of the relation name 𝑅 and an attribute list 𝐴1,𝐴2, … ,𝐴𝑛.
The names of the attributes are determined by the role they have in a certain do-
main, denoted by 𝑑𝑑𝑑(𝐴𝑖). For example a relation for products can be formed as
follows 𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑛,𝑈𝑈𝑈𝑈𝑈_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠). (Codd, 1970: 379;
Elmasri & Navathe 2007:143.)

 Acta Wasaensia 21

The instance or state of the relation r of the relation schema, 𝑟(𝑅), is set of n-
tuples 𝑟 = {𝑡1, 𝑡2, … , 𝑡𝑘}. N-tuple is defined as an ordered set of values 𝑡 =<
𝑣1, 𝑣2, … , 𝑣𝑛 >. Each value vi is an element of 𝑑𝑑𝑑(𝐴1). An instance of a relation 𝑟
can be defined more formally as follows (Elmasri & Navathe 2007:144):

𝑟(𝑅) ⊆ �𝑑𝑑𝑑(𝐴1) × 𝑑𝑑𝑑(𝐴2) × … × 𝑑𝑑𝑑(𝐴𝑛)�

Codd (1970: 379) states that a table representing relation 𝑅 has the following
properties:

1. Each row represents a tuple of 𝑅.
2. The ordering of rows is immaterial.
3. All rows are distinct.
4. The order of columns must correspond the ordering in the relation sche-

ma 𝑅(𝐴1,𝐴2, … ,𝐴𝑛).
5. The significance of each column is partially conveyed by labeling it with

the corresponding domain.

By definition, each tuple in relation must be different (see above item 3), which
means that tuples in relation cannot have exactly same combination values of
attributes. The uniqueness of a relation is ensured by forming a superkey of the
relation. Superkey is a subset of values that are different for each tuple in relation
of 𝑅. Typically, superkey may contain redundant attributes, in these cases it is
useful to assign a non-redundant key to ensure the uniqueness of the tuples in
relation 𝑟 of 𝑅. A key attribute must obey the following rules. (Elmasri & Navathe
2007:150-151.)

1. Tuples in the relation cannot have same values for all attributes in the key.
2. The key must be minimal superkey. In other words, no attributes can be

removed from it without conflicting the uniqueness constraint of item 1.

Relation schema usually has more than one key. All the keys are called a candi-
date key, and one of these keys is defined as the primary key (PK) of the relation.
Primary key identifies each (unique) tuple in the relation. (Codd, 1970: 380;
Elmasri & Navathe 2007:150-151.)

Sometimes it is necessary to refer from one relation to another (figure 17). To
maintain referential integrity, the concept of foreign key (FK) is introduced. A
foreign key is an attribute set of the relation schema 𝑅1 that references to a rela-
tion schema 𝑅2. The foreign key has to satisfy the following conditions. (Codd
1970: 380; Elmasri & Navathe 2007:153-154.)

1. The attributes in the foreign key of 𝑅1 have the same domain as the attrib-
utes of primary key in 𝑅2.

22 Acta Wasaensia

2. A value of foreign key in tuple 𝑡1 of the relation 𝑟1(𝑅1) occurs as value of
PK for some tuple in 𝑡2 in the relation 𝑟2(𝑅2). If 𝑡1[𝐹𝐹] = 𝑡2[𝑃𝑃], then the
tuple 𝑡1 is said to reference the tuple 𝑡2.

Figure 17. Referential relationship between 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 relations.

The schema of relational database can be represented as a schema diagram (fig-
ure 18). The schema contains information keys and attributes and also infor-
mation about possible cardinalities, referential and semantic constraints.

Figure 18. Database schema diagram.

The ER model and the relational model have correspondences, which are listed in
table 2. These equivalences are utilized throughout this study when the proper-
ties of vertices and edges in an ARS-based-graphs are examined.

 Acta Wasaensia 23

Table 2. Correspondences between ER model and relational model
(according to Elmasri & Navathe 2007: 224).

ER model Relational model
Entity type Entity relation
1:1 or 1:N relationship
type

Foreign key (or relationship relation)

M:N relationship type Relationship relation and two foreign keys
n-ary relationship type Relationship relation and n foreign keys
Simple attribute Attribute
Composite attribute Set of simple component attributes
Multivalued attribute Relation and foreign key
Value set Domain
Key attribute Primary or secondary key

4.6 Semantic link network – SLN

Semantic link network is flexible and associative method for representing seman-
tic data. It is a directed graph (figure 19) which consists of nodes and links be-
tween nodes. Link between nodes is a labeled pointer, called alpha link. The label
contains semantic properties that are derived from the domain. Any semantic
relationship between nodes is described by a property or a combination of prop-
erties. SLN can be denoted 𝑟

𝛼
→ 𝑟′ where 𝑟 and 𝑟′ represents real world concepts

and 𝛼 is a semantic factor connecting the concepts. (Zhuge 2003: 89-90; Zhuge
2005: 40)

Figure 19. Semantic link network.

According to Zhuge (2011: 990) the use of SLN can be justified as follows:
1. It supports intelligent applications by assigning semantic indicators and

rules to links and enabling relational, analogical, inductive, and complex
reasoning.

2. It explores the laws of semantic linking. It pursues diversity and user ex-
perience of linking and exploring rather than the correctness.

3. It provides a light-weight semantic networking approach for peer-to-peer
knowledge sharing.

The semantic expressiveness and reasoning capabilities of SLN is based semantic
primitives (table 3). Reasoning rules are constructed by combining semantic
links. (Zhuge 2005: 41-43; Zhuge, Yun, Jia & Liu: 2005: 228-229.)

24 Acta Wasaensia

Table 3. Semantic link primitives.

Link type Characteristics
Cause-effect Transitive link that indicates causality between two

items.
Implication Transitive link that means that the semantics of predeces-

sor implies to its successor.
Subtype Transitive link indicates that the successor is part of its

predecessor.
Similar-to Intransitive link that describes the similarity in semantics

between successor and predecessor.
Instance Link showing that the successor is an instance of the pre-

decessor.
Sequential Transitive link that indicates that the content of the item

A is a successor of the content of item B. Also links can
be connected in a sequential chain.

Reference Transitive link that means that item A is an explanation
of item B.

Equal-to Link showing that two items are identical in meaning.
Empty Link showing that two items are irrelevant to each other.
Null or unknown Link that indicates unknown or uncertain relation be-

tween two items.
Non-α relation Link that shows that there is no semantic relationship

between two items.
Reverse relation op-
eration

If there exists semantic relation from A to B, then there
also exists relation from B to A.

 Acta Wasaensia 25

5 ADJACENCY MODEL

Adjacency Model (AM), is a model for data representation. It is based on the con-
cepts of adjacency relation system ARS, adjacency relation system with adjacency
defining sets (ARST), the unique ARST and the valid ARST. ARST is a model that
can be used to describe adjacencies between sets of elements belonging to collec-
tions called types. (Wanne 1998: 9-12; Töyli 2002: 39.)

The concept of the adjacency relation system was introduced by Wanne (1998) in
“Adjacency Relation Systems”. Adjacency relation system (ARS) is a pair of sets
and relations (𝐴,𝑅). Set 𝐴 = {𝐴1,𝐴2, … ,𝐴𝑛}, 𝑛 ≥ 1, is a set containing pairwise
disjoint finite nonempty sets and 𝑅 = {𝑅𝑖𝑖|𝑖, 𝑗 ∈ {1, 2, … ,𝑛}} is a set of relations,
where each 𝑅𝑖𝑖 is a relation on 𝐴𝑖 × 2𝐴𝑗, where 2𝐴𝑗 denotes the power set of 𝐴𝑗.
(Wanne 1998:9.)

Consider relation 𝑅𝑖𝑖 containing pairs (𝑥,𝑦1), (𝑥,𝑦2), … , (𝑥,𝑦𝑚). Since each pair

has x as the first component of the pair, thus elements 𝑦𝑘(𝑘 = 1,2, … ,𝑚) are said
to be adjacent to the element x. This is denoted as 𝐴𝐴𝑗(𝑥). (Wanne 1998: 9;

Wanne & Linna 1999: 40.)

Example 4. Consider an adjacency relation system (𝐴,𝑅), where 𝐴 =
{𝐴1,𝐴2,𝐴3}, 𝐴1 = {𝑥1, 𝑥2, 𝑥3}, 𝐴2 = {𝑦1,𝑦2, 𝑦3}, 𝐴3 = {𝑧1, 𝑧2} and 𝑅 contains rela-
tions:

𝑅11 = {(𝑥2, {𝑥1})}

𝑅12 = {(𝑥1, {𝑦1}), (𝑥2, {𝑦3}), (𝑥3, {𝑦1})}

𝑅13 = {(𝑥2, {𝑧1})}

𝑅21 = ∅

𝑅22 = {(𝑦2, {𝑦3})}

𝑅23 = {(𝑦3, {𝑧2})}

𝑅31 = {(𝑧2, {𝑥2})}

𝑅32 = ∅

𝑅33 = {(𝑧1, {𝑧2})}.

26 Acta Wasaensia

Figure 20. Graph representation of adjacency relation system.

The adjacency relation system shown in figure 20 is not symmetric because, for
example, the element 𝑦3 is adjacent to element 𝑥2 (𝐴𝐴2(𝑥2) = {𝑦3}) but not vice
versa.

Let us introduce the concept of a symmetric adjacency relation system. ARS is
symmetric if for each pair 𝑥 ∈ 𝐴𝑖 ,𝑦 ∈ 𝐴𝑗 holds that 𝑥 ∈ 𝐴𝐴𝑖(𝑦) if and only if
𝑦 ∈ 𝐴𝐴𝑗(𝑥) and for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. (Wanne 1998: 10). Note that, in this work the

adjacency relation systems depicting a relational databases considered symmet-
ric.

Example 5. Change the definitions of the relations 𝑅11,𝑅13,𝑅21,𝑅22,𝑅31,𝑅32 and
𝑅33 as follows:

𝑅11 = {(𝑥1, {𝑥2}), (𝑥2, {𝑥1})}

𝑅13 = {(𝑥2, {𝑧1, 𝑧2})}

𝑅21 = {(𝑦1, {𝑥1, 𝑥3}), (𝑦3, {𝑥2})}

𝑅22 = {(𝑦2, {𝑦3}), (𝑦3, {𝑦2})}

𝑅31 = {�𝑧1, {𝑥2,}�, �𝑧2, {𝑥2,}�}

𝑅32 = {(𝑧2, {𝑦3})}

𝑅33 = {(𝑧1, {𝑧2}), (𝑧2, {𝑧1})}.

The refined ARS considered is symmetric, and it is represented by an undirected
graph (figure 21). (Wanne 1998:10-11.)

 Acta Wasaensia 27

Figure 21. Symmetric ARS portrayed by undirected graph.

The adjacency between elements of certain entity types is expressed by relations.
If the adjacency of elements depends on the definition of relations, it is said to be
weak. The adjacency of elements is said to be strong if it is defined with respect to
a set of entity types. The definition for adjacency defining sets if given next. (Töyli
et al. 2002a: 303; Töyli et al. 2002b: 285.)

In an adjacency relation system each element set 𝐴𝑖, 𝑖 = 1,2, … ,𝑛, represents a
certain entity type denoted as 𝑇𝑖 , 𝑖 = 1,2, … ,𝑛. In addition, associate with each
index pair 𝑖, 𝑗 ∈ {1,2, … ,𝑛} a set of indices 𝐾 ⊆ {1,2, … ,𝑛} − {𝑖, 𝑗} and also a set of
entity types 𝑇�𝑖𝑖 = {𝑇𝑘|𝑘 ∈ 𝐾}. The set 𝑇�𝑖𝑖 gives the entity types which determine
the adjacency between the elements of 𝐴𝑖 and 𝐴𝑗. (Wanne 1998: 11.)

The adjacency defining set 𝑇�𝑖𝑖 is defined as follows. The elements 𝑥 ∈ 𝐴𝑖 ,𝑦 ∈ 𝐴𝑗
where 𝑖, 𝑗 ∈ {1,2, …𝑛} and 𝑥 ≠ 𝑦, are considered to be adjacent with respect to a
set of entity types 𝑇�𝑖𝑖 = {𝑇𝑘|𝑘 ∈ 𝐾} ≠ ∅ if for each 𝑘 ∈ 𝐾 there is an element
𝑧 ∈ 𝐴𝑘 such that 𝑥 ∈ 𝐴𝐴𝑖(𝑧) and 𝑦 ∈ 𝐴𝐴𝑗(𝑧). (Wanne 1998:11; Töyli et al. 2002b:

284.)

In the ARS introduced in example 4 the elements 𝑦3 ja 𝑧1 are adjacent to element
𝑥2 so their adjacency is defined by set 𝑇�23 = {𝑇1}. For example, in the figure 20
the adjacency between elements 𝑦1 and 𝑥1 is considered weak because their adja-
cency is depends only on the relation definitions. On the other hand, the adjacen-
cy between elements 𝑦3 and 𝑧2 depends on the entity type 𝑇1 (𝑇�23 = {𝑇1}), it is
considered to be strong. The concepts of weak and strong adjacency are com-
bined together in the concept of unique the adjacency. (Töyli et al., 2002a: 303.)

In addition to the adjacency defining sets Töyli (2002:47-48) introduced the idea
of transitive adjacency which, is sequence of elements 𝑥 = 𝑥1, 𝑥2, … 𝑥𝑚 = 𝑦 such
that 𝑥𝑖 ∈ 𝐴𝐴(𝑥𝑖+1), 𝑖 = 1, … ,𝑚 − 1. Transitive adjacency is denoted by 𝑥 ∈ 𝐴𝐴𝑡𝑡(𝑦)

28 Acta Wasaensia

For example, in figure 22 element 𝑦1 is said to be transitively adjacent to 𝑧2,
𝑦1 ∈ 𝐴𝐴𝑡𝑡(𝑧2). The transitive adjacency of elements 𝑦1 and 𝑧2 is determined by
sequence 𝑦1, 𝑥1, 𝑥2, 𝑧2 (figure 22). Töyli (2002: 47) points out that some of the
elements 𝑥1, 𝑥2, … 𝑥𝑚 can be of the same type.

Figure 22. Sequence of elements depicting transitive adjacency between ele-
ments 𝑦1 and 𝑧2.

Adjacency relation system with adjacency defining sets (ARST) can be denoted by
(𝐴,𝑅, τ), where τ means the set of adjacency defining sets. ARST is unique if for
each pair 𝑖, 𝑗 = {1,2, … ,𝑛} of integers the adjacency defining set 𝑇�𝑖𝑖 is nonempty
for all elements 𝑥 ∈ 𝐴𝑖 ,𝑦 ∈ 𝐴𝑗 and x and y are adjacent if and only if they are adja-
cent with respect to 𝑇�𝑖𝑖 . (Wanne 1998: 12.)

Example 5. Consider the ARS defined in example 4. Let us add a new relation
𝑅32 = {(𝑧1, {𝑦3})}. Now we have the set of relations:

𝑅11 = {(𝑥2, {𝑥1})}

𝑅12 = {(𝑥1, {𝑦1}), (𝑥2, {𝑦3}), (𝑥3, {𝑦1})}

𝑅13 = {(𝑥2, {𝑧1})}

𝑅21 = ∅

𝑅22 = {(𝑦2, {𝑦3})}

𝑅23 = {(𝑦3, {𝑧2})}

𝑅31 = {(𝑧1, {𝑥2})}

𝑅32 = {(𝑧1, {𝑦3})}

 Acta Wasaensia 29

𝑅33 = {(𝑧1, {𝑧2})}.

and the adjacency defining set

𝑇�23 = {𝑇1},

𝑇�11 = 𝑇�12 = 𝑇�13 = 𝑇�21 = 𝑇�22 = 𝑇�31 = 𝑇�32 = 𝑇�33 = ∅.

In the figure 23 𝑧1 and 𝑦3 are adjacent with respect to relation 𝑅32 (dashed arrow)
and they are also adjacent according to 𝑇�23 = {𝑇1} ≠ ∅. If there are no other non-
empty adjacency defining set the 𝐴𝐴𝐴𝐴 is said to be unique.

Figure 23. Unique ARS.

The notation 𝑇𝑖 → 𝑇𝑗 for a relation type indicates that the relations 𝑅𝑖𝑖 are defined
in 𝐴𝑖 × 2𝐴𝑗 The set of relation types {𝑇𝑖 → 𝑇𝑗|(𝑖, 𝑗) ∈ 𝑆}, where 𝑆 ⊆ {1,2, … ,𝑛} ×
{1,2, … ,𝑛}, is called a relation combination. The relation combination for an
ARST (𝐴,𝑅, τ) the restriction of 𝑅 on a given relation combination is determined
by 𝑆 ⊆ {1,2, … ,𝑛} × {1,2, … ,𝑛} is denoted by 𝑅|𝑆, i.e. 𝑅|𝑆 = {𝑅𝑖𝑖 ∈ 𝑅|(𝑖, 𝑗) ∈ 𝑆}.

(Wanne 1998:13.)

The relation combination is defined as follows. Given the entity types 𝑇1, … ,𝑇𝑛, a
set 𝑆 ⊆ {1,2, … ,𝑛} × {1,2, … ,𝑛}, and adjacency defining sets τ. A relation combina-
tion {𝑇𝑖 → 𝑇𝑗|(𝑖, 𝑗) ∈ 𝑆} is said to be valid, if for any unique ARST (𝐴,𝑅, τ) there is

no unique ARST (𝐴,𝑅’, τ) such that 𝑅|𝑆 = 𝑅’|𝑆. Otherwise the relation combina-
tion is considered to be non-valid. The relation combination plays key role in
query optimizations because it enables the restriction of the search space and so
limits the search time used by the query. (Wanne 1998:13; Töyli et al. 2002a:
304.)

30 Acta Wasaensia

5.1 Adjacency schema

In the adjacency model, the concept of type represents a group of elements. Adja-
cency schema (AdSchema) was originally developed for representing semistruc-
tured data. AdSchema focuses on the adjacencies between the types contrary to
adjacency relation systems which concerns adjacencies of individual elements of
the types. (Töyli 2006: 61.)

AdSchema is a pair (𝑇𝐴,𝑅), where 𝑇𝐴 = {𝑇1,𝑇2, … ,𝑇𝑛}, is a set of types, and
𝑅 = {𝑅𝑖|𝑖 ∈ 1,2, … ,𝑛}, where each 𝑅𝑖 = �𝑇𝑖 , 𝐼𝐼(𝑇𝑖)�, and 𝐼𝐼(𝑇𝑖) denotes a subset of
𝑇𝐴. If 𝑅𝑖 = �𝑇𝑖 , {𝑇𝑖1 ,𝑇𝑖2 , … ,𝑇𝑖𝑚}� ∈ 𝑅, then each type 𝑇𝑖𝑘 (𝑘 = 1,2, … ,𝑚) is said to be
interrelated to the type 𝑇𝑖. The set of interrelated types {𝑇𝑖1 ,𝑇𝑖2 , … ,𝑇𝑖𝑚} is denoted

by 𝐼𝐼(𝑇𝑖). (Töyli 2006: 61-62.)

The interrelationship between types 𝑇𝑖 and 𝑇𝑗 is denoted with 𝑇𝑖 → 𝑇𝑗. Assume
that a data structure contains types 𝑇𝑖 and 𝑇𝑗 and if the elements of these types
are adjacent with each other, then the notion 𝑇𝑖 → 𝑇𝑗 can be used. This implies
that, 𝑇𝑗 = 𝐼𝐼(𝑇𝑖) and the interrelationship of the elements can be represented with

pair of elements. (Wanne 1998: 12-14; Töyli 2006: 62.)

Töyli (2006: 62) states that relations of the AdSchema are considered to be sym-
metric. In symmetric AdSchema, there is no predefined order between types in
the schema, and it is possible to traverse the given data structure in both direc-
tions. AdSchema (𝑇𝐴,𝑅) is symmetric if for each pair of types it holds that
𝑇𝑖 = 𝐼𝐼�𝑇𝑗� and 𝑇𝑗 = 𝐼𝐼(𝑇𝑖). (Töyli 2006: 63.)

Interrelationship defining type can be used for defining the relationship between
types. More specific, types 𝑇𝑖 ,𝑇𝑗 ∈ 𝑇𝐴 are interrelated with respect to a type 𝑇𝑘,
𝑇𝑘 ∈ 𝑇𝐴, 𝑘 ∈ {1,2, … ,𝑛} − {𝑖, 𝑗}, if 𝑇𝑘 = 𝐼𝐼(𝑇𝑖) and 𝑇𝑘 = 𝐼𝐼�𝑇𝑗�. Moreover, 𝑇𝑖 and 𝑇𝑗,
𝑖 ≠ 𝑗 are said to be transitively interrelated if there are one or more consecutive
intermediate types between them. (Töyli 2006: 63-64.)

The number of interrelationships in AdSchema, i.e. the size of the schema can be
minimized with the concept interrelationship combination. Based on the minimal
and valid combination all the rest of the interrelationships can be derived. (Töyli
2006: 65.)

Example 6. Let (𝑇𝐴,𝑅) be a pair, where 𝑇𝐴 = {𝑇1,𝑇2,𝑇3,𝑇4,𝑇5,𝑇6}, 𝑅 contains the
relations {𝑅1,𝑅2,𝑅3,𝑅4,𝑅5,𝑅6} and the relations defined as follows 𝑅1 =
(𝑇1, {𝑇2,𝑇4}), 𝑅2 = (𝑇2, {𝑇1,𝑇3,𝑇4}), 𝑅3 = (𝑇3, {𝑇2}), 𝑅4 = (𝑇4, {𝑇1,𝑇2,𝑇5,𝑇6}),
𝑅5 = (𝑇5, {𝑇4}) and 𝑅6 = (𝑇6, {𝑇4}). The AdSchema is portrayed in figure 24.

 Acta Wasaensia 31

T1

T2

T3

T4

T5 T6

Figure 24. AdSchema.

The minimal interrelationship combination for the AdSchema of shown in figure
24 is 𝑅2 and 𝑅4. All the rest of the interrelationship can be derived based on these
two relations.

5.2 Modeling adjacency relation systems with AdSchema

The basic structure of an ARS, i.e. interrelationships between types, can be repre-
sented by AdSchema. However, this requires some adjustments to the definitions
discussed in the previous section. In the previous section was stated that types 𝑇𝑖
and 𝑇𝑗 are interrelated if their elements are adjacent to each other. In order to
represent the basic structure of an ARS, it must be assumed that types 𝑇𝑖 and 𝑇𝑗
are interrelated if there exist some adjacent elements 𝑥 and 𝑦, such that 𝑥 ∈ 𝑇𝑖
and 𝑦 ∈ 𝑇𝑗.

Since the AdSchema provides information about the basic structure of an ARS, it
is a useful tool for analyzing adjacency relation systems. Especially in cases where
ARS depicts a relational database an ARS contains multiple components, which
have the similar structure. Below is a list of steps needed for representing the
structure of an ARS with AdSchema. The conversion method is applied in exam-
ple 7.

1. Select a set (𝐴𝑖) from adjacency relation system.
2. Create a vertex for the corresponding type (𝑇𝑖).
3. Repeat steps 1 and 2 until every set is covered.
4. Take and adjacency defining set and define it as in interrelationship defin-

ing type.
5. Repeat step 4 until all interrelationship defining types are defined.

32 Acta Wasaensia

6. Create interrelationship (edge) between type and its interrelationship de-
fining type.

7. Repeat step 6 until all interrelationships are defined
8. Create all other interrelationships according to the original adjacency rela-

tion system

Example 7. Let (𝐴,𝑅) be symmetric adjacency relation (figure 25) system where
𝐴 = {𝐴1,𝐴2,𝐴3,𝐴4} and 𝐴1 = {𝑥1, 𝑥2, 𝑥3}, 𝐴2 = {𝑦1,𝑦2,𝑦3}, 𝐴3 = {𝑧1, 𝑧2} and
𝐴4 = {𝑤1,𝑤2} and 𝑅 consists of relations

𝑅11 = {(𝑥1, {𝑥2}), (𝑥2, {𝑥1})}

𝑅12 = {(𝑥1, {𝑦1}), (𝑥2, {𝑦3})}

𝑅13 = {(𝑥2, {𝑧1}), (𝑥3, {𝑧2})}

𝑅14 = {(𝑥3, {𝑤1})}

𝑅21 = {(𝑦1, {𝑥1}), (𝑦3, {𝑥2})}

𝑅22 = {(𝑦2, {𝑦3}), (𝑦3, {𝑦2})}

𝑅31 = {(𝑧1, {𝑥2}), (𝑧2, {𝑥3})}

𝑅41 = {(𝑤1, {𝑥3})}

𝑅44 = {(𝑤1, {𝑤2}), (𝑤2, {𝑤1})}

and the adjacency defining sets are

𝑇�23 = 𝑇�34 = {𝑇1}

 Acta Wasaensia 33

Figure 25. Graph representation for ARS of example 7.

The AdSchema for the ARS of example 7 can now be stated as follows. Let (𝑇𝐴,𝑅)
be an AdSchema where 𝑇𝐴 = {𝑇1,𝑇2,𝑇3,𝑇4} and 𝑅 consists of relations.

𝑅1 = (𝑇1, {𝑇2,𝑇3,𝑇4})

𝑅2 = (𝑇2, {𝑇1})

𝑅3 = (𝑇3, {𝑇1})

𝑅4 = (𝑇4, {𝑇1})

The AdSchema depicting the ARS of example 7 is shown in figure 26. It is worth
noticing that, in this case, the minimal interrelationship combination is 𝑅1. This
means that the rest of relations can be derived based on relation 𝑅1.

Figure 26. AdSchema for example 7.

34 Acta Wasaensia

6 UTILIZATION OF ADJACENCY MODEL IN
DATAMODELING

This section discusses the utilization of AM and AdSchema in data modeling.
Discussion covers modeling of graph structures such as OEM and semantic link
network. This section also discusses briefly modeling relational data with graphs
as an introduction for the usage of AM and AdSchema in modeling relational
data. Finally, and an adjustment for the AdSchema is proposed in section “Ex-
tended AdSchema”.

6.1 Modeling graphs with Adjacency Model

Adjacency model can be utilized in modeling graphs such as OEM –graph
(McHugh, Abiteboul, Goldman, Quass & Widom: 1997: 54-57) and semantic link
network. OEM –graph is used typically modeling unstructured or semistructured
data. In OEM –graph (figure 27) the data is stored and represented with labeled
graphs. McHugh et al. (1997: 55) state that the model does not have fixed schema
and that the information of the labels can change dynamically. Its main intention
is to handle incomplete and unstructured data.

&1

&2 &3

Relation

Supplier SupplierSupplier

&4

&5 &6

ID Name

&7 &8

ID Name

&9 &10

ID Name

A1 ”Sons &
Sons”

A2 ”Cheap
Products”

C2 ”Buy,
buy!”

Figure 27. Supplier relation as OEM-graph.

 Acta Wasaensia 35

Töyli et al. (2002b: 286-287) have developed a process for converting OEM –
graph into adjacency relation system. The conversion is done from top to bottom,
i.e. depth-first so that all the edges are systematically handled. The method also
reduced data redundancy because the edges having the same label are considered
as one type (Töyli 2006: 56). The conversion process has the following phases.

1. If there is an incoming edge into the root node, create a type of it.
2. Select an edge from the graph and create a new type of the edge.
3. Repeat step 2 until all the distinct edges are handled.
4. Select a type that has two or more distinct types adjacent to it and define it

as an adjacency defining type.
5. Repeat step 4 until all such types are handled.
6. Create an adjacency between an element of an atomic type and an element

of its corresponding adjacency defining type.
7. Repeat step 6 until all the elements of atomic types are handled.
8. Draw the adjacencies between the elements of the adjacency defining

types according to the original graph.

The OEM –graph shown in figure 27 is converted into adjacency relation system
shown in figure 28.

Figure 28. Adjacency relation system representation of OEM -graph.

Semantic link network is a graph-based model for representing semantic infor-
mation. Semantic link network consists of nodes and edges connecting them
(Zhuge 2003: 89-90). Adjacency relation system and semantic link network have
some similarities that make it possible to model convert SLN into adjacency rela-
tion system. The conversion process it quite straightforward:

1. Select a node and create type of it.
2. Select an alpha link type and create type of it.

36 Acta Wasaensia

3. Assign all link elements to their corresponding types. Identify links with
indices.

4. Repeat steps 1 and 2 until all the distinct nodes and link types are handled.
5. Define the alpha links as an adjacency defining type.
6. Repeat step 5 until all the links are defined as adjacency defining type.
7. Create adjacencies between elements of types and their corresponding ad-

jacency defining types.
8. Repeat step 7 until all the adjacencies based on adjacency defining types

are created.
9. If needed, create other adjacencies between elements according the origi-

nal semantic link network.

Note that because, by definition, the edges of an SLN directed it would be nearly
impossible to create an adjacency relation system with alpha links as adjacency
defining types. However, there exists a semantic link primitive called Reverse
relation operation (Zhuge 2005: 41-43; Zhuge, Yun, Jia & Liu: 2005: 228-229),
which makes it possible to draw the symmetric adjacency relation system. So the
SLN based ARS is symmetric.

Example 8. Consider a semantic link network shown in figure 29.

r1

r2

r3

r4

r6

r5

ce

sub

ins

ce

ref

ref

seq

ins

Figure 29. A simple SLN (Zhuge et al. 2005: 229).

In the first step types for each node of the graph are defined. The method reduces
redundancy by creating types for unique nodes. In the second step types for the
links are created. In the third step, it is necessary to represent all the links in the
adjacency relation system. Each link is assigned to its corresponding type. If the
SLN contains two or more links of the same type, the links must be identified

 Acta Wasaensia 37

with indices. In the fourth step the adjacency defining types are defined, the na-
ture of SLN dictates that the alpha links should be defined as adjacency defining
sets. The purpose of the sixth step is to draw adjacencies between types and the
corresponding element of the adjacency defining type. The adjacencies between
elements are represented with undirected edges. Finally, all adjacencies are de-
fined. Adjacency relation system representing the SLN of figure 29 is portrayed in
figure 30.

R2

r2r1

R1

ce2CE ce1

R3

r3 SUBsub1

R4

r4

ins1ins2

ref1 ref2
R5 r5

R6r6

REF

IbS

SEQ seq1

Figure 30. ARS representation of example SLN.

6.2 Graph-based modeling of the relational data

Buneman et al. (1996:1-2) presented a deterministic data model for modeling
relational and semistructured data. Data model consists of labeled edges connect-
ing the nodes of the graph. All the information is represented in the edges con-
necting the nodes. Edges contain information such as the name of the relation,
attributes and their values. Each tuple of a relation is represented by a subgraph.
For example, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 relation can be depicted by the graph shown in figure
31.

38 Acta Wasaensia

Supplier

Tuple TupleTuple

Supplier_idSupplier_name Supplier_idSupplier_name Supplier_idSupplier_name

S1 S2 S3”Sons & Sons” ”Cheap Products” ”Buy, buy!”

Figure 31. Supplier relation as a graph.

6.3 Modeling relational data with adjacency model

As stated in the previous section, Buneman et al. (1996:1-2) showed that, rela-
tional data can be modeled as trees. Töyli et al. (2002a: 304-305; Töyli 2006: 46-
53) introduced a method for modeling relational data with adjacency model. The
original design consisted of nine steps is accompanied in this work with a new
step, step 3 “Assign attribute values as elements to the corresponding type”.

1. Select an attribute from a table.
2. Create a corresponding type.
3. Assign attribute values as elements to the corresponding type.
4. Repeat steps 1, 2 and 3 until all the distinct tables and attributes are han-

dled.
5. Remove the types that have been created from the foreign keys.
6. Take a primary key and define it as an adjacency defining type.
7. Repeat step 6 until all the distinct primary keys are defined as adjacency

defining types.
8. Create an adjacency between an element of type and an element of its cor-

responding adjacency defining type (i.e. between an attribute primary key
of the table).

9. Repeat step 8 until all the adjacencies are created between the elements
and their adjacency defining sets.

10. Create all other wanted adjacencies between the types. For example, cre-
ate adjacencies between adjacency defining sets, in order to represent de-
pendencies.

The method produces an adjacency relation system representation of relational
database. The method is applied to a simple database consisting of two relations

 Acta Wasaensia 39

𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛,𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠) and
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛). The Supplier-product database is shown
in figure 32.

Figure 32. Supplier-product database.

By following Töyli’s (2002 and 2006) modeling procedure, the Supplier-product
database is built as an ARS. The ARS constructed by this method are considered
to be symmetric. The ARS a pair (𝐴,𝑅) where

𝐴 = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛,𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛},

𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 = {𝑃1,𝑃2,𝑃3}, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛 = {9” 𝑛𝑛𝑛𝑛. 𝑏𝑏𝑏𝑏, ℎ𝑎𝑎𝑎𝑎𝑎},

𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠 = {23, 15, 7},

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 = {𝑆1, 𝑆2, 𝑆3},

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛 = {𝑆𝑆𝑆𝑆&𝑆𝑆𝑆𝑆,𝐶ℎ𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐵𝐵𝐵, 𝑏𝑏𝑏!},

and 𝑅 consists of relations.

𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖,𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠 = {(𝑃1, {23}), (𝑃2, {15}), (𝑃3, {7})}

𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛 = {(𝑃1, {"9" 𝑛𝑛𝑛𝑛"}), (𝑃2, {"𝑏𝑏𝑏𝑏"}), (𝑃3, {"ℎ𝑎𝑎𝑎𝑎𝑎"})}

𝑅𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 = {(23, {𝑃1}), (15, {𝑃2}), (7, {𝑃3})}

𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 = {("9" 𝑛𝑛𝑛𝑛", {𝑃1}), ("𝑏𝑏𝑏𝑏", {𝑃2}), ("ℎ𝑎𝑎𝑎𝑎𝑎", {𝑃3})}

𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛

= {(𝑆1, {"𝑆𝑆𝑆𝑆 & 𝑆𝑆𝑆𝑆"}), (𝑆2, {"𝐶ℎ𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃"}), (𝑆3, {"𝐵𝐵𝐵, 𝑏𝑏𝑏! "})}

𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 = {(𝑃1, {𝑆1}), (𝑃2, {𝑆1}), (𝑃3, {𝑆2})}

𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 = {(𝑆1, {𝑃1,𝑃2}), (𝑆2, {𝑃3})}

40 Acta Wasaensia

Adjacency defining type represents the key attributes of the database. The adja-
cency defining types for the ARS are defined as follows.

𝑇�𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛 = 𝑇�𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 = 𝑇�𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 =
�𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖� and

𝑇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 = �𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖�

The results of the modeling method can be visualized as an ARS graph. The ARS
representing the Supplier-product database is depicted by the graph shown in
figure 33. In the ARS, each attribute (column) is represented as an entity set and
the values of the attributes are depicted by the elements of the corresponding
sets. Dependencies or relationships are represented as edges connecting the ele-
ments. The expressions of relational database elements in ARS graph will be dis-
cussed in more detailed level in “7 ANALYZING THE ADJACENCY RELATION
SYSTEM REPRESENTATION OF RELATIONAL DATABASE”.

Product_id P1 P2 P3

Units_in_stock

23 15 7

Product_name

”9" nail” ”bolt” ”hammer”

Supplier_id S1 S2

Supplier_name ”Sons &
Sons”

”Cheap
Products”

S3

”Buy,
buy!”

Figure 33. An ARS representation of the supplier-product database.

6.4 Modeling relational database schema with AdSchema

In the previous section, a modeling method (Töyli 2002 and 2006) from a rela-
tional database to an adjacency relation system was discussed. This study aims to
extend the application areas of Adjacency Model so that it could be possible to
analyze graphs and determine if a given graph contains features suggesting that
the graph represents relational database or has such features that it could be used
as a foundation for a data repository construction.

 Acta Wasaensia 41

Relational databases can be visualized as an adjacency relation system. Typically,
this kind of ARS contains multiple components and the basic structure of the
components can be depicted with an AdSchema. If the modeled database con-
tained dependencies such as one-to-many or many-to-many, it is possible that
graph components have some variations in their structures. For example, the
ARS based graph shown in figure 33 is made up of three components
{"𝐵𝐵𝐵, 𝑏𝑏𝑏! ", 𝑆3}, {“𝐶ℎ𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃”, 𝑆2,𝑃3, 7, “ℎ𝑎𝑎𝑎𝑎𝑎”} and
{“𝑆𝑆𝑆𝑆 & 𝑆𝑆𝑆𝑆”, 𝑆1,𝑃1,𝑃2, 23, 15, “9" 𝑛𝑛𝑛𝑛”, “𝑏𝑏𝑏𝑏”}. In the case of ARS depicting
relational database the components tend to have different structures.

In section “5.2 Modeling adjacency relation systems with AdSchema” was pro-
posed a method, which makes it possible to simplify the structure of a graph rep-
resenting relational database. The basic structure of an ARS, i.e. AdSchema can
be produced from database schema (figure 34). The conversion process has nine
steps. The result of the conversion process is portrayed in figure 35.

Figure 34. Database schema.

The nine phased method is an adaptation of Töyli’s (2002 and 2006) method.
1. Select an attribute from a relation schema.
2. Create a corresponding type.
3. Repeat steps 1 and 2 until all the distinct tables and attributes are han-

dled.
4. Remove the types that have been created from the secondary keys.
5. Take a primary key and define it as an interrelationship defining type.
6. Repeat step 5 until all the distinct primary keys are defined as interrela-

tionship defining types.
7. Create an adjacency between a type and its corresponding interrelation-

ship defining type.
8. Repeat step 7 until all the interrelationships are created between the ele-

ments and their interrelationship defining sets.

42 Acta Wasaensia

Product_id

Supplier_id

Units_in_stockProduct_name

Supplier_name

Figure 35. AdSchema representation of the database schema.

In figure 35 (above) is shown an AdSchema (𝑇𝐴,𝑅) where
𝑇𝐴 = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛,𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛}, 𝑅
contains relations {𝑅1,𝑅2,𝑅3,𝑅4,𝑅5}. The relations are defined as follows.

𝑅1 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖, {𝑝𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛,𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖})

𝑅2 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖, {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖})

𝑅3 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛, {𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖})

𝑅4 = (𝑢𝑢𝑢𝑢𝑢_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠, {𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖})

𝑅5 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛, {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖})

Note that the method described above produces an adjacency schema depicting
only the relationship between types. It does not provide any information about
dependencies and other constraints, that database schema might have expressed.
By adopting the notations of the network data model, some information about
dependencies between types could be expressed.

6.5 Extended AdSchema

The AdSchema approach considers only symmetric relationships between types.
It allows traversing the data structure in both directions. Symmetric AdSchema
does not contain any information about the relationships between the element
types. (Töyli 2006: 62.)

If the AdSchema is used for representing the schemas of structured data such as
relational data, there should be some method for conveying information about
the nature of relationships between types. By assigning directions to the edges

 Acta Wasaensia 43

depicting the interrelationships between the types, information about the nature
of relationships can be represented. The directions and meanings for the edges
are adopted from the network model.

In the network data model, one-to-one relationship is denoted by a bidirectional
edge. One-to-many relationship is denoted by a directed edge, and many-to-
many relationships are denoted by an undirected edge. Let us update the graph
representation of the AdSchema by assigning the directions to the edges connect-
ing the nodes representing types (figure 36).

Product_id

Supplier_id

Units_in_stockProduct_name

Supplier_name

Figure 36. Extended AdSchema with directed edges.

Now the graph the graph conveys information about the database schema. The
meanings of arrows can be read as follows. Each element in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 is associ-
ated with exactly one element in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛 and vice versa. Furthermore,
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 type elements can be associated with multiple elements belonging to
𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑑 type; however, the elements in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 type are associated with
only one element in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 type. Finally, each element in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 is asso-
ciated with exactly one element in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛 as well with one element in
𝑢𝑢𝑢𝑢__𝑖𝑖_𝑠𝑠𝑠𝑠𝑠 type and vice versa.

The relation notations of the AdSchema need to be revised. So, in the extended
AdSchema the edges representing relationships between elements are defined as
follows.

Bidirectional edge is represented with two relations both containing the elements
incident to the edge. For example, consider the edge from 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 to
𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑛. It is portrayed by two relations 𝑅1 and 𝑅2. The relations are de-
fined as follows.

𝑅1 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑡_𝑖𝑖, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑛})

44 Acta Wasaensia

𝑅2 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑛, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖})

Directed edge is represented by relation, which contains both elements associat-
ed with the edge. Furthermore, the element of the undirected end of the edge is
assigned as the first element of the relation. Consider the edge from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖
to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖. It is depicted as relation 𝑅5.

𝑅5 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖})

The relation definitions for the extended AdSchema of figure 36 are constructed
as follows. Consider the extended AdSchema. It is a pair (𝑇𝐴,𝑅) where 𝑇𝐴 =
 {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑛,𝑈𝑈𝑈𝑈𝑈_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠,𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛}, 𝑅 con-
tains relations {𝑅1,𝑅2,𝑅3,𝑅4,𝑅5,𝑅6,𝑅7}. The relations are defined as follows.

𝑅1 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑛})

𝑅2 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑛, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖})

𝑅3 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, {𝑈𝑈𝑈𝑡𝑡_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠})

𝑅4 = (𝑈𝑈𝑈𝑈𝑈_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠, { 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖})

𝑅5 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖, { 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖})

𝑅6 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖, {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛})

𝑅7 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛, {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖})

The many-to-many relationship is deprecated in the relational model. However,
if an AdSchema contains an undirected edge, there should be a way to depict the
relation. Let us change the edge connecting 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖 to undi-
rected one (figure 37). The relation representing the edge contains two element
pairs both containing the elements incident to the edge.

 Acta Wasaensia 45

Product_id

Supplier_id

Units_in_stockProduct_name

Supplier_name

Figure 37. Extended AdSchema with undirected edge.

Now the relations for the AdSchema shown in figure 37 are defined as follows.
The relation 𝑅5 indicates the existence of many-to-many relationship between the
elements of the relation.

𝑅1 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑛})

𝑅2 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑛𝑛𝑛𝑒, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖})

𝑅3 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, {𝑈𝑈𝑈𝑈𝑈_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠})

𝑅4 = (𝑈𝑈𝑈𝑈𝑈_𝑖𝑖_𝑠𝑠𝑠𝑠𝑠, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖})

𝑅5 = ({𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖}, {𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖})

𝑅6 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖, {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛})

𝑅7 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛, {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑖𝑖})

46 Acta Wasaensia

7 ANALYZING GRAPH REPRESENTATION OF RELATIONAL
DATABASE

In this section is introduced a framework for identifying the essential elements of
a relational database from an ARS-based graph. The preliminary identification of
the element is based on the ideas and definitions provided by Wanne (1998) and
Töyli (2002 and 2006). Later on, the elements are identified by utilizing the con-
cepts of graph theory.

Wanne (1998: 5) stated that the dependencies between the relations in relational
databases are implemented with keys. The keys correspond to the adjacency de-
fining entity types. Furthermore, it is stated that type represents the attributes
and elements of the types represent the values of the attributes. The paths of ad-
jacencies provide some view on tuples of the relational model. (Töyli 2002: 55-
59.)

Let us identify the instances of attributes and attribute values from an adjacency
relation system based graph, which represents Supplier -relation. The relation is
modeled as an ARS by the Töyli’s (2002 and 2006) method (figure 38).

Figure 38. Attributes and their values in ARS based graph.

In the figure above it is shown a database table and an ARS-based graph repre-
senting it. The attributes and their values are marked in the figure. The tuples of
the table are relatively easy to recognize from the ARS by utilizing the concept of
walk. In this case, the ARS has three distinct walks 〈"𝑆1", "𝑆𝑆𝑆𝑆&𝑆𝑆𝑆𝑆"〉,
〈"𝑆2", "𝐶ℎ𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃"〉 and 〈"𝑆3", "𝐵𝐵𝐵, 𝑏𝑏𝑏! "〉. The walks are ordered such that
the elements of the adjacency defining type are the first elements of the walks.

Typically the ARS is made up of multiple types with multiple elements assigned
to them. Obviously, this means that ARS based graphs contain multiple vertices,
and the vertices representing the values of key attributes have multiple leaves.
This means that the walks, depicting the tuples, visit the key vertices several
times. So, a tuple should be seen as a set of distinct vertices belonging to the walk
from the key vertex to its leaves.

 Acta Wasaensia 47

7.1 Identifying dependencies, tuples, and relations

Wanne (1998) and Töyli (2002 and 2006) have stated in their works that adja-
cency model and relational model have conceptual similarities, which made pos-
sible to utilize the adjacency model in modeling relational databases. Further-
more, certain elements of the relational model have identifiable features in an
adjacency relation system. However, previous studies did not provide systematic
tools for the element identification. Information about the dependencies (rela-
tionships) between relations of the database is carried out with key attributes.
The adjacency defining entity types and their elements represent the key attrib-
utes and their values. Thus, it can be assumed that in the case of ARS represent-
ing relational database, the elements of a regular type are associated with one
element of the adjacency defining entity type.

Since the adjacencies between elements of adjacency defining types represent the
relationships (dependencies) of relational database, it can be assumed that the
adjacencies in ARS can be more complex. For example, in figure 39 element 𝑆1 is
adjacent to 𝑃1 and 𝑃2 while 𝑆3 does not have adjacent elements. Obviously, when
the number of elements in ARS grows the adjacencies have more diverse and
complex forms.

Product_id P1 P2 P3

Units_in_stock

23 15 7

Product_name

”9" nail” ”bolt” ”hammer”

Supplier_id S1 S2

Supplier_name ”Sons &
Sons”

”Cheap
Products”

S3

”Buy,
buy!”

1:M
1:1

optionality

Figure 39. Expressions of dependencies in ARS.

In the figure 39 is shown an ARS that represents a simple database for products
and suppliers. The types 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 are defined as adjacency
defining types. The adjacencies between elements of these types contain infor-

48 Acta Wasaensia

mation about the dependencies of the database tables. Consider the relation
𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 = {(𝑆1, {𝑃1,𝑃2}), (𝑆2, {𝑃3})}. The analysis of the relation and

graph reveal the following.
– (𝑆1, {𝑃1,𝑃2}) imply the existence of one-to-many relationship
– (𝑆2, {𝑃3}) imply the existence of one-to-one relationship
– the element 𝑆3 does not have adjacenct elements in type 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, which

implies that in the database the relationship is optional

In the case of an ARS representing relational database, the tuples of the database
are made up of the distinct elements belonging to the walk from the element of
the adjacency defining type to its leaf. The ARS shown in figure 39 contains the
following tuples.

〈𝑃1, 23,9" 𝑛𝑛𝑛𝑛〉

〈𝑃2, 15, 𝑏𝑏𝑏𝑏〉

〈𝑃3, 7, ℎ𝑎𝑎𝑎𝑎𝑎〉

〈𝑆1, 𝑆𝑆𝑆𝑆&𝑆𝑆𝑆𝑆〉

〈𝑆2,𝐶ℎ𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃〉

〈𝑆3,𝐵𝐵𝐵, 𝑏𝑏𝑏!〉

Finally, the tuples are assigned to relations. In this case tuples are assigned to the
relations according to type definitions. So, the elements of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 and their
adjacent leaves form a relation and its tuples and respectively the elements of
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 and their adjacent leaves form the other relation and its tuples.

7.2 Extended analysis of ARS based graphs

In the previous section was proposed a simple method for identifying the basic
concepts of relational database from an ARS. The method is applicable to rela-
tively small and simple adjacency relation systems. The analyzes of the ARS
based graph utilize graph theory concepts such as degree of a vertex, leaf vertex
and vertex dominating set of the graph.

Since the ARS-graph is based on relational database the properties of the verti-
ces, and especially the vertices representing the values of the primary keys, can
be easily examined. Because the ARS graph (figure 39) consists of three compo-
nents having different structures, it is useful to complement the analysis by ex-

 Acta Wasaensia 49

amining the basic structure and relationships between types of the ARS. The Ad-
Schema is a basic representation of the ARS. It describes all the types and their
interrelationships. The AdSchema for the ARS is shown in figure 40.

Product_id

Units_in_stock Product_name

Supplier_id

Supplier_name

Figure 40. AdSchema of an ARS.

Tables 4 and 5 list the findings of the ARS analysis (figure 39) and AdSchema
analysis (figure 40). The analyzes examined the degree of vertices, vertices that
have leaves, and (minimal) vertex dominating set of the graphs.

Table 4. Properties for ARS vertices/elements.

Vertex/Element Degree Has
leaves

Member of
dominating set

23 1 No No
15 1 No No
7 1 No No
9" nail 1 No No
bolt 1 No No
hammer 1 No No
P1 3 Yes Yes
P2 3 Yes Yes
P3 3 Yes Yes
S1 3 Yes Yes
S2 2 Yes Yes
S3 1 Yes Yes
Sons & sons 1 No No
Cheap Products 1 No No
Buy, buy! 1 Yes No

50 Acta Wasaensia

Table 5. Properties for AdSchema vertices/types.

Vertex/Type Degree Has leaves
Member of
dominating
set

Units_in_stock 1 No No
Product_name 1 No No
Product_id 3 Yes Yes
Supplier_id 2 Yes Yes
Supplier_name 1 No No

Based on the results shown in the tables 4 and 5, it can be stated that vertices
representing the values of key attributes and as well types representing key at-
tributes have common properties, which are:
– they belong to the vertex dominating set of the graph,
– vertices also have leaves,
– and their degree is at least 2.

In the appendix 1 is depicted analysis results for properties of vertices in 15 dif-
ferent AdSchemas. Preliminary correspondences between the relational model
and adjacency model were put together and listed in the table 6.

 Acta Wasaensia 51

Table 6. Basic properties for relational model concepts expressed in Adja-
cency Model or AdSchema.

Relational model Adjacency model/AdSchema
Database Adjacency relation system
Database schema AdSchema
Attribute Entity type (AM and AdSchema)
Attribute values Elements of the entity type (AM)
Key attribute Entity type

– adjacency defining entity type (AM)
– interrelationship defining type (AdSchema)
– has degree of at least 2
– has leaf nodes
– dominates graph.

Relation Set of distinct vertices that belong to a walk in
AdSchema from the interrelationship defining
entity type to adjacent leaf entity types.

Tuple Set of distinct vertices that belong to a walk in ARS
from the element of the adjacency defining entity
type to the elements of the adjacent type.

One-to-one dependency In the adjacency model, adjacency between the
elements of the adjacency defining entity types.

In the AdSchema, adjacency between interrelation-
ship defining type.

One-to-many dependen-
cy

Adjacency between the elements of the adjacency
defining entity types. For example, so that 𝑥1, 𝑥2 ∈
𝐴𝐴(𝑦1) ja 𝑥3 ∈ 𝐴𝐴(𝑦2).

AdSchema does not convey information about
complex dependencies.

Optionality Adjacency defining entity type includes both ele-
ments that are adjacent to the element of other ad-
jacency defining entity type and elements that are
not adjacent to any elements belonging to any adja-
cency defining entity type.

AdSchema does not convey information about op-
tionality constraints.

7.3 Database reconstruction

In this section is proposed a framework for reconstructing relational database
from an ARS graph. Reconstructing the database requires the identification of

52 Acta Wasaensia

the elements of the database but more importantly the different types of depend-
encies must be identified. The identification of dependencies such as one-to-
many and many-to-many are covered with examples. The analysis and recon-
struction process done in this section has the following features. Finally, a de-
tailed example of database reconstruction is given in 7.3.3 Reconstructing the
database.

Preliminary steps
1. Model relational database with ARS
2. Create corresponding AdSchema

Analysis and reconstruction steps
3. Recognize types and elements representing key attributes and their values
4. Construct tuples
5. Construct relations
6. Define dependencies and possible constraints for relations.

In order to reconstruct the database tuples, relations and dependencies have to
be identified. Consider the properties of the elements of ARS and types of Ad-
Schema listed in tables 4 and 5. According to properties listed in table 6 assign
elements representing the values of key attributes to set 𝐴 and assign other ele-
ments to set 𝐵.

Set 𝐴 contains elements 𝑃1,𝑃2,𝑃3, 𝑆1, 𝑆2, 𝑆3 and respectively set 𝐵 consist of el-
ements 23,15,7,”9” nail”, ”bolt”, “hammer”, “Sons&sons”, “Cheap Products”,
“Buy, buy!”. Furthermore, the sets 𝐴 and 𝐵 can divided into subsets, in this case
the subset division conforms the type definition of adjacency relation system,
𝐴1,𝐴2, where 𝐴1 = {𝑃1,𝑃2,𝑃3} and 𝐴2 = {𝑆1, 𝑆2, 𝑆3} and respectively subsets of 𝐵
are defined as follows 𝐵1,𝐵2,𝐵3 where
𝐵1 = {23,15,7},𝐵2 = {”9 𝑛𝑛𝑛𝑛”, “𝑏𝑏𝑏𝑏”,”ℎ𝑎𝑎𝑎𝑎𝑎”} and 𝐵3 = {“𝑆𝑜𝑜𝑜 & 𝑠𝑠𝑠𝑠”,
”𝐶ℎ𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃”, "𝐵𝐵𝐵, 𝑏𝑏𝑏! "}. Now the neighboring elements 𝑥 and 𝑦 (𝑥 ∈ 𝐴 ∧
𝑦 ∈ 𝐵) has to be recognized. Neighboring elements and subset division are shown
in table 7.

 Acta Wasaensia 53

Table 7. Adjacent elements in sets A and B.

B1 B2 B3

A1
P1 23 9” nail -
P2 15 bolt -
P3 7 hammer -

A2
S1 - - Sons & sons
S2 - - Cheap Products
S3 - - Buy, buy!

After the identification of adjacencies between the elements in sets 𝐴 and 𝐵 the
tuples are constructed. Based on the adjacencies listed in table 7 it can be said
that the ARS representing the database contains six instances of tuples which are
listed below. The tuples are organized so that elements of the set 𝐴 are the first
elements of tuples.

𝑡1 = {𝑃1,23, "9" 𝑛𝑛𝑛𝑛"}

𝑡2 = {𝑃2,15, "𝑏𝑏𝑏𝑏"}

𝑡3 = {𝑃3,7, "ℎ𝑎𝑎𝑎𝑎𝑎"}

𝑡4 = {𝑆1, "𝑆𝑆𝑆𝑆 & 𝑆𝑆𝑆𝑆"}

𝑡5 = {𝑆2, "𝐶ℎ𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃"}

𝑡6 = {𝑆3, "𝐵𝐵𝐵, 𝑏𝑏𝑏! "}

Based on the type definitions provided by the adjacency relation system, the tu-
ples are assigned to relations. The relations are composed as follows 𝑟1 =
{𝑡1, 𝑡2, 𝑡3}, 𝑟2 = {𝑡4, 𝑡5, 𝑡6} . It is worth noticing that the type definitions are only
available in the case of ARS representing a database.

If the type definitions are not available, tuples are assigned to relations based on
their properties. The properties can be, for example, number of elements in tuple
and element types.

The next step in database reconstruction is to analyze adjacencies between the
elements subsets of A. For this purpose an adjacency matrix is built. The aim is to
find adjacent elements x and x’ in set A (𝑥, 𝑥′ ∈ 𝐴 ∧ 𝑥 ≠ 𝑥′). If the elements are
adjacent the value of the cell is 1, otherwise the value is 0.

54 Acta Wasaensia

Table 8. Adjacency matrix for the elements of set A.

 A1 A2

 P1 P2 P3 S1 S2

A1
P1 0 0 0 1 0
P2 0 0 0 1 0
P3 0 0 0 0 1

A2
S1 1 1 0 0 0
S2 0 0 1 0 0
S3 0 0 0 0 0

In table 8 elements 𝑃1, 𝑃2 and 𝑃3 belong to the set 𝐴1 and elements 𝑆1, 𝑆2 and
𝑆3 are members of the set 𝐴2. In table 9 the adjacencies between element belong-
ing these set are analyzed in order to determine the type dependency between the
elements. The row-wise examination provides information how many adjacent
elements the elements of 𝐴1 have in 𝐴2. The column-wise examinations show the
number of adjacent elements the elements of 𝐴2 have in 𝐴1. Based on the adja-
cencies the dependency type can be concluded.

Table 9. Adjacency of elements in 𝐴1 and 𝐴2.

 A2 Dependency
 S1 S2 S3

A1
P1 1 0 0 1:1
P2 1 0 0 1:1
P3 0 1 0 1:1

Dependency 1:M 1:1 Optional

The elements of 𝐴1 represent the values of key attributes of relation 𝑟1 and the
elements of 𝐴2 represent the values of key attributes of relation 𝑟2.

In table 9 is shown that elements of 𝐴1 are adjacent to exactly one element of 𝐴2.
So, it can be concluded that between relations 𝑟1 and 𝑟2 exists one-to-one rela-
tionship. Table 9 also shows that element 𝑆1 is adjacent to elements 𝑃1 and 𝑃2,
and element 𝑆2 is adjacent to 𝑃3. So, there exist one-to-one and one-to-many
dependencies between the relations. Moreover, the element 𝑆3 does not have any
neighbors in set 𝐴1 i.e. relation 𝑟1, it can be assumed that the relationship be-
tween 𝑟1 and 𝑟2 is optional.

 Acta Wasaensia 55

Based on the adjacencies discussed above, it can be concluded that the depend-
ency between 𝑟2 and 𝑟1 (table 10) can be denoted as one-to-many with optionality
constraint. One-to-many was chosen as prevailing dependency definition, since it
does not exclude the one-to-one dependency.

Table 10. Dependency between 𝑟2 and 𝑟1.

𝒓𝟐 𝒓𝟏

1 0..*

Since there exists one-to-many dependency between given relations, the key at-
tribute of the “one-end” of the dependency is assigned as a foreign to the “many-
end” of the dependency. So, the key attribute of 𝑟2 is duplicated as foreign key to
𝑟1. Furthermore, in this case the optionality supports the foreign key definition.

The ARS depicted in figure 39 is converted into a relational database with six
tuples, and two relations. Between the relations is one-to-many dependency with
optionality constraint. The reconstructed database is shown in figure 41.

Figure 41. Reconstructed database.

In this section was given a small example of converting an ARS into a relational
database. The example database discussed did not contain complex dependen-
cies. The future sections of this chapter will discuss the instances of many-to-
many dependencies in ARS based graph representing a relational database.

7.3.1 Complex dependencies in adjacency relation system

This section discusses the instances of many-to-many dependencies in adjacency
relation system based graph. The many-to-many dependencies (denoted as M:N)
are deprecated in the relational model. The possible M:N –dependencies are im-
plemented in relational model by relations called “relationship relations”. Rela-
tionship relation contains two foreign keys (see, for example, figure 42.,
𝑂𝑂𝑂𝑂𝑂_𝑃𝑃𝑃𝑃𝑃𝑃𝑃 -relation).

56 Acta Wasaensia

The instances of M:N –dependencies in ARS are recognized by analyzing the ad-
jacencies between elements of different types. For the analyzing purposes, an
adjacency matrix is constructed. Row sums and column sums of the matrix show
information about the dependencies between the elements. If the row/column
sum is greater than two, it can be read as an indication of M:N dependency, if the
sum is one, it implies the existence of a one-to-one dependency and if the sum is
zero, it suggests the that the dependency is optional. The following example pro-
vides a detailed examination of the instances of many-to-many dependencies in
ARS.

Example 9. Consider a simple database for customer orders. There is a rule for
the database that states that one product can be in several orders, and order may
contain several products. Database contains the relations shown in figure 42.

Figure 42. Customer order database.

The database is converted into the adjacency relation system shown in figure 43.
Note that the set 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜 contains similar elements (7 twice and 5
twice), because the conversion method does not remove similar attribute values,
since they are assigned to different tuples of the modeled database. The interrela-
tionships between the types of the adjacency relation system are portrayed with
AdSchema (figure 44).

 Acta Wasaensia 57

Product_id P1 P2 P3

Units_in_stock

23 15 7

Product_name

”9" nail” ”bolt” ”hammer” ”bucket”

P4

9

7 8 5 7 2 3 5Units_per_order

Order_id O1 O2 O3 O4

5.12.2012 28.1.2013 3.2.2013 5.3.2013

Customer_id

C1 C2 C3 C4

Order_date

Customer_name

Jack
Smith

Julia
Smith

John
Doe

Jane
Doe

Figure 43. Adjacency relation system for Customer-order database.

58 Acta Wasaensia

Product_id

Units_in_stock Product_name

Units_per_order

Order_id

Customer_id

Order_date

Customer_name

Figure 44. AdSchema for Customer-order database.

The ARS and AdSchema reveal that the type 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜 and its elements do
not fully satisfy the criteria set for key attribute types and their values. Each ele-
ment in the type 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜 has the following properties: element have de-
gree of 2, element do not belong to vertex dominating set and element do not
have leaves. Note that in the original database relation 𝑂𝑂𝑂𝑂𝑂_𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has an
attribute 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜, which contains same values. When the database is
converted into adjacency relation system, the duplicate values are not removed
but they are modeled as elements of the given type.

Let us examine the adjacencies between the elements of type 𝑃𝑃𝑃𝑃𝑃𝑃𝑡_𝑖𝑖 and
𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜 and also 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 and 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜. The adjacencies be-
tween the elements are shown in tables 11 and 12. The row and column sums
shown in tables indicate the type of dependency.

 Acta Wasaensia 59

Table 11. Adjacency of elements between types 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and
𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜.

 Units_per_order
 7 8 5 7 2 3 5 Row sum Dependency

Pr
od

-
uc

t_
id

P1 1 0 1 0 0 0 1 3 1:M
P2 0 1 0 1 0 0 0 2 1:M
P3 0 0 0 0 1 0 0 1 1:1
P4 0 0 0 0 0 1 0 1 1:1

 Column
sum 1 1 1 1 1 1 1

 Dependency 1:1 1:1 1:1 1:1 1:1 1:1 1:1

Table 12. Adjacencies between elements of types 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 and
𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜.

 Units_per_order
 7 8 5 7 2 3 5 Row sum Dependency

O
rd

er
_i

d O1 1 1 0 0 0 0 0 2 1:M
O2 0 0 1 1 1 0 0 3 1:M
O3 0 0 0 0 0 1 0 1 1:1
O4 0 0 0 0 0 0 1 1 1:1

 Column
sum 1 1 1 1 1 1 1

 Dependency 1:1 1:1 1:1 1:1 1:1 1:1 1:1

Tables 11 and 12 show that there exists one-to-many dependencies between ele-
ments of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑂𝑂𝑂𝑂𝑂 and also between 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 and
𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑂𝑂𝑂𝑂𝑂. Since it is known that database is defined so that it contains
relationship relation, it can be concluded that the adjacencies represented in ta-
bles 11, and 12 express the many-to-many dependency. Furthermore, because the
relational model deprecates the many-to-many dependency, it can be deduced
that the reconstructed database should have relationship relation and that the
relation would consist of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 as foreign keys and
𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑂𝑂𝑂𝑂𝑂 as an attribute of the relation.

Example 10. Consider a simple database for customer orders with a rule which
states that one product can be in several orders, and order may include many
products. In this example, the relationship relation (𝑂𝑂𝑂𝑂𝑂_𝑃𝑃𝑃𝑃𝑃𝑃𝑃) does not
contain any extra information. It contains the foreign keys. Database consists of
the relations shown in figure 45.

60 Acta Wasaensia

Figure 45. Customer order database with changed Order_Product -relation.

ARS and AdSchema (figures 45 and 46) represent the elements and structure of
the database of example 10.

 Acta Wasaensia 61

Product_id P1 P2 P3

Units_in_stock

23 15 7

Product_name

”9" nail” ”bolt” ”hammer” ”bucket”

P4

9

Order_id O1 O2 O3 O4

5.12.2012 28.1.2013 3.2.2013 5.3.2013

Customer_id

C1 C2 C3 C4

Order_date

Customer_name

Jack
Smith

Julia
Smith

John
Doe

Jane
Doe

Figure 46. ARS for Customer-Order database.

Product_id

Units_in_stock Product_name

Order_id

Customer_id Order_date

Customer_name

Figure 47. AdSchema for Customer-Order database.

Both ARS and AdSchema show that types 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖
and their elements satisfy the requirements for the key attributes. From the fig-

62 Acta Wasaensia

ure 46 it can be seen that adjacencies between the elements of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and
𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 differ from other adjacencies. Namely, the elements are more intercon-
nected. Let us examine the adjacencies between the elements of type 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖
and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖. The adjacencies between the elements are shown in table 13.

Table 13. Adjacencies between 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖.

 Order_id
 O1 O2 O3 O4 Row sum Dependency

Pr
od

-
uc

t_
id

P1 1 1 0 1 3 1:M
P2 1 1 0 0 2 1:M
P3 0 0 1 0 1 1:1
P4 0 0 1 0 1 1:1

 Column sum 2 2 2 1
 Dependency 1:M 1:M 1:M 1:1

The row and column sums in table 13 reveal that multiple elements in types
𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 are adjacent to each other. Since, by definition the da-
tabase has relationship relation, it can be concluded that the observations on the
table 13 express the many-to-many dependency. Since the many-to-many de-
pendencies are deprecated in the relational model, the observations will lead to
the creation of relationship relations, which contains 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 as
foreign keys.

Example 11. Consider a simple database for customer orders (figure 48). There
is a rule for the database that states that one product can be in several orders,
and order may contain several products. Let us assume that the Order-relation
contains only primary key and foreign key. The modeling rules state that the
types created from foreign keys are removed from the ARS. This situation causes
challenges when recognizing the elements of the database from ARS based graph.

 Acta Wasaensia 63

Figure 48. Customer order database.

ARS and AdSchema (figures 49 and 50) show that 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑂𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖
type do not meet the criteria set for the key attribute types, because they do not
have leaves and do not belong to the vertex dominating set of the graph. By defi-
nition it is known that 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 type should be considered as type for key attrib-
ute and type 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜 indicates the relationship relation. So, let us exam-
ine closely the adjacencies between types 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜, 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖,
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑛𝑛𝑛𝑛. The aim of the examination is to provide un-
derstanding how the exceptional dependencies of the database (figure 48) are
expressed in an ARS. Note that the set 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜 contains similar ele-
ments (7 twice and 5 twice), because the conversion method does not remove
similar attribute values, since they are assigned to different tuples of the modeled
database.

64 Acta Wasaensia

Product_id P1 P2 P3

Units_in_stock

23 15 7

Product_name

”9" nail” ”bolt” ”hammer” ”bucket”

P4

9

7 8 5 7 2 3 5Units_per_order

Order_id O1 O2 O3 O4

Customer_id C1 C2 C3 C4

Customer_name
Jack

Smith
Julia

Smith
John
Doe

Jane
Doe

Figure 49. Adjacency relation system for Customer order database.

Product_id

Units_in_stock Product_name

Units_per_order

Order_id

Customer_id

Customer_name

Figure 50. AdSchema for Customer order database.

The adjacencies between types 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, 𝑈𝑈𝑈𝑈𝑈_𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 are
similar to adjacencies of example 9 (see table 13). So, it can be assumed that the

 Acta Wasaensia 65

types form a relationship relation. Furthermore, type 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖 should be
considered as key type since it has leaf vertex (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑛𝑛𝑛𝑛).

Table 14. Adjacencies between the elements of types 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 and
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖.

 Order_id

O1 O2 O3 O4 Row sum Dependency

C
us

to
m

-
er

_i
d

C1 1 0 0 0 1 1:1
C2 0 1 0 0 1 1:1
C3 0 0 0 0 0 Optional
C4 0 0 1 1 2 1:M

 Column
sum 1 1 1 1

 Dependency 1:1 1:1 1:1 1:1

The adjacencies (table 14) between the elements of 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖
indicate, that between the types there is one-to-many dependency with optionali-
ty constraint. These observations strongly suggest that type 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 should be
considered as key attribute type. Thus, types 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖 con-
struct a relation in which 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 and its elements represent key attributes and
their values. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖 type represents the foreign key.

Example 12. Consider a simple database for customer orders. There is a rule for
the database that states that one product can be in several orders, and order may
include many products. In this example the 𝑂𝑂𝑂𝑂𝑂 relation contains primary key
and foreign key and 𝑂𝑂𝑂𝑂𝑂_𝑃𝑃𝑃𝑃𝑃𝑃𝑃 relation contain only the foreign keys. Data-
base is made up of the relations shown in figure 51.

66 Acta Wasaensia

Figure 51. Customer order database.

Database is portrayed as ARS and AdSchema shown in figures 51 and 52. From
the AdSchema (figure 52) it can be seen that type 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 does not belong to the
vertex dominating set of the graph. Based on the observations represented in
Table 13 it is known that between elements of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 there are
many-to-many relationships. Observation represented in Table 14 show that be-
tween the elements of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 exist one-to-many relation-
ships. These observations suggest that the database should contain relationship
relation with elements of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 as foreign keys and it should
contain also a relation which has 𝑂𝑂𝑂𝑂𝑂_𝑖𝑖 as primary key and 𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑟_𝑖𝑖 as
foreign key.

 Acta Wasaensia 67

Product_id P1 P2 P3

Units_in_stock

23 15 7

Product_name

”9" nail” ”bolt” ”hammer” ”bucket”

P4

9

Order_id O1 O2 O3 O4

Customer_id C1 C2 C3 C4

Customer_name
Jack

Smith
Julia
Smith

John
Doe

Jane
Doe

Figure 52. ARS for Customer order database.

Product_id

Units_in_stock Product_name

Order_id

Customer_id

Customer_name

Figure 53. AdSchema for Customer order database.

7.3.2 Facts table in adjacency relation system

Data warehouse is a widely used solution for storing data that supports decision-
making processes. Typically data warehouse is implemented as a relational data-
base and its main purpose of use is query and analysis. The usual schema for data

68 Acta Wasaensia

warehouse is a star schema (figure 54). It typically consists of facts table and sev-
eral dimension tables. Consider a warehouse for sales data that contains tables
and data shown in figure 55. (Lane 2007:1-1,2-3; Golfarelli & Rizzi 2009: 5; Hovi,
Karvonen & Koistinen 2009: 36-39)

Figure 54. Star schema for sales data.

Figure 55. Tables of sales data warehouse.

 Acta Wasaensia 69

The data warehouse is modeled as ARS and AdSchema (figures 56 and 57). Be-
cause the modeling method removes all the types created from foreign keys, the
challenge is to recognize these elements and thus construct the fact table of a star
schema.

D1 D2 D3 D4 D5 D6 D7 D8

21.1.2013 22.1.2013 23.1.2013 24.1.2013 26.1.2013 11.2.2013 12.2.2013

Monday WednesdayTuesday Thursday Friday

100 35 71 50 1 42

P1 P2 P3 P4 P5

9" nail Bolt Hammer Bucket Saw

S1 S2 S3 S4 S5

AB
Company

City
Hardware

Sons &
Sons

Cheap
Products

Buy, Buy!

Harrisonburg Dauphin Loghill Newington Rockwell

Date

Date_id

Day

Store_id

Store_name

Store_city

Product_id

Product_name

Units_sold

28.1.2013

2

Figure 56. ARS for data warehouse.

Date

Date_id

Day

Store_id

Store_name Store_city

Product_id

Product_name

Units_sold

Figure 57. AdSchema for data warehouse.

In the ARS between the elements of types 𝐷𝐷𝐷 and 𝐷𝐷𝐷𝐷_𝑖𝑖 appears to be one-to-
many relationships because for example “𝑀𝑀𝑀𝑀𝑀𝑀” is adjacent “𝐷1”, “𝐷6” and
“𝐷7”. However, by examining the AdSchema the type 𝐷𝐷𝐷 represents regular at-

70 Acta Wasaensia

tributes despite the one-to-many relationship. Next problematic type is
𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠. Even though the elements of 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠 have degree greater than two
but because the elements are not members of vertex dominating set, and they do
not have leaves. The type or its elements do not fully meet the criteria for key
attribute type and its values. Let us examine (Tables 15, 16 and 17) the adjacen-
cies between 𝐷𝐷𝐷𝐷_𝑖𝑖, 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑆𝑆𝑆𝑆𝑆_𝑖𝑖. These types satisfy
the criteria for key attributes. Note that the set 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠 contains similar ele-
ments (2 twice), because the conversion method does not remove similar attrib-
ute values, since they are assigned to different tuples of the modeled database.

Table 15. Adjacencies between 𝐷𝐷𝐷𝐷_𝑖𝑖 and 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠.

 Units_sold

 100 35 71 2 50 1 2 4 Row sums Dependency

D
at

e_
id

D1 1 0 0 0 0 0 0 0 1 1:1
D2 0 1 0 0 0 0 0 0 1 1:1
D3 0 0 1 0 0 0 0 0 1 1:1
D4 0 0 0 1 0 0 0 0 1 1:1
D5 0 0 0 0 1 0 0 0 1 1:1
D6 0 0 0 0 0 1 0 0 1 1:1
D7 0 0 0 0 0 0 1 0 1 1:1
D8 0 0 0 0 0 0 0 1 1 1:1

 Column
sums 1 1 1 1 1 1 1 1

 Dependen-
cy 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

Table 16. Adjacencies between 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠.

 Units_sold

 100 35 71 2 50 1 2 4 Row sums Dependency

Pr
od

uc
t_

id
 P1 1 0 1 0 0 0 0 0 2 1:M

P2 0 1 0 0 1 0 0 0 2 1:M
P3 0 0 0 1 0 0 0 0 1 1:1
P4 0 0 0 0 0 1 0 0 1 1:1
P5 0 0 0 0 0 0 1 1 2 1:M

 Column sums 1 1 1 1 1 1 1 1
 Dependency 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

 Acta Wasaensia 71

Table 17. Adjacencies between 𝑆𝑆𝑆𝑆𝑆_𝑖𝑖 and 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠.

 Units_sold
 100 35 71 2 50 1 2 4 Row sums Dependency

St
or

e_
id

S1 1 1 0 0 0 0 0 0 2 1:M
S2 0 0 1 0 0 0 0 0 1 1:1
S3 0 0 0 1 0 0 0 0 1 1:1
S4 0 0 0 0 1 1 1 0 3 1:M
S5 0 0 0 0 0 0 0 1 1 1:1

 Column sums 1 1 1 1 1 1 1 1
 Dependency 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

Table 15 to 17 reveal one-to-many relationship between the types 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖 and
𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠 and as well between 𝑆𝑆𝑆𝑆𝑆_𝑖𝑖 and 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠. Thus, the relation
should have 𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆_𝑖𝑖 as foreign keys accompanied with 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠.
Moreover, AdSchema shows that 𝑈𝑈𝑈𝑈𝑈_𝑠𝑠𝑠𝑠 is adjacent to multiple types that
represent key attributes. This implies that the database should have a star sche-
ma. So the 𝐷𝐷𝐷𝐷_𝑖𝑖 type is also assigned as foreign key to the relation which is can
be considered as facts table. If the facts table contains several regular attributes,
each new type is adjacent to all primary key types (figure 58). Thus facts table is
constructed with the same principles discussed before.

Date

Date_id

Day

Store_id

Store_name Store_city

Product_id

Product_name

Units_sold Cost_per_sold_unit

Figure 58. AdSchema with multiple attributes in facts table.

72 Acta Wasaensia

7.3.3 Reconstructing the database

This section the usage of methods discussed in this study for modeling relational
database with adjacency model and adjacency relation system and as well recon-
structing the database back into adjacency relation system.

Consider a database (figure 59) for the United Kingdom’s Open University (Wil-
liams, 2012). Database contains information about university staff, students,
courses, course schedules, course supervisors, research projects and staff’s re-
search interests.

Figure 59. Database diagram for Open University (Williams, 2012).

Database has nine relations. Four of these relations are considered as relation-
ship relations (𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶𝐶𝐶_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,
𝑆𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅ℎ_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑆𝑆𝑆𝑆𝑆_𝑜𝑜_ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). Töyli’s (2002 and
2006) modeling method removes the foreign keys from the ARS. Only the rela-
tion 𝑆𝑆𝑆𝑆𝑆_𝑜𝑜_𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has attributes that are not considered as for-
eign keys (𝑑𝑎𝑎𝑎_𝑓𝑓𝑓𝑓 and 𝑑𝑑𝑑𝑑_𝑡𝑡) and 𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓 was defined as part of rela-
tion’s key. The type 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 does not fully satisfy the criteria set for
types and elements representing the key attributes and their values. The ARS-
based graph representation of the adjacency relation system for the database is
shown in figure 60.

 Acta Wasaensia 73

stu
de

nt_
id

ge
nd

er
da

te_
of_

bir
th

fir
st_

na
me

las
t_n

am
e

00
1

00
2

00
3

00
4

00
5

F
M

1.1
.19

90
2.3

.19
87

11
.2.

19
94

4.1
2.1

96
0

24
.7.

19
93

Br
am

Sa
l

Ka
tel

yn
n

Cia
ra

Pa
t

Ha
rve

y
Kir

by
Lin

wo
od

De
an

Br
ya

nt

co
ur

se
_s

ch
ed

ule
_id

SC
1

SC
2

SC
3

SC
4

co
ur

se
_o

ffe
rin

g_
id

CO
U1

CO
U2

CO
U3

CO
U4

To
pic

s in

Vik
ing

 Dr
am

a:
An

 O
de

sse
y o

f
Th

ou
gh

t

Ra
dic

al
So

cie
ty:

Dif

fer
en

ts
Po

int
s

of
Vie

w

Ur
ba

n E
ur

op
ea

n
Va

lue
s S

inc
e

18
59

Ma
ste

rp
iec

es
 of

Mi

dd
le

Cla
ss

Ita
lia

n D
an

ce

ST
A1

ST
A2

ST
A3

ST
A4

ST
A5

co
ur

se
_o

ffe
rin

g_
na

me

sta
ff_

id

M
F

ge
nd

er 2.2
.19

55
31

.8.
19

70
1.1

0.1
98

1
15

.11
.19

93
16

.12
.19

77

Ma
rly

n
He

nr
y

Gid
eo

n
Da

nie
lle

Ul
f

Ma
rks

Ga
rri

so
n

Ha
rri

so
n

Do
rm

an
Ha

ns
en

De
an

Te
ac

he
r

Te
ac

he
r

Re
se

arc
he

r
Re

se
arc

h
as

sis
tan

t

12
3

34
5

45
6

56
7

67
8

ma
rly

n.m
ark

s
@

un
i.e

du

he
nr

y.g
arr

iso
n

@
un

i.e
du

gid
eo

n.h
arr

iso
n

@
un

i.e
du

da
nie

lle
.do

rm
an

@
un

i.e
du

ulf
.ha

ns
en

@
un

i.e
du

PR
O1

PR
O2

Im
pr

ov
ing

 In
ter

ru
pts

 U
sin

g
Cla

ssi
ca

l C
on

fig
ur

ati
on

s
On

 th
e D

ev
elo

pm
en

t
of

E-C
om

me
rce

cs
e-c

om
m

ma
n

pr
oje

ct_
id

pr
oje

ct_
na

me

are
a_

of_
res

ea
rch

_id

Co
mp

ute
r

Sc
ien

ce
E-

Co
mm

erc
e

Ma
na

ge
me

nt

are
a_

of_
res

ea
rch

_n
am

e

da
te_

of_
bir

th

fir
st_

na
me

las
t_n

am
e

job
_ti

tle

ph
on

e_
nu

mb
er

em
ail

31
.12

.20
14

1.1
.20

14

30
.6.

20
12

30
.6.

20
14

31
.12

.20
14

1.1
.20

14

da
te_

fro
m

da
te_

to
SC

4
SC

5

Figure 60. Adjacency relation system for the database.

74 Acta Wasaensia

The relationships between element types of ARS are represented by AdSchema
shown in figure 61. AdSchema is a useful tool to complement the analysis of the
ARS. In this case, for example, the attribute gender has two values M and F. In
the ARS the elements M and F have multiple adjacent elements which, mean they
have a degree greater than 1, and thus they are not considered to be leaves. How-
ever, the AdSchema reveals that the type gender is a leaf vertex and thus should
be handled as a regular attribute.

gender date_of_birth first_name last_name

student_id

course_schedule_id

course_offering_id

course_offering_name staff_id

gender date_of_birth first_name last_name job_title phone_number email

project_id

project_name

area_of_research_id

area_of_research_name

date_from

date_to

Figure 61. AdSchema of the ARS.

ARS and AdSchema are graphs representing the contents and the structure of the
database. In this study was proposed that types and elements representing the
key attributes and their values typically have three common properties – they
have a degree at least two, they belong to vertex dominating set of the graph, and
they have leaf vertices. Tables 18 and 19 portray properties for the vertices of ARS
graph and AdSchema graph.

Table 18. Vertex properties in ARS graph.

Vertex name Degree
Vertex
dominating set

Parent
node

M 3
F 2
1.1.1990 1
2.3.1987 1
11.2.1994 1
4.12.1960 1
24.7.1993 1

 Acta Wasaensia 75

Bram 1
Sal 1
Katelynn 1
Ciara 1
Pat 1
Harvey 1
Kirby 1
Linwood 1
Dean 1
Bryant 1
001 6 x x
002 5 x x
003 5 x x
004 5 x x
005 4 x x
SC1 2
SC2 2
SC3 3
SC4 2
SC5 1
COU1 3 x x
COU2 4 x x
COU3 3 x x
COU4 3 x x
Topics In Viking Drama: An Odyssey Of
Thought 1
Radical Society: Different Points Of View 1
Urban European Values Since 1859 1
Masterpieces Of Middle Class Italian Dance 1
STA1 11 x x
STA2 10 x x
STA3 9 x x
STA4 10 x x
STA5 10 x x
M 3
F 2
2.2.1955 1
31.8.1970 1
1.10.1981 1
15.11.1993 1
16.12.1977 1
Marlyn 1

76 Acta Wasaensia

Henry 1
Gideon 1
Danielle 1
Ulf 1
Marks 1
Garrison 1
Harrison 1
Dorman 1
Hansen 1
Dean 1
Teacher 1
Teacher 1
Researcher 1
Research assistant 1
123 1
345 1
456 1
567 1
678 1
marlyn.marks@uni.edu 1
henry.garrison@uni.edu 1
gideon.harrison@uni.edu 1
danielle.dorman@uni.edu 1
ulf.hansen@uni.edu 1
PRO1 6 x x
PRO2 4 x x
Improving Interrupts Using Classical Con-
figurations 1
On the Development of E-Commerce 1
cs 5 x x
e-comm 3 x x
man 2 x x
Computer Science 1
E-Commerce 1
Management 1
1.1.2014 3 x x
1.1.2014 3 x x
30.6.2012 3 x x
31.12.2014 1
31.12.2014 1
30.6.2014 1

 Acta Wasaensia 77

Table 19. Vertex properties in the AdSchema graph.

Vertex name Degree Vertex
dominating set Parent node

gender 1
date_of_birth 1
first_name 1
last_name 1
student_id 5 x x
course_schedule_id 2

 course_offering_id 3 x x
course_offering_name 1
staff_id 11 x x
gender 1
date_of_birth 1
first_name 1
last_name 1
job_title 1
phone_number 1
email 1
date_from 3 x x
date_to 1
project_id 4 x x
project_name 1
areas_of_research_id 3 x x
area_of_research_name 1

Based on the observations listed in tables 18 and 19, types student_id,
course_offering_id, staff_id, date_from, project_id and areas_of_research_id
and their elements represent key attributes and their values. Each vertex, in ARS
as well as in AdSchema, has degree equal or greater than 2. Also each type has
leaf vertices, and each type is a member of vertex dominating set of the graph.

Relation in AdSchema is a set of distinct vertices of the walk from vertex repre-
senting key attribute type to its leaves. Based on the AdSchema (figure 61) it can
be concluded, that database contains at least the relations listed below.

𝑅1 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔,𝑑𝑑𝑑𝑑_𝑜𝑜_𝑏𝑏𝑏𝑏ℎ_𝑓𝑓𝑓𝑓𝑓_𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙_𝑛𝑛𝑛𝑛}

𝑅2 = {𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑛𝑛𝑛𝑛}

𝑅3 =
{𝑠𝑠𝑠𝑠𝑠_𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔,𝑑𝑑𝑑𝑑_𝑜𝑜_𝑏𝑏𝑏𝑏ℎ, 𝑓𝑓𝑓𝑓𝑓_𝑛𝑛𝑛𝑛, 𝑙𝑙𝑙𝑙_𝑛𝑛𝑛𝑛, 𝑗𝑗𝑗_𝑡𝑡𝑡𝑡𝑡, 𝑝ℎ𝑜𝑜𝑜_𝑛𝑛𝑛𝑛𝑛𝑛, 𝑒𝑒𝑒𝑒𝑒}

78 Acta Wasaensia

𝑅4 = {𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓,𝑑𝑑𝑑𝑑_𝑡𝑡}

𝑅5 = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛}

𝑅6 = {𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖,𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑛𝑛𝑛𝑛}

Type 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 is not considered as vertex representing key attributes.
This situation can be interpreted in two ways, it implies the existence of relation-
ship relation or the type belongs to a relation, which originally contained only
primary key and foreign key. At this phase database has 22 tuples which are:

𝑡1 = {001,𝑀, 1.1.1990,𝐵𝐵𝐵𝐵,𝐻𝐻𝐻𝐻𝐻𝐻}

𝑡2 = {002,𝑀, 2.3.1987, 𝑆𝑆𝑆,𝐾𝐾𝐾𝐾𝐾}

𝑡3 = {003,𝐹, 11.2.1994,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿}

𝑡4 = {004,𝐹, 4.12.1960,𝐶𝐶𝐶𝐶𝐶,𝐷𝐷𝐷𝐷}

𝑡5 = {005,𝑀, 24.7.1993,𝑃𝑃𝑃,𝐵𝐵𝐵𝐵𝐵𝐵}

𝑡6 = {𝐶𝐶𝐶1,𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼 𝑉𝑉𝑉𝑉𝑉𝑉 𝐷𝐷𝐷𝐷𝐷: 𝐴𝐴 𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂 𝑇ℎ𝑜𝑜𝑜ℎ𝑡}

𝑡7 = {𝐶𝐶𝑈2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂 𝑉𝑉𝑉𝑉}

𝑡8 = {𝐶𝐶𝐶3,𝑈𝑈𝑈𝑈𝑈 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆 1859}

𝑡9 = {𝐶𝐶𝐶4,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂 𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝐷𝐷𝐷}

𝑡10 = {𝑆𝑆𝑆1,𝐹, 2.2.1955,𝑀𝑀𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀,𝐷𝐷𝐷𝐷, 123,𝑚𝑚𝑚𝑚𝑚𝑚.𝑚𝑚𝑚𝑚𝑚@𝑢𝑢𝑢. 𝑒𝑒𝑒}

𝑡11
= {𝑆𝑆𝑆2,𝑀, 31.8.1970,𝐻𝐻𝐻𝐻𝐻,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝑇𝑇𝑇𝑇ℎ𝑒𝑒, 345, ℎ𝑒𝑒𝑒𝑒.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔@𝑢𝑢𝑢. 𝑒𝑒𝑒}

𝑡12
= {𝑆𝑆𝑆3,𝑀, 1.10.1981,𝐺𝐺𝐺𝐺𝐺𝐺,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑇𝑇𝑇𝑇ℎ𝑒𝑒, 456,𝑔𝑔𝑔𝑔𝑔𝑔. ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎@𝑢𝑢𝑢. 𝑒𝑒𝑒}

𝑡13
= {𝑆𝑆𝑆4,𝐹, 15.11.1993,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷,𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑒𝑒, 567,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.𝑑𝑑𝑑𝑑𝑑𝑑@𝑢𝑢𝑢. 𝑒𝑒𝑒}

𝑡14
= {𝑆𝑆𝑆5,𝑀, 16.12.1977,𝑈𝑈𝑈,𝐻𝐻𝐻𝐻𝐻𝐻,𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 678,𝑢𝑢𝑢. ℎ𝑎𝑎𝑎𝑎𝑎@𝑢𝑢𝑢. 𝑒𝑒𝑒}

 Acta Wasaensia 79

𝑡15 = {1.1.2014, 31.12.2014}

𝑡16 = {1.1.2014, 31.12.2014}

𝑡17 = {30.6.2012, 30.6.2014}

𝑡18 = {𝑃𝑃𝑃1, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑈𝑈𝑈𝑈𝑈 𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}

𝑡19 = {𝑃𝑃𝑃2,𝑂𝑂 𝑡ℎ𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜 𝐸 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}

𝑡20 = {𝑐𝑐,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆}

𝑡21 = {𝑒 − 𝑐𝑐𝑐𝑐,𝐸 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}

𝑡22 = {𝑚𝑚𝑚,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀}

The dependencies between the relations of the database are determined by ana-
lyzing the adjacencies between the elements of the key types. Adjacency examina-
tions reveal the primary dependencies such as one-to-one, one-to-many and
many-to-many. The examinations also shows, if the relationship should be con-
sidered optional. At first adjacencies between elements of 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖
and 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 are analyzed. The adjacencies are depicted in table 20.

Table 20. Adjacencies between elements of the types 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖
and 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖.

 staff_id

 STA1 STA2 STA3 STA4 STA5 Rows
sums

co
ur

se
_o

ffe
ri

ng
_i

d

COU1 1 0 0 0 0 1
COU2 0 1 0 0 0 1
COU3 0 0 1 0 0 1

COU4 0 0 1 0 0 1
 Column

sums 1 1 2 0 0

The type of dependency can be determined by row sums and columns of the adja-
cency matrix. Row sums show, that each element in 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖 is adja-
cent to one element in 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖. Moreover, the column sums show, that elements
of 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 can be adjacent to multiple elements of 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖 and also
the column sums show that some of the elements of 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 do not have adja-
cent elements in 𝑐𝑐𝑐𝑟𝑟𝑟_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖.

80 Acta Wasaensia

Because the elements of 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖 type represent the values of key at-
tributes of relation 𝑅2 and respectively the elements of 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 represent the
values of key attributes of relation 𝑅3. The dependency between relations is de-
fined as is one-to-many (Table 21).

Table 21. Dependency between relations 𝑅3 and 𝑅2.

𝑅3 𝑅2
1 0…*

The adjacencies between the elements of type 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 and the elements of type
𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓 (Table 22) are analyzed in order to determine the nature of relation-
ship between the relations 𝑅3 and 𝑅4.

Table 22. Adjacencies between elements of types 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 and 𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓.

 date_from

1.1.2014 1.1.2014 30.6.2012 Row sums

st
af

f_
id

STA1 1 0 0 1
STA2 0 0 0 0
STA3 0 0 0 0
STA4 0 0 1 1
STA5 0 1 0 1

 Column
sums 1 1 1

The column sums of table 22 show that each element of 𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓 is adjacent to
one element of type 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖. The rows sums indicate that elements STA1, STA4
and STA3 have adjacent elements in 𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓, on the other hand the elements
STA2 and STA3 do not have adjacent elements in 𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓. Based on these
factors the dependency (Table 23) between 𝑅3 and 𝑅4 defined as one-to-one with
optionality constraint.

Table 23. Dependency between relations 𝑅3 and 𝑅4.

𝑅3 𝑅4
1 0…1

The adjacencies between the elements of type 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 and the elements of type
𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓 are analyzed (table 24) in order to determine the type of dependency
between the relations 𝑅5 and 𝑅4.

 Acta Wasaensia 81

Table 24. Adjacencies between elements of 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 and
𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓.

 date_from
 1.1.2014 1.1.2014 30.6.2012 Row sums
project_id PRO1 1 1 0 2

PRO2 0 0 1 1
 Column sums 1 1 1

The column sums of table 24 show that each element of 𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓 is adjacent to
one element of type 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖. The row sums indicate that elements of
𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 are adjacent to one or more elements of 𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓. Thus, dependency
between 𝑅5 and 𝑅4 is one-to-many (table 25).

Table 25. Dependency between relations 𝑅5 and 𝑅4.

𝑅5 𝑅4
1 1…*

Table 26 shows the adjacencies between types 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 and
𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖. The column and row sums of the table indicate the type of
dependency between relations 𝑅5 and 𝑅6.

Table 26. Adjacencies between elements of 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 and
𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖.

 area_of_research_id
 cs e-comm man Row sums
project_id PRO1 1 0 0 1

PRO2 0 1 0 1
 Column

sums 1 1 0

Table 26 shows that elements of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 type have one adjacent element in
𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖. Elements of 𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖 type have one adjacent
element in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 type, however, element man of 𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖 does
not have any adjacent elements belonging to 𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖 type. So, the dependency
between relations 𝑅5 and 𝑅6 is considered one-to-one with optionality constraint
(Table 27).

Table 27. Dependency between relations 𝑅6 and 𝑅5.

𝑅6 𝑅5
1 0…1

82 Acta Wasaensia

Table 28 examines the adjacencies between the elements of types 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 and
𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖. Elements of type 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 represent the values of key at-
tributes of relation 𝑅3 and the elements of type 𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖 represent
the values of key attributes of relation 𝑅6.

Table 28. Adjacencies between the elements of types 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 and
𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖.

 area_of_research_id
 cs e-comm man Row sums

st
af

f_
id

STA1 1 0 0 1
STA2 1 0 1 2
STA3 0 0 0 0
STA4 0 1 0 1
STA5 1 0 0 1

 Column sums 3 1 1

Table 28 shows that elements of 𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 type have multiple adjacent elements
in 𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖, yet, STA3 element does not have adjacent element. Ele-
ments of type 𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖 have multiple adjacent elements in
𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖. So, the dependency between relations 𝑅3 and 𝑅6 can be seen as many-
to-many (Tables 29 and 30).

Table 29. Dependency between relations 𝑅3 and 𝑅6.

𝑅3 𝑅6
1 0…*

Table 30 Dependency between relations 𝑅6 and 𝑅3.

𝑅6 𝑅3
1 1…*

Relational model does not favor many-to-many dependency, which means that a
relationship relation has to be created. Relation 𝑅𝑟𝑟𝑟1 contains both types as for-
eign keys to corresponding relations. The dependency definitions for relations 𝑅3,
𝑅6 and 𝑅𝑟𝑟𝑟1 are shown in figure 62.

 Acta Wasaensia 83

Figure 62. Relationship relation.

The type 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖d in this case is not considered as a key type. Howev-
er, based on the AdSchema and ARS graph the type should not be considered as a
type that represents regular attribute. It is necessary to examine the adjacencies
between the elements of types 𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 and 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 as well the
adjacencies between types 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖 and 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 (table
31).

Table 31. Adjacencies between the elements of types 𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 and
𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖.

 course_schedule_id

SC1 SC2 SC3 SC4 SC5 Row sums

st
ud

en
t_

id
 001 1 0 1 0 0 2

002 0 1 0 0 0 1
003 0 0 1 0 0 1
004 0 0 0 1 0 1
005 0 0 0 0 0 0

 Column
sums 1 1 2 1 0

Table 31 shows that elements of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖 type have multiple adjacent elements
in 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖, yet, element 005 does not have adjacent elements. Ele-
ments of type 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 have multiple adjacent elements in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖,
except the SC5 which does not have adjacent elements. So, the dependency be-
tween relations 𝑅1 and 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 is seen as many-to-many.

Table 32. Dependency between relations 𝑅1 and 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖.

𝑅1 𝑐𝑐𝑐𝑟𝑟𝑟_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖
1 0…*

84 Acta Wasaensia

Table 33. Dependency between relations 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 and 𝑅1.

𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 𝑅1
1 0…*

Because the relationship between 𝑅1 and course 𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 is many-to-many, a
relationship relation 𝑅𝑟𝑟𝑟2 has to be constructed. It has both types as foreign keys
to corresponding relations. At this point a new relation R7 is created it contains
type 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 as primary key. The dependency definitions for relations
𝑅1, 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 (denoted as relation 𝑅7) and 𝑅𝑟𝑟𝑟2 are shown in figure 63.

Figure 63. The relationship definitions for relations 𝑅1, 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 and
𝑅𝑟𝑟𝑟2.

According to AdSchema (see figure 61) type 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 is adjacent to
type 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖. The adjacency of elements of these types are shown in
table 34.

Table 34. Adjacencies between 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 and type
𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖.

 course_schedule_id
 SC1 SC2 SC3 SC4 SC5 Row sums

co
ur

se
_o

ffe
ri

ng
_i

d

COU1 1 0 0 0 0 1
COU2 0 1 0 0 1 2
COU3 0 0 1 0 0 1
COU4 0 0 0 1 0 1

 Column
sums 1 1 1 1 1

Table 34 shows that elements of 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖 type have one adjacent ele-
ment in 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖. Elements of type 𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖 may have
multiple adjacent elements in 𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖. So, the dependency between
relations 𝑅2 and newly created 𝑅7 (𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒_𝑖𝑖) is seen as one-to-many
(table 35).

 Acta Wasaensia 85

Table 35. Dependency between relations 𝑅2 and 𝑅7.

𝑅2 𝑅7
1 1…*

After the dependencies and possible constraints are defined for the relations, the
database schema is reconstructed (figure 64). Respectively the reconstructed da-
tabase is shown in figure 65. The modeling method removes all the types created
from foreign keys from the ARS. Thus, some of the keys must be duplicated and
assigned as foreign keys to the corresponding relations.

Figure 64. The schema of the reconstructed database.

86 Acta Wasaensia

Figure 65. Reconstructed database.

The foreign key duplications are based on the adjacency examinations discussed
in this section. Rule of thumb for key duplication is that the key of the one-end of
the relationship is copied to the relation of the many-end of relationship (figure
64). In the case one-to-one relationship of either of the keys can be copied and
assigned as a foreign key. If there is optionality constraint in the relationship the
key of the non-optional end assigned as a foreign key to optional-end relation
(figure 66).

Figure 66. Foreign key duplication.

 Acta Wasaensia 87

The ARS created from the original database is a snapshot of the database at the
moment. Because the properties of the database are determined based on the
stored data, i.e. the adjacencies between types and their elements, the recon-
structed database might not fully conform the original database schema. For ex-
ample the original database schema has relationship relation for staff course su-
pervision (𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), but the adjacency analysis showed only
one-to-many relationship between staff and courses, which means that based on
the data the relationship relation will not be created. The reconstructed database
does not violate relational model, but it contradicts the original schema.

The database reconstruction at this point relies heavily on human insight. So, the
process is not optimal. However, some general complexity considerations for the
calculating the metrics of the graph can be given.

The complexity of an algorithm can be measured by running time. Running time
tells how much effort and computing problem solving requires. Running time is a
function of a measure of the amount of data that is needed to convey the problem
to the computer. For example, running time can be given as a function of the size
of the input matrix or the total number of vertices in a graph. For some problems
there does not exist algorithms that could solve the problems in polynomial time.
These problems are called NP-complete (or NP-hard). (Wilf 1994: 2, 104-105.)

The graph structure is stored as adjacency matrix, each row containing 𝑛 ele-
ments, which causes degree calculations to take time 𝑂(𝑛) (Newman 2010: 309).
Determining the vertex dominating set of the graph is NP-hard problem. The
running times of the proposed solutions have variations. For example an exhaus-
tive solution could take 𝑂(2𝑛2) (Fernau 2010: 310). On the other hand Grandoni
(2006: 209-210) has suggested a solution that takes 𝑂(1,34242𝑛), where 𝑛 is
number of vertices in 𝐺. Determining the parent nodes of the graph utilizes the
principles of finding nearest neighbors. Vaidya (1989: 102) has suggested a solu-
tion for solving the nearest neighbor problems that takes 𝑂(𝑛 log𝑛) time.

The framework represented in this work enables the conversions from database
to ARS and from ARS to database. In more general level, the framework could be
considered as feasibility study that determines if a given graph structure is suita-
ble foundation for the creation of relational database.

88 Acta Wasaensia

8 UTILIZATION OF MULTI-OBJECTIVE OPTIMIZATION IN
GRAPH ANALYSIS

Previous sections of this report discussed the similarities between adjacency
model and relational model. These similarities are used in modeling relational
data with adjacency model (see for example Töyli 2002). Similarities made pos-
sible to reconstruct a database from an adjacency relation system, which is a
graph visualization of the adjacency model.

The introduction of the reconstruction method revealed the fact that the database
elements, represented as a graph, have certain features, which can be identified
by utilizing graph theory concepts such vertex degree, vertex dominating set of
the graph and leaf vertex. It was also noticed, that in a graph representation of
database tuples and relations are built and de around the vertices representing
the values of key attributes. Also, it was noticed that dependencies are expressed
by adjacencies between these vertices. Moreover, when dealing with AdSchema
representation of database schema relations and dependencies are built around
vertices representing key attribute types.

The identification of the vertices can be done in moderate time by using tables if
the ARS is relatively small. As the number of vertices and edges increases, it is
useful to utilize the multi-objective optimization in the identification process.

8.1 Multi-objective optimization

Optimization aims to maximize desirable features of the system. Optimization
goals represent the extreme values, which are achieved with optimization func-
tions. Typically the goal is to minimize the value of the objective function. (Price
et al. 2005: 1)

Optimization tasks usually involve a number of variables that affect the perfor-
mance of the objective function. Parameters can be discrete or continuous, they
might have different types, and parameters can be finite or infinite. Domain val-
ues may have a continuous range, or they can be a set of isolated and irregularly
spaced values. Parameter quantization transforms the domain values into usable
scale. (Price et al. 2005: 1,189-192).

Multi-objective optimization strives to minimize 𝐾 individual objective functions.
The purpose is to find 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝐷−1)𝑇 , 𝑥 ∈ ℜ𝐷such that it minimizes the
function 𝑓𝑘(𝑥), 𝑘 = 1, … ,𝐾,𝐾 ≥ 2. ℜ𝐷 represents the D-dimensional space of real
numbers. (Price et al. 2005: 244)

 Acta Wasaensia 89

If the graph is large the analysis tables contain large number of elements (rows)
and thus the row-wise examination of properties is time consuming. The set of
potential vertices representing the values of key attributes can be produced with
multi-objective optimization. The first step is to define evaluation scale for each
property. This is called parameter quantization. After the parameter quantiza-
tion, the objective functions for each property are defined. The aim is then to
minimize the value of each function so that the set of potential key vertices is ob-
tained. The result set is called pareto-optimal, it is a solution that satisfies all
conditions. A vector of objective function values dominates other vectors if its
values are not higher, and at least one is lower (Price et al. 2005: 246; Erfani,
Tohid et al. 2011: 467-468).

Pareto-front is the set of optimal solutions. Lampinen (2000: 18) states the fol-
lowing about the Pareto-front.

1. It contains the Pareto-optimal solutions, and it divides the objective func-
tion space into two parts, which are non-optimal solutions and infeasible
solutions.

2. Pareto-front is not necessarily continuous.

8.2 Recognizing keys with multi-objective optimization

This section discusses the utilization of multi-objective optimization in the
recognition of vertices representing the key attributes and their values from an
ARS-based graph. The process has the following steps.

1. Determine optimization parameters.
2. Define value mappings for the parameters.
3. Define goal functions and constraining functions.
4. Run the functions.
5. Analyze and compile the results in order to find the optimal solution set.
6. Apply constraining functions if necessary and repeat step 5.

The goal functions aim to minimize the values of three parameters 𝑝1,𝑝2 and 𝑝3.
The value for parameter 𝑝1 is defined by the degree of the graph vertex. The pa-
rameter 𝑝2 gets its value by determining if a given vertex belongs to the vertex
dominating set of the graph. The value for parameter 𝑝3 is defined by the factor
whether a vertex is parent or not i.e. has leaf vertices. The value mappings for the
parameters are shown in tables 36 to 38.

90 Acta Wasaensia

Table 36. Value mappings for parameter 𝑝1.

Vertex degree >2 2 1 0
Value for 𝑝1 0 1 2 3

Table 37. Value mappings for parameter 𝑝2.

Member of vertex dominating set Yes No
Value for 𝑝2 0 1

Table 38. Value mappings for parameter 𝑝3.

Vertex is parent Yes No
Value for 𝑝3 0 1

After the value scales for the parameters are set, the goal functions 𝑓1, 𝑓2 and 𝑓3
are defined.
– First function (𝑓1) determines the degree of each vertex in graph 𝐺 and re-

turns values for the vertices of the 𝐺 based on the value mappings for the pa-
rameter 𝑝1.

– Function (𝑓2) determines the members vertex dominating set of the graph
and returns values for each vertex based on the value mappings for the pa-
rameter 𝑝2.

– Third function (𝑓3) finds the parent vertices of the graph 𝐺 and produces val-
ues for the vertices in 𝐺 based on the value mappings for the parameter 𝑝3.

After the parameter and goal function definitions are done the functions are ap-
plied. The functions produce 𝑛 × 3 matrix, where 𝑛 is total number of vertices of
the graph. A row of the result matrix is called value vector. A value vector repre-
sents the values that the goal functions returned. In this case the desired value
vector should read (0, 0, 0). Vertices having zero vectors make up the pareto-
optimal solution. The set represents key attributes when the analyzed graph is
AdSchema based. Respectively, when the analyzed graph is ARS based the set
represents the values of key attributes.

As shown in tables 36 to 38 parameters 𝑝2 and 𝑝3 have only two possible values
(0 or 1) as the parameter 𝑝1 has larger value scale. The larger scale originates
from the situation where original database contains relationship relation which
has for example two attributes, one regular and one foreign key. Since, the mod-
eling rules state that foreign keys are not included in the ARS based graph repre-
sentation of the database; the graph contains vertices that have degree of two. Yet
these vertices do not have leaves and typically they do not belong to the vertex

 Acta Wasaensia 91

dominating set. The larger scale eliminates these vertices from the solution.
However, the larger scale also eliminates the vertices representing key attributes
(and their values) of such relations which contain primary key accompanied with
one regular attribute. To include these vertices in the solution a constraining
function must be defined.

The following examples show how the multi-objective optimization is utilized for
recognizing the types (i.e. vertices) representing key attributes in AdSchema.

Example 13. Let 𝐺 = (𝑉,𝐸) be an AdSchema (figure 67) representation of rela-
tional database schema where 𝑉 = {𝑥1, 𝑥2, 𝑥3, 𝑥4,𝑦1, 𝑧1, 𝑧2, 𝑣1, 𝑣2, 𝑣3} and 𝐸 =
{𝑥1𝑥2, 𝑥1𝑥3, 𝑥1𝑥4, 𝑥1𝑦1, 𝑧1𝑦1, 𝑧1𝑧2, 𝑧1𝑣1,𝑣1𝑣2, 𝑣1𝑣3,𝑣1𝑣3}. Since the AdSchema de-
picts a relational database schema let us assume that vertices 𝑥1, 𝑧1 and 𝑣1 repre-
sents the key attributes types.

x1

x2 x3 x4

y1

z1z2

v1

v2 v3 v4

Figure 67. AdSchema representation of relational database.

Matrix M shows the values determined by objective functions for each vertex in
AdSchema. Vertices that have smallest value vectors are potential set of vertices
(types) representing key attributes.

92 Acta Wasaensia

𝑀 =

𝒇𝟏 𝒇𝟐 𝒇𝟑
𝑥1 0 0 0
𝑥2 2 1 1
𝑥3 2 1 1
𝑥4 2 1 1
𝑦1 1 1 1
𝑧1 0 0 0
𝑧2 2 1 1
𝑣1 0 0 0
𝑣2 2 1 1
𝑣3 2 1 1
𝑣4 2 1 1

Matrix M shows that vertices 𝑥1, 𝑧1 and 𝑣1 have smallest value vectors. These ver-
tices are thus potential key attributes. The vertex set is a starting point for the
reconstruction of relations, tuples and dependencies. However the value vector
for 𝑦1 is the smallest one of the remaining vectors (excluding the zero vectors),
which means that in the database reconstruction phase adjacencies of such types
and their elements should be examined more thoroughly.

Sometimes the graph representation of relational database may contain vertices
whose degree is two, but they have leaf vertex. Therefore, it is necessary to define
some constraint so that the optimal solution set includes such vertices. In the
next example, a constraint function is defined and applied in determining the set
of potential key types. (Price et al. 2005: 201-202)

Example 14. Let 𝐺 = (𝑉,𝐸) be an AdSchema (figure 68) representation of rela-
tional database where 𝑉 = {𝑥1, 𝑥2, 𝑦1, 𝑧1, 𝑧2, 𝑣1, 𝑣2, 𝑣3} and
𝐸 = {𝑥1𝑥2, 𝑥1𝑦1, 𝑧1𝑦1, 𝑧1𝑧2, 𝑧1𝑣1,𝑣1𝑣2,𝑣1𝑣3,𝑣1𝑣3}. Let us assume that vertices 𝑥1, 𝑧1
and 𝑣1 represent key attributes.

 Acta Wasaensia 93

x1

x2

y1

z1z2

v1

v2 v3 v4

Figure 68. AdSchema representation of relational database.

The values for each vertex of objective functions are shown in the matrix 𝑀1.
From the matrix 𝑀1it is seen that vertex 𝑥1 does not belong to the pareto-optimal
solution although it should be in it. To solve this situation a constraint is defined
(Price et al. 2005: 201). Constraining function 𝑓𝑐 minimizes the value of function
𝑓1 if the functions 𝑓2 and 𝑓3 provided minimized values.

𝑀1 =

𝑓1 𝑓2 𝑓3
𝑥1 1 0 0
𝑥2 2 1 1
𝑦1 1 1 1
𝑧1 0 0 0
𝑧2 2 1 1
𝑣1 0 0 0
𝑣2 2 1 1
𝑣3 2 1 1
𝑣4 2 1 1

94 Acta Wasaensia

𝑀𝑐 =

𝑓1 𝑓2 𝑓3
𝑥1 0 0 0
𝑥2 2 1 1
𝑦1 1 1 1
𝑧1 0 0 0
𝑧2 2 1 1
𝑣1 0 0 0
𝑣2 2 1 1
𝑣3 2 1 1
𝑣4 2 1 1

The matrix 𝑀𝑐 depicts the value vectors after the constraint is applied.

The factor that indicates that a constraining function should be considered is that
element 𝑥1 got minimized values from the functions 𝑓2 and 𝑓3 and 𝑓1 did not pro-
duce the optimal value.

The three goal functions discussed in this section produce a set of vertices that
represent key attributes in AdSchema. The AdSchema provides a graph visualiza-
tion of the attributes that create relations and the database. An ARS can be seen
as a graph that visualizes the values of attributes which form the tuples and even-
tually relations. So, the optimization functions can be applied to the analysis of
ARS based graphs as well, in that case the solution set contains the elements rep-
resenting the values of key attributes. The vertices in the solution set act as root
vertex for the walks from root to the leaf vertices.

8.3 Utilization of goal functions in key identification

Consider the database introduced in section “7.3.3 Reconstructing the database”.
The database and the schema of the database were reconstructed by analyzing
the properties of the vertices both in ARS based graph and AdSchema based
graph.

The analysis is straightforward it first recognizes the keys from the graphs and
then constructs tuples and relations around the keys. Finally, the dependencies
are determined based on the adjacencies between key vertices.

The recognition of keys plays a vital role in database reconstruction. In this
section, an example of usage goal functions is given. The goal functions aim to
find vertices that satisfy the criteria set for key vertices.

1. Vertex degree must be greater or equal than 2.
2. Vertices must belong to vertex dominating set of the graph.

 Acta Wasaensia 95

3. Vertices must have leaves.

The tables 39 and 40 lists vertices that minimize the functions i.e. produce zero
vectors. Table 39 shows the value vectors for vertices in the ARS based graph.
Respectively table 40 lists the value vectors for vertices of the AdSchema based
graph.

Table 39. Value vectors for vertices representing the values of key attrib-
utes in ARS based graph.

Goal function

values
Vertex name 𝑓1 𝑓2 𝑓3

001 0 0 0

002 0 0 0

003 0 0 0

004 0 0 0

005 0 0 0

COU1 0 0 0

COU2 0 0 0

COU3 0 0 0

COU4 0 0 0

STA1 0 0 0

STA2 0 0 0

STA3 0 0 0

STA4 0 0 0

STA5 0 0 0

PRO1 0 0 0

PRO2 0 0 0

cs 0 0 0

e-comm 0 0 0

man 1 0 0

1.1.2014 0 0 0

1.1.2014 0 0 0

30.6.2012 0 0 0

96 Acta Wasaensia

Table 40. Value vectors for vertices representing the key attributes in Ad-
Schema based graph.

Goal function

values

Vertex name 𝑓1 𝑓2 𝑓3

student_id 0 0 0

course_offering_id 0 0 0

staff_id 0 0 0

date_from 0 0 0

project_id 0 0 0

areas_of_research_id 0 0 0

Comparison of ARS and AdSchema graphs (see figures 60 and 61) with the po-
tential key vertices shows that vertex named “man” should be included in the
results. The vertex “man” belongs to type 𝑎𝑎𝑎𝑎𝑎_𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ_𝑖𝑖, which according
to AdSchema (see figure 61 and table 40) is considered as type representing the
key attributes.

Let us examine the value vector of the vertex “man” (see table 39, row with gray
background). It reads (1, 0, 0), which indicates that function 𝑓1 did not reach the
desired goal. Let us apply the constraining function defined in previous section,
now the value for the vertex reads (0, 0, 0). After the application of goal and con-
straining functions the set of potential keys contains the vertices listed in table
39. Respectively, table 40 lists the set of potential keys of the database schema.

After the key attributes and their values are identified the database construction
follows the steps introduced in “7.3.3 Reconstructing the database”, so here the
detailed description of the process is omitted. Briefly described the reconstruc-
tion process does the following. The tuples and relations are built around ele-
ments of sets for potential keys, simply by traversing from key to its leaves.
Moreover, the dependencies are determined by examining the adjacencies be-
tween elements belonging to these sets.

 Acta Wasaensia 97

9 CONCLUDING REMARKS

This work examined the ways to expand the utilization potential of Adjacency
Model (AM) and AdSchema. The main focus of the research efforts was on Adja-
cency Model and graph representations of relational databases. The work aimed
to find the analogical features of AM and relational database. Moreover, the goal
of this study was to provide definitions for the instances of relational database
elements in AM representation of the database.

The key concepts of AM are adjacency relation system (ARS), adjacency defining
sets and relation combination. ARS can be seen as a graph structure that is based
on the concepts of type, element and adjacency. Each element represents a type
and relationship between elements is called the adjacency (Wanne 1998:9-12.).
Wanne (1998) and Töyli (2002, 2006) both have said that relational database
and AM have analogical features. They both provided preliminary definitions for
database concepts in AM. According to Wanne (1998), adjacency defining type
corresponds with the key attributes of the relational database. Töyli (2002)
pointed out that types of the AM represent the attributes of the database, and the
elements of types represent the values of attributes. Töyli (2002) also stated that
the concept of transitive adjacency gives an idea of a tuple in AM.

The definitions provided by Wanne and Töyli were a starting point the creation of
identification criteria for the database elements in AM. In ARS an element repre-
senting the value of the key attribute is a member of adjacency defining type. In
this work the properties of elements were examined from the graph theory point
of view. An element representing the value of the key attribute typically has
degree greater than two, it also has leaf vertices, and the element belongs to min-
imal vertex dominating set of the graph. Elements that are members of types that
are not defined as adjacency defining types are considered as regular attributes.
In ARS-graph regular attributes are leaf vertices. A concept of transitive adjacen-
cy gives an understanding about tuples in ARS. From a graph theory perspective,
a tuple is a set of distinct elements that belong to the walk from vertex represent-
ing the value of the key attribute to it leaf vertices.

AdSchema provides information about the interrelationships between types of
the AM. An AdSchema is utilized when relations are created, and tuples are as-
signed to relations. The types of AdSchema represent the key attributes and regu-
lar attributes of the database. In AdSchema key attribute is represented by the
interrelationship defining type, and the other types represent regular attributes.
An AdSchema graph can also be studied from graph theory perspective. Type
representing key attribute has same properties as the elements representing the

98 Acta Wasaensia

values of key attributes. A relation is a set of distinct elements that belong to the
walk from vertex representing the key attribute to it leaf vertices.

The AdSchema gives a view basic structure of the database. Dependencies be-
tween relations are defined by adjacencies between the elements of the key types.
Information about the type the of dependency is achieved by examining the adja-
cency of elements of ARS-graph. Adjacency examinations reveal one-to-one, one-
to-many dependencies, and many-to-many dependencies, which are deprecated
in relational model. Thus, the need for relationship relation is also revealed by
adjacency examinations.

The reconstruction process from ARS-based graph to relational database is based
on the identification criteria outlined for the database elements. The reconstruc-
tion process is defined as follows. The first step of the process identifies types and
elements that represent the key attributes and their values. The purposes of the
second step is to form tuples based on ARS and define relations based on the Ad-
Schema. After the tuples and relations are defined, tuples are assigned to rela-
tions either based on the ARS type definitions or based on the properties of the
tuples, such as number of elements, type elements and adjacency of elements.
Last step determines the dependencies between relations and defines foreign
keys that implement the dependencies.

Since, the foreign keys were removed when the database was modeled by AM, the
appropriate attributes are duplicated and assigned to relations. The last step also
includes the creation of new relations, for example if ARS analysis indicates the
existence of many-to-many dependency a relationship relation needs to be creat-
ed.

The observations and methods presented in this work complement the Adjacency
Model and AdSchema. Furthermore, the results of this work can be seen as
framework of tools for analyzing graphs structures. The findings of this work can
be used as a feasibility study which determines, if a given graph structure con-
tains structures and features, which make is a suitable foundation for database
construction.

The database construction process presented in this work has limitations. The
ARS and AdSchema are static graph structures, so when the contents and struc-
ture of the database are represented with ARS and AdSchema, the representation
is snapshot of the database. This may lead to situations where the reconstructed
database does not correspond fully to the original one. For example, there is a
rule which states that between two relations exists many-to-many dependency.
The dependency is implemented by a relationship relation. Thus, if the ARS rep-

 Acta Wasaensia 99

resentation of the database contains, at the time of the snapshot, only instances
of one-to-many dependencies, then the reconstructed database does not have the
relationship relation.

Key attribute recognition can be done easily, and the results are reliable, and
both tuples and relations can be constructed with quite simple traversal algo-
rithms. Even so, solutions for recognizing the exceptions, such as many-to-many
or Boolean like attributes, rely mostly on human insight.

This work presents extensions for the definitions introduced by Wanne (1998)
and Töyli (2002, 2006). Furthermore, in this work the ARS and AdSchema struc-
tures were analyzed from the graph theory aspect. The properties of dependen-
cies between relations are determined from the adjacencies between the elements
representing the values of key attributes. One future research area should aim to
find ways to represent more information about the nature of the relationships
directly in ARS. At this point, the identification of the database elements and da-
tabase reconstruction are done manually. There is a need for algorithms that
would automatize the identification and reconstruction process.

The first two future research areas focused mainly on the Adjacency Model. To
support the future utilization of the results of this study in graph analysis, the
possibilities of multi-objective optimization techniques should be studied more
thoroughly. This means that the goal functions and their parameters have to be
redefined. For example, the parameters defined in this work are quite plain. The
combination of multi-objective optimization and community finding techniques
(Newman & Girvan 2003) are fruitful future research area. Since a community in
a graph and a tuple in an ARS-graph have certain similarities, tuples are
communities that are formed around the key attribute, a successful combination
of the techniques could provide tools for graph analysis.

100 Acta Wasaensia

References

Abiteboul, Serge (1997). Querying Semi-Structured Data. Proceedings of 6th In-
ternational Conference Database Theory, pp. 1-8.

Black, Paul E. (2004) "data structure", in Dictionary of Algorithms and Data
Structures [online], Paul E. Black, ed., U.S. National Institute of Standards and
Technology. Cited 7.11.2011 Available from: http://www.nist.gov/dads/
HTML/datastructur.html

Buneman, Peter, Susan Davidson and Dan Suciu (1995). Programming Constructs
for Unstructured Data. Proceedings of the 1995 International Workshop on Data-
base Programming Languages, pp. 1-12.

Buneman, Peter, Susan Davidson, Gerd Hillebrand and Dan Suciu (1996). A Que-
ry Language and Optimization Techniques for Unstructured Data. Technical Re-
port MS-CIS 96-09.

Chen, Peter (1976). The Entity-Relationship Model Toward a Unified View of
Data. ACM Transactions on Database Systems, 1:1, 9-36.

Codd, E., F. (1970). A Relational Model of Data for Large Shared Data Banks. In
Communications of the ACM, 13:6, pp. 377-387.

Elmasri, Ramez and Shamkant B. Navathe (2000). Fundamentals of Database
Systems. Reading: Addison-Wesley. ISBN 0-8053-1755-4.

Elmasri, Ramez and Shamkant B. Navathe (2007). Fundamentals of Database
Systems. Boston: Addison Wesley. ISBN 0-321-41506-X.

Falley, Peter (2007). Categories of Data Structures. In Journal of Computing
Sciences in Colleges - Papers of the Fourteenth Annual CCSC Midwestern
Conference and Papers of the Sixteenth Annual CCSC Rocky Mountain
Conference, 23:1, pp. 147-153.

Fernau, Henning (2010). Minimum dominating set of queens: A trivial
programming exercise? In Discrete Applied Mathematics, 158:4, pp. 308-318.

Foulds, L., R. (1992). Graph Theory Applications. New York: Springer-Verlag.

Garcia-Molina, Hector, Jeffrey D. Ullman and Jennifer Widom (2002). Database
Systems the Comple Book. Upper Saddle River, New Jersey: Prentice Hall.

Golfarelli, Matteo and Stefano Rizzi (2009). Data Warehouse Design: Modern
Principles and Methodologies. New York: McGraw-Hill. ISBN 978-0-07-
161039-1.

 Acta Wasaensia 101

Goodaire, Edgar, G. and Michael M. Parmenter (2006). Discrete Mathematics
with Graph Theory. Upper Saddle River, New Jersey: Pearson Prentice Hall.
ISBN 978-0-13-167995-3.

Grandoni, Fabrizio (2006). A note on the complexity of minimum dominating set.
In Journal of Discrete Algorithms, 4:2, pp. 209-214.

Gruber, Tom (2009). Ontology. In Encyclopedia of Database Systems, Ling Liu
and M. Tamer Özsu (Eds.). Springer-Verlag. Available from internet <URL:
http://tomgruber.org/writing/ontology-definition-2007.htm>.

Hansen, Wilfred, J. (1981). The Structure of Data Structures. In ACM '81 Pro-
ceedings of the ACM '81 conference, pp. 89-95.

Hevner, Alan, R., Salvato T. March, Jinsoo Park and Sudha Ram (2004). Design
Science in Information System Research. MIS Quarterly, 28:1, pp 75-105.

Heikkinen, Sari and Matti Linna (2004). The Adjacency Model and Wind Power.
Proceedings of European Power and Energy Systems.

Hislop, Donald (2005). Knowledge management in organizations: a critical intro-
duction. Oxford: Oxford University press.

Hovi, Ari, Henrikki Karvonen and Heikki Koistinen (2009). Tietovarastot ja bu-
siness intelligence. Porvoo: WSOYpro/Docendo. ISBN 987-951-0-34792-8.

Jungnickel, Dieter (2002). Graphs, Networks and Algorithms (2nd ed). Algo-
rithms and Computation in Mathematics vol 5. (eds E. Becker, M. Bronstein, H.
Cohen, D. Eisenbud, R, Gilman). Berlin: Springer.

Jungnickel, Dieter (2013). Graphs, Networks and Algorithms (5th ed). Algo-
rithms and Computation in Mathematics vol 5. (eds Manuel Bronstein, Arjeh M.
Cohen, Henri Cohen, David Eisenbud, Bernd Sturmfels). Berlin: Springer.

Järvinen, Pertti (2012). On Research Methods. Tampere: Opinpajan Kirja. ISBN
978-952-99233-4-2.

Lampinen, Jouni (2000). Multiobjective Nonlinear Pareto-Optimization: A Pre-
Investigation Reports. Lappeenranta: Lappeenranta University of Technology.

Lane, Paul (2007). Oracle Database - Data Warehousing Guide.

Manola, Frank and Eric Miller (2004). RDF Primer. [online] cited 6.9.2013.
Available from the Internet: <URL: http://www.w3.org/TR/rdf-primer/>.

March, Salvatore, T. and Gerald F. Smith (1995). Design and Natural Science
Research on Information Technology. Decision Support Systems, 15:4, pp. 251-
266.

102 Acta Wasaensia

McHugh, J. S. Abiteboul, R. Goldman, D., Quass and J. Widom (1997). Lore: A
Database Management System for Semistructured Data. ACM SIGMOD Record,
26:3, pp. 54-66.

Mäenpää, Teemu and Vesa Nyrhilä (2013a). Framework for Representing Seman-
tic Link Network with Adjacency Relation System. Proceedings of the 2nd
International Conference on Integrated Information, pp. 438-443.

Mäenpää, Teemu and Vesa Nyrhilä (2013b). Visualizing and Structuring Seman-
tic Data. International Journal of Machine Learning and Computing, 3:2, pp. 209-
213.

Newman, M., E., J. and M. Girvan (2003). Finding and Evaluating Community
Structure in Networks. Physical review E, 69:2.

Newman, M., E., J. (2010). Networks – An Introduction. Oxford: Oxford Univer-
sity Press. ISBN 978-0-19-920665.

Ni, X. and S. Bloor (1994). Performance evaluation of boundary data structures.
IEEE Computer Graphics and Applications 14:6, pp. 66-77.

Nyrhilä, Vesa, Teemu Mäenpää, Matti Linna and Erkki Antila (2005a).
Information modeling in the case of distribution energy production. WSEAS
Transactions on communications, 12:4.

Nyrhilä, Vesa, Teemu Mäenpää, Matti Linna and Erkki Antila (2005b). A novel
information model for distribution energy production. Proceedings of the WSEAS
conferences: 5th WSEAS Int. Conf. on Power Systems and electromagnetic com-
patibility (PSE ‘05).

Pan, Shan, L. and Barney Tan (2011). Demystifying case research: A structured-
pragmatic-situational (SPS) approach to conducting case studies. Information and
Organization, 21:3, pp. 161-167.

Papakonstantinou, Yannis, Hector Garcia-Molina and Jennifer Widom (1995).
Object exchange across heterogeneous information sources. Proceedings of the
11th International Conference on Data Engineering, pp. 251-260.

Price, Kenneth, V., Rainer M. Storm and Jouni A. Lampinen (2005). Differential
evolution – A practical approach to global optimization. Berlin: Springer-Verlag.

Savolainen, Vesa (1978). Verkkoteorian perusteet ja algoritmit. ISBN 951-662-
237-2.

Silberschatz, Abraham, Henry Korth and S. Sudarshan (2010). Database System
Concepts. New York: McGraw-Hill. ISBN 978-0-07-352332-3.

Simon, Herbert, A. (1996). The Sciences of the Artificial. 3rd ed. Cambridge,
USA: The MIT Press. ISBN 9780262193740.

 Acta Wasaensia 103

Strauss, Anselm L. and Juliet M. Corbin (1998). Basic of Qualitative Research –
Techniques and Procedures for Developing Grounded Theory. 2nd edition. Thou-
sand Oaks, CA, USA: Sage Publications. ISBN 9780585383323.

Suciu, Dan (1998). An Overview of Semistructured Data. ACM SIGACT News,
vol. 29 no. 4, pp. 28-38.

Töyli, Jari (2002). Modeling semistructured data by the adjacency model. Vaasa:
University of Vaasa.

Töyli, Jari, Matti Linna and Merja Wanne (2002a). Modeling Relational Data by
the Adjacency Model. Proceedings of the Fifth Joint Conference on Knowledge-
Based Software Engineering, pp. 301-306.

Töyli, Jari, Matti Linna and Merja Wanne (2002b). Modeling Semistructured Da-
ta by the Adjacency Model. Proceedings of the Fourth International Conference
on Enterprise Information Systems, pp. 282-290.

Töyli, Jari (2006). AdSchema – a schema for semistructured Data. Acta Wasaen-
sia, 157: Computer Science 5. Vaasa: Vaasan yliopisto. ISBN 952-476-131-9.

Vaidya, P., M. (1989). An O(n log n) Algorithm for the All-Nearest-Neighbors
Problem. In Discrete & computational geometry, 4:2, pp. 101-116.

Van Aken, Joan, E. (2004). Management Research Based on the Paradigm of the
Design Sciences: The Quest for Field-Tested and Grounded Technological Rules.
Journal of Management Studies, 41:2, pp. 221-246.

Walsham, Geoff (2006). Doing interpretive research. European Journal of Infor-
mation Systems, 15:3, pp. 320-330.

Wanne, Merja (1998). Adjacency relation systems. Acta Wasaensia, 60: Compu-
ter Science 1. Vaasa: Vaasan yliopisto. ISBN 951-683-703-4.

Wanne, Merja and Matti Linna (1999). A General Model for Adjacency. Funda-
menta Informaticae, 38:1-2, pp. 39-50

Weiler, K. (1985). Edge-based data structures for solid modeling in curved-
surface environments. IEEE Computer Graphics and Applications, 5:1, pp. 21-40.

Wilf, Herbert, S. (1994). Algorithms and Complexity. Philadelphia: University of
Pennsylvania. Available from internet <URL: https://www.math.upenn.edu/
~wilf/AlgoComp.pdf>.

Williams, Barry (2012). Data Model for UK’s Open University. Available from
the internet <URL: http://www.databaseanswers.org/data_models/
open_university/index.htm>

104 Acta Wasaensia

Zadravec, Mirko, Andrej Brodnik, Markus Mannila, Merja Wanne and Borut Za-
lik (2008) A practical approach to the 2D incremental nearest-point problem suit-
able for different point distributions. Pattern Recognition 41:2, pp. 646-653.

Zhuge, Hai (2003). Active e-document framework ADF: model and tool. Infor-
mation & Management, 41:1, pp. 87-97.

Zhuge, Hai (2004). The Knowledge Grid. Singapore: World Scientific. ISBN
981-256-140-4.

Zhuge, Hai (2005). The Knowledge Grid. Singapore: World Scientific. ISBN:
981-256-140-4.

Zhuge, Hai, Yunchuan Yun, Ruixiang Jia and Jie Liu (2005). Algebra model and
experiment for semantic link network. International Journal of High Performance
Computing and Networking, 3:4, pp. 227-238.

Zhuge, Hai (2011). Semantic linking through spaces for cyber-physical-socio in-
telligence: A methodology. Artificial Intelligence, 175:5-6, pp. 988-1019.

 Acta Wasaensia 105

Appendix

Appendix 1. Analyses of the properties of the relational database primary key
attributes in AdSchema based graph.

Database schema can be presented as AdSchema. AdSchema reveals the basic
structure of the database, which makes it possible to examine the properties of the
AdSchema elements. In this appendix, database schema diagrams are converted
into AdSchema format. The following properties for the vertices of the AdSche-
ma-based graph are examined.

1) degree of a vertex,

2) does vertex have leaves and

3) does vertex belong to the minimal vertex dominating set of the graph.

The observations for each case are represented in the tables following the Ad-
Schema. The tables also contain information whether the node in AdSchema is
defined as the primary key in database schema diagram. The observations reveal
that the nodes representing the primary keys have a certain pattern in their proper-
ties.

The last three cases cover situation when the AdSchema is produced from a
smaller database i.e. tables contain smaller number of attributes. In these cases,
some of the primary keys do not have leaves, and they do not belong to the domi-
nating set of the graph. The observations regarding all the key nodes in AdSche-
mas are shown in the next table.

Table 41. Properties for vertices representing key element types in AdSchemas.

N
um

be
r

of

A
dS

ch
em

as

N
um

be
r

of

ty
pe

s r
ep

re
-

se
nt

in
g

ke
ys

at

tr
ib

ut
es

A
ve

ra
ge

 v
er

te
x

de
gr

ee

V
er

tic
es

 w
ith

d>

2

Pa
re

nt
 v

er
tic

es

M
em

be
rs

 o
f

do
m

in
at

in
g

se
t

15 120 4,04 65 % 98 % 98 %

106 Acta Wasaensia

Case 1. Patient monitoring system (Williams 2012a).

Figure 69. Database diagram for patient monitoring system.

 Acta Wasaensia 107

Figure 70. AdSchema for patient monitoring system.

do
ct

or
_i

d

lo
gi

n_
na

m
e

pa
ss

w
or

d
pe

rs
on

al
_d

at
a

pa
tie

nt
_i

d

fir
st

_n
am

e

la
st

_n
am

e

ge
nd

er

da
te

_o
f_

bi
rt

h

da
te

_b
ec

am
e_

pa
tie

nt

lo
gi

n_
na

m
e

pa
ss

w
or

d

pe
rs

on
al

_d
at

a

ad
dr

es
s_

id

st
re

et
bu

ild
in

g
ar

ea
_l

oc
al

ity
ci

ty
zip

_c
od

e
st

at
e_

pr
ov

in
ce

_c
ou

nt
y

co
un

tr
y

ad
m

in
_u

se
r_

id

lo
gi

n_
na

m
e

pa
ss

w
or

d

da
ily

_m
ea

su
re

m
en

t_
id m

ea
su

re
m

en
t_

de
ta

ils

m
ea

su
re

m
en

t_
da

te

fo
rm

_i
d

fo
rm

_d
es

cr
ip

tio
n

fo
rm

_n
am

e

108 Acta Wasaensia

Table 42. Properties for vertices in AdSchema.

AdSchema properties

Node index Node name
Primary
key in
database

Degree Has lea-
ves

Member of
dominating
set

1 login_name

1
 2 password

1

 3 personal_data

1
 4 doctor_id x 5 x x

5 building

1
 6 street

1

 7 area_locality

1
 8 city

1

 9 zip_code

1
 10 state_province_county

1

 11 country

1
 12 address_id x 10 x x

13 patient_id x 11 x x
14 first_name

1

 15 last_name

1
 16 gender

1

 17 date_of_birth

1
 18 date_became_patient

1

 19 login_name

1
 20 password

1

 21 personal_data

1
 22 daily_measurement_id x 4 x x

23 measurement_date

1
 24 measurement_details

1

 25 form_id x 3 x x
26 form_name

1

 27 form_description

1
 28 admin_user_id x 3 x x

29 password

1
 30 login_name

1

 Acta Wasaensia 109

Case 2. Afghanistan rainfall surveying system (Williams 2004a).

Figure 71. Database schema diagram for Afghanistan rainfall surveying system.

110 Acta Wasaensia

Figure 72. AdSchema for Afghanistan rainfall surveying system.

di
st

ric
t_

na
m

e
di

st
ric

t_
de

ta
ils

di
st

ric
t_

id

ag
ric

ul
tu

ra
l_

zo
ne

_i
d

ag
ric

ul
tu

ra
l_

zo
ne

_d
et

ai
ls

vi
lla

ge
_i

d

vi
lla

ge
_n

am
e

ot
he

r_
vi

lla
ge

_d
et

ai
ls

w
at

er
sh

ed
_i

d

w
at

er
sh

ed
_d

et
ai

ls

fa
rm

_i
d

fa
rm

_d
et

ai
ls

vi
lla

ge
_s

ur
ve

y_
id

su
rv

ey
_d

ue
_d

at
e

su
rv

ey
_s

ta
tu

s

su
rv

ey
_c

om
pl

et
io

n_
da

te

ob
se

rv
at

io
n_

id

ra
in

fa
ll_

ce
nt

im
et

er
s

hu
m

id
ity

te
m

pe
ra

tu
re

da
te

_a
ss

ig
ne

d_
fr

om

da
te

_a
ss

ig
ne

d_
to

w
or

ke
r_

id
w

or
ke

r_
na

m
e

ge
nd

er

w
or

ke
r_

ro
le

_c
od

e
w

or
ke

r_
ro

le
_c

od
e_

de
sc

rip
tio

n

of
fic

e_
id

of
fic

e_
na

m
e

ot
he

r_
of

fic
e_

de
ta

ils

 Acta Wasaensia 111

Table 43. Properties for vertices in AdSchema.

AdSchema properties

Node
index Node name Primary key

in database Degree Has leaves
Member of
dominating
set

1 agricultural_zone_details

1
 2 agricultural_zone_id x 3 x x

3 date_assigned_from

2
 4 date_assigned_to

2

 5 distric_details

1
 6 district_id x 3 x x

7 district_name

1
 8 farm_details

1

 9 farm_id x 2 x x
10 gender

1

 11 humidity

1
 12 observation_id x 4 x x

13 office_id x 3 x x
14 office_name

1

 15 other_office_details

1
 16 other_village_details

1

 17 rainfall_centimeters

1
 18 survey_due_date

1

 19 survey_completion_date

1
 20 survey_status

1

 21 temperature

1
 22 village_id x 6 x x

23 village_name

1
 24 village_survey_id x 7 x x

25 watershed_details

1
 26 watershed_id x 2 x x

27 worker_id x 6 x x
28 worker_name

1

 29 worker_role_code x 2 x x
30 worker_role_description

1

112 Acta Wasaensia

Case 3. Longterm accommodation (Williams 2001a).

Figure 73. Database schema diagram for longterm accommodation system.

 Acta Wasaensia 113

Figure 74. . AdSchema for longterm accommodation system.

lo
ca

tio
n_

sh
or

t_
na

m
e

lo
ca

tio
n_

id

lo
ca

tio
n_

fu
ll_

na
m

e
lo

ca
tio

n_
de

sc
rip

tio
n

lo
ca

tio
n_

ad
dr

es
s

lo
ca

tio
n_

m
an

ag
er

lo
ca

tio
n_

ph
on

e

un
it_

id

un
it_

nu
m

be
r

be
dr

oo
m

_c
ou

nt

ro
om

_c
ou

nt

ot
he

r_
un

it_
de

ta
ils

un
it_

ty
pe

_c
od

e
un

it_
ty

pe
_d

es
cr

ip
tio

n

st
at

us
_d

at
e

av
ai

la
bl

e_
yn

un
it_

bo
ok

in
g_

id

bo
ok

in
g_

st
ar

t_
da

te
bo

ok
in

g_
en

d_
da

te

bo
ok

in
g_

st
at

us
_c

od
e

bo
ok

in
g_

st
at

us
_d

es
cr

ip
tio

n

gu
es

t_
id

gu
es

t_
fir

st
_n

am
e

gu
es

t_
la

st
_n

am
e

da
te

_o
f_

bi
rt

h
ot

he
r_

gu
es

t_
de

ta
ils

un
it_

at
tr

ib
ut

e_
co

de
un

it_
at

tr
ib

ut
e_

de
sc

rip
tio

n

ge
nd

er
_c

od
e

ge
nd

er
_c

od
e_

de
sc

rip
tio

n

114 Acta Wasaensia

Table 44. Properties of vertices in AdSchema graph.

AdSchema properties

Node index Node name
Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 bedroom_count 1
2 booking_end_date 1
3 booking_start_date 1
4 booking_status_code x 2 x x
5 booking_status_description 1
6 date_of_birth 1
7 guest_first_name 1
8 guest_id x 6 x x
9 guest_last_name 1
10 location_address 1
11 location_description 1
12 location_full_name 1
13 location_id x 7 x x
14 location_manager 1
15 location_phone 1
16 location_short_name 1
17 other_guest_details 1
18 other_unit_details 1
19 room_count 1
20 status_date x 2 x x
21 unit_attribute_code x 2 x x
22 unit_attribute_description 1
23 unit_booking_id x 5 x x
24 unit_id x 9 x x
25 unit_number 1
26 unit_type_code x 2 x x
27 unit_type_description 1
28 gender_code x 2 x x
29 gender_description 1
30 available_yn 1

 Acta Wasaensia 115

Case 4. Accidents at work (Williams 2001b).

Figure 75. Database schema diagram for Accidents at work.

116 Acta Wasaensia

Figure 76. AdSchema for Accidents at work.

ac
ci

de
nt

_i
d

ac
ci

de
nt

_d
es

cr
ip

tio
n

ac
ci

de
nt

_d
at

e_
tim

e
ac

ci
de

nt
_l

oc
at

io
n

ac
ci

de
nt

_o
th

er
_d

et
ai

ls

ac
ci

de
nt

_s
ta

tu
s_

co
de

ac
ci

de
nt

_s
ta

tu
s_

de
sc

rip
tio

n

ac
ci

de
nt

_t
yp

e_
co

de
ac

ci
de

nt
_t

yp
e_

de
sc

rip
tio

n

se
rio

us
ne

ss
_l

ev
el

_c
od

e
se

rio
us

ne
ss

_l
ev

el
_d

es
cr

ip
tio

n

vi
sit

or
_i

d

vi
sit

or
_o

th
er

_d
et

ai
ls

vi
sit

or
_n

am
e

em
pl

oy
ee

_a
ss

oc
ia

te
_i

d

as
so

ci
at

e_
ot

he
r_

de
ta

ils
as

so
ci

at
e_

na
m

e

em
pl

oy
ee

_n
am

e

em
pl

oy
ee

_d
ep

ar
tm

en
t

em
pl

oy
ee

_i
d

em
pl

oy
ee

_s
up

er
vi

so
r

ot
he

r_
em

pl
oy

ee
_d

et
ai

ls

 Acta Wasaensia 117

Table 45. Properties of attribute nodes in AdSchema.

AdSchema properties

Node
index Node name

Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 accident_date_time 1
2 accident_description 1
3 accident_id x 10 x x
4 accident_location 1
5 accident_other_details 1
6 accident_status_code x 2 x x
7 accident_status_description 1
8 accident_type_code x 2 x x
9 accident_type_description 1
10 associate_name 1
11 associate_other_details 1
12 employee_associate_id x 4 x x
13 employee_department 1
14 employee_id x 6 x x
15 employee_name 1
16 employee_supervisor 1
17 other_employee_details 1
18 seriousness_level_description 1
19 seriousness_level_code x 2 x x
20 visitor_id x 3 x x
21 visitor_name 1
22 visitor_other_details 1

118 Acta Wasaensia

Case 5. Customer deliveries system (Williams 2011).

Figure 77. Database schema diagram for customer deliveries system.

 Acta Wasaensia 119

Figure 78. AdSchema for customer deliveries system.

cu
st

om
er

_i
d

cu
st

om
er

_n
am

e
cu

st
om

er
_p

ho
ne

cu
st

om
er

_e
m

ai
l

da
te

_b
ec

am
e_

cu
st

om
er

ot
he

r_
cu

st
om

er
_d

et
ai

ls

pa
ym

en
t_

m
et

ho
d_

co
de

pa
ym

en
t_

m
et

ho
d_

de
sc

rip
tio

n
da

te
_f

ro
m

da
te

_t
o

ad
dr

es
s_

ty
pe

_c
od

e
ad

dr
es

s_
ty

pe
_d

es
cr

ip
tio

n

ad
dr

es
s_

id

lin
e_

1

lin
e_

2

lin
e_

3

lin
e_

4

ci
ty

zip
_p

os
tc

od
e

st
at

e_
pr

ov
in

ce
_c

ou
nt

y

co
un

tr
y

em
pl

oy
ee

_i
d

em
pl

oy
ee

_n
am

e

em
pl

oy
ee

_p
ho

ne
lo

ca
tio

n_
co

de

lo
ca

tio
n_

na
m

e

ro
ut

e_
id

ro
ut

e_
na

m
e

de
liv

er
y_

id

de
liv

er
y_

da
te

tr
uc

k_
id

tr
uc

k_
lic

en
ce

_n
um

be
r tr
uc

k_
de

ta
ils

de
liv

er
y_

st
at

us
_c

od
e

de
liv

er
y_

st
at

us
_d

es
cr

ip
tio

n

ac
tu

al
_o

rd
er

_i
d

ac
tu

al
_o

rd
er

_d
at

e
or

de
r_

de
ta

ils

or
de

r_
st

at
us

_c
od

e

or
de

r_
st

at
us

_d
es

cr
ip

tio
n

re
gu

la
r_

or
de

r_
id

ot
he

r_
de

ta
ils

pr
od

uc
t_

id

pr
od

uc
t_

pr
ic

e

pr
od

uc
t_

de
sc

rip
tio

n

pr
od

uc
t_

na
m

e
pr

od
uc

t_
de

ta
ils

su
pp

lie
r_

id
su

pp
lie

r_
de

ta
ils

120 Acta Wasaensia

Table 46. Vertex properties in AdSchema.

AdSchema properties

Node
index Node name Primary key

in database Degree Has
leaves

Member of
dominating
set

1 actual_order_date 1
2 actual_order_id x 6 x x
3 address_id x 12 x x
4 address_type_code x 3 x x
5 address_type_description 1
6 city 1
7 country 1
8 customer_email 1
9 customer_id x 9 x x
10 customer_name 1
11 customer_phone 1
12 date_became_customer 1
13 date_from 3
14 date_to 3
15 delivery_date 1
16 delivery_id x 6 x x
17 delivery_status_code x 2 x x
18 delivery_status_description 1
19 employee_id x 4 x x
20 employee_name 1
21 employee_phone 1
22 line_1 1
23 line_2 1
24 line_3 1
25 line_4 1
26 location_code x 4 x
27 location_name 1
28 order_details 1
29 order_details 1
30 order_status_code x 2 x x
31 order_status_description 1
32 other_customer_details 1
33 payment_method_code x 2 x x
34 payment_method_description 1
35 product_description 1
36 product_details 1
37 product_id x 7 x x

 Acta Wasaensia 121

38 product_name 1
39 product_price 1
40 regular_order_id x 4 x x
41 route_id x 2 x x
42 route_name 1
43 state_province_county 1
44 supplier_id x 2 x x
45 supplier_details 1
46 truck_details 1
47 truck_id x 3 x x
48 truck_licence_number 1
49 zip_postcode 1

122 Acta Wasaensia

Case 6. School management system (Williams 2004b).

Figure 79. Database schema diagram for school management system.

 Acta Wasaensia 123

Figure 80. AdSchema for school management system.

ad
dr

es
s_

id

ad
dr

es
s_

de
ta

ils

da
te

_a
dd

re
ss

_f
ro

m
da

te
_a

dd
re

ss
_t

o

pa
re

nt
_i

d

ge
nd

er

fir
st

_n
am

e

m
id

dl
e_

na
m

e

la
st

_n
am

e ot
he

r_
pa

re
nt

_d
et

ai
ls

fa
m

ily
_m

em
be

r_
id

fa
m

ily
_n

am
e

pa
re

nt
_o

r_
st

ud
en

t_
m

em
be

r

st
ud

en
t_

id

fa
m

ily
_i

d

ge
nd

er

fir
st

_n
am

e

m
id

dl
e_

na
m

e

la
st

_n
am

e

da
te

_o
f_

bi
rt

h

ho
m

ew
or

k_
id

da
te

_f
ro

m
da

te
_t

o

ad
dr

es
s_

de
ta

ils

sc
ho

ol
_i

d

sc
ho

ol
_n

am
e

sc
ho

ol
_p

rin
ci

pa
l ot

he
r_

sc
ho

ol
_d

et
ai

ls

te
ac

he
r_

id

ge
nd

er
fir

ts
_n

am
e

m
id

dl
e_

na
m

e
la

st
_n

am
e

ot
he

r_
te

ac
he

r_
de

ta
ils

da
te

_c
re

at
ed

ho
m

ew
or

k_
co

nt
en

t
gr

ad
e

ot
he

r_
ho

m
ew

or
k_

de
ta

ils

ot
he

r_
st

ud
en

t_
de

ta
ils

re
po

rt
_i

d

da
te

_c
re

at
ed

re
po

rt
_c

on
te

nt
te

ac
he

rs
_c

om
m

en
ts

ot
he

r_
re

po
rt

_d
et

ai
ls

da
te

_f
ro

m
da

te
_t

o

cl
as

s_
id

cl
as

s_
co

de

cl
as

s_
na

m
e

da
te

_f
ro

m

da
te

_t
o

su
bj

ec
t_

id
su

bj
ec

t_
na

m
e

124 Acta Wasaensia

Table 47. Vertex properties.

AdSchema properties

Node
index Node name

Primary
key in da-
tabase

Degree Has
leaves

Member of
dominating
set

1 address_id x 4 x x
2 address_details 1
3 address_details 1
4 class_code 1
5 class_id x 7 x x
6 class_name 1
7 date_address_from x 3 x x
8 date_address_to 1
9 date_created 1
10 date_created 1
11 date_from x 4 x x
12 date_from 1 x
13 date_from x 3 x x
14 date_of_birth 1
15 date_to 1
16 date_to 1
17 date_to 1
18 family_id x 3 x x
19 family_member_id x 3 x x
20 family_name 1
21 first_name 1
22 first_name 1
23 first_name 1
24 gender 1
25 gender 1
26 gender 1
27 grade 1
28 homework_content 1
29 homework_id x 5 x x
30 last_name 1
31 last_name 1
32 last_name 1
33 middle_name 1
34 middle_name 1
35 middle_name 1
36 other_home_work_details 1
37 other_parent_details 1

 Acta Wasaensia 125

38 other_report_details 1
39 other_school_details 1
40 other_student_details 1
41 other_teacher_details 1
42 parent_id x 8 x x
43 parent_or_student_member 1
44 report_content 1
45 report_id x 5 x x
46 school_id x 5 x x
47 school_name 1
48 school_principal 1
49 student_id x 12 x x
50 teacher_id x 7 x x
51 teachers_comments 1
52 subject_id x 2 x x
53 subject_name 1

126 Acta Wasaensia

Case 7. Apartment rental system (Williams 2004c).

Figure 81. Database schema diagram for apartment rental system.

 Acta Wasaensia 127

Figure 82. AdSchema diagram for apartment rental system.

bu
ild

in
g_

id

bu
ild

in
g_

sh
or

t_
na

m
e

bu
ild

in
g_

fu
ll_

na
m

e
bu

ild
in

g_
de

sc
rip

tio
nbu
ild

in
g_

ad
dr

es
s bu

ild
in

g_
m

an
ag

er
bu

ild
in

g_
ph

on
e

ot
he

r_
bu

ild
in

g_
de

ta
ils

ap
t_

id

ap
t_

nu
m

be
r

ba
th

ro
om

_c
ou

nt
be

dr
oo

m
_c

ou
nt

ro
om

_c
ou

nt
ot

he
r_

ap
t_

de
ta

ils

ap
t_

ty
pe

_c
od

e
ap

t_
ty

pe
_d

es
cr

ip
tio

n

fa
ci

lit
y_

de
sc

rip
tio

n
fa

ci
lit

y_
co

de

st
at

us
_d

at
e

av
ai

la
bl

e_
yn

ap
t_

bo
ok

in
g_

id

bo
ok

in
g_

st
ar

t_
da

te
bo

ok
in

g_
en

d_
da

te
ot

he
r_

bo
ok

in
g_

de
ta

ils

bo
ok

in
g_

st
at

us
_c

od
e

bo
ok

in
g_

st
at

us
_d

es
cr

ip
tio

n

gu
es

t_
id

gu
es

t_
fir

st
_n

am
e

gu
es

t_
la

st
_n

am
e

da
te

_o
f_

bi
rt

h

ot
he

r_
gu

es
t_

de
ta

ils

ge
nd

er
_c

od
e

ge
nd

er
_d

es
cr

ip
tio

n

128 Acta Wasaensia

Table 48. Vertex properties.

AdSchema properties

Node
index Node name

Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 apt_booking_id x 7 x x
2 apt_id x 10 x x
3 apt_number 1
4 apt_type_code x 2 x x
5 apt_type_description 1
6 available_yn 1
7 bathroom_count 1
8 bedroom_count 1
9 booking_end_date 1
10 booking_start_date 1
11 booking_status_code x 2 x x
12 booking_status_description 1
13 building_address 1
14 building_description 1
15 building_full_name 1
16 building_id x 8 x x
17 building_manager 1
18 building_phone 1
19 building_short_name 1
20 date_of_birth 1
21 facility_code x 2 x x
22 facility_description 1
23 gender_code x 2 x x
24 guest_first_name 1
25 guest_id x 6 x x
26 guest_last_name 1
27 other_apartment_details 1
28 other_booking_details 1
29 other_building_details 1
30 other_guest_details 1
31 room_count 1
32 status_date x 3 x x
33 gender_description 1

 Acta Wasaensia 129

Case 8. Occupational Health System (Williams 2014a).

Figure 83. Datamodel for Occupational Health System.

130 Acta Wasaensia

Figure 84. AdSchema for Occupational Health System.

Ad
dr

es
s_

IDAd
dr

es
s_

De
ta

ils

O
cc

up
at

io
na

l_
He

al
th

_R
eg

s_
ID

O
cc

up
at

io
na

l_
He

al
th

_R
eg

s_
De

ts

Lo
ca

tio
n_

ID

O
th

er
_D

et
ai

ls

Ev
en

t_
ID

St
ar

t_
Da

te

En
d_

Da
te

Ev
en

t_
O

ut
co

m
e_

Co
de

Ev
en

t_
O

ut
co

m
e_

De
sc

rip
tio

n

Ev
en

t_
Ty

pe
_C

od
e

Ev
en

t_
Ty

pe
_D

es
cr

ip
tio

n

Se
rv

ic
e_

ID

Se
rv

ic
e_

N
am

e
Se

rv
ic

e_
De

sc
rip

tio
n

Se
rv

ic
e_

Ty
pe

_C
od

e
Se

rv
ic

e_
Ty

pe
_D

es
cr

ip
tio

n

Pa
rt

y_
Ro

le
_E

ve
nt

_I
D

Pa
rt

y_
Ro

le
_E

ve
nt

_D
et

ai
ls

Ro
le

_I
D

Ro
le

_D
es

cr
ip

tio
n

Pa
rt

y_
ID

Pa
rt

y_
De

ta
ils

Pa
rt

y_
Ty

pe
_C

od
e

Pa
rt

y_
Ty

pe
_D

es
cr

ip
tio

n

Ro
le

_N
am

e

 Acta Wasaensia 131

Table 49. Vertex properties of AdSchema.
 AdSchema properties

Node
index Node name

Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 Address_Details

1
 2 Address_ID x 2 x x

3 End_Date

1
 4 Event_ID x 8 x x

5 Event_Outcome_Code x 2 x x
6 Event_Outcome_Description

1

 7 Event_Type_Code x 2 x x
8 Event_Type_Description

1

 9 Location_ID x 3 x x
10 Occupational_Health_Regs_Dets

1

 11 Occupational_Health_Regs_ID x 2 x x
12 Other_Details

1

 13 Party_Details

1
 14 Party_ID x 3 x x

15 Party_Role_Event_Details

1
 16 Party_Role_Event_ID x 4 x x

17 Role_Description

1
 18 Role_ID x 3 x x

19 Role_Name

1
 20 Service_Description

1

 21 Service_ID x 4 x x
22 Service_Name

1

 23 Service_Type_Code x 2 x x
24 Service_Type_Description

1

 25 Start_Date

1
 26 Party_Type_Code x 2 x x

27 Party_Type_Description

1

132 Acta Wasaensia

Case 9. Parking Ticket System (Williams 2009a).

Figure 85. Parking ticket system.

 Acta Wasaensia 133

Figure 86. AdSchema for parking ticket system.

cu
st

om
er

_i
d

fir
st

_n
am

e
m

id
dl

e_
na

m
e

la
st

_n
am

e
ph

on
e_

nu
m

be
r

em
ai

l_
ad

dr
es

s

ad
dr

es
s_

id

bu
ild

in
g

st
re

et

ci
ty

zip
_p

os
tc

od
e

st
at

e_
pr

ov
in

ce
_c

ou
nt

y

da
te

_t
ic

ke
t_

iss
ue

d

da
te

_t
ic

ke
t_

ca
nc

el
le

d

da
te

_t
ic

ke
t_

pa
id

pc
n_

tic
ke

t_
id

ev
en

t_
id

ev
en

t_
ty

pe
_c

od
e

da
te

_o
f_

ev
en

t

tic
ke

t_
st

at
us

_c
od

e

co
un

tr
y

ev
en

t_
de

ta
ils

ev
en

t_
ty

pe
_d

es
cr

ip
tio

n
tic

ke
t_

st
at

us
_d

es
cr

ip
tio

n

of
fic

er
_b

ad
ge

_n
um

be
r

ge
nd

er

da
te

_o
f_

bi
rt

h

of
fic

er
_f

irs
t_

na
m

e

of
fic

er
_m

id
dl

e_
na

m
e

of
fic

er
_l

as
t_

na
m

e
pc

n_
ty

pe
_c

od
e

pc
n_

ty
pe

_d
es

cr
ip

tio
n

ve
hi

cl
e_

lic
en

ce
_n

um
be

r
ye

ar
_o

f_
m

an
uf

ac
tu

re

ve
hi

cl
e_

de
ta

ils

m
od

el

m
an

uf
ac

tu
re

r_
co

de
m

an
uf

ac
tu

re
r_

na
m

e

ve
hi

cl
e_

ty
pe

_c
od

e
ve

hi
cl

e_
ty

pe
_d

es
cr

ip
tio

n

134 Acta Wasaensia

Table 50. Vertex properties of AdSchema.

 AdSchema properties

Node
index Node name Primary key

in database Degree Has
leaves

Member of
dominating
set

1 customer_id x 7 x x
2 date_of_birth

1

 3 date_of_event

1
 4 date_ticket_cancelled

1

 5 date_ticket_issued

1
 6 date_ticket_paid

1

 7 email_address

1
 8 event_details

1

 9 event_id x 4 x x
10 event_type_code x 2 x x
11 event_type_description

1

 12 first_name

1
 13 gender

1

 14 last_name

1
 15 manufacturer_code x 2 x x

16 manufacturer_name

1
 17 middle_name

1

 18 model

1
 19 officer_badge_number x 7 x x

20 officer_first_name

1
 21 officer_last_name

1

 22 officer_middle_name

1
 23 pcn_ticket_id x 9 x x

24 pcn_type_code x 2 x x
25 pcn_type_description

1

 26 phone_number

1
 27 ticket_status_code x 2 x x

28 ticket_status_description

1
 29 vehicle_details x 1
 30 vehicle_licence_number x 6 x x

31 vehicle_type_code

2 x x
32 vehicle_type_description

1

 33 year_of_manufacture

1
 34 address_id x 8 x x

35 building

1
 36 street

1

 37 city

1

 Acta Wasaensia 135

38 zip_postcode

1
 39 state_province_county

1

 40 country

1

136 Acta Wasaensia

Case 10. Customer-order system (Williams 2014b).

Figure 87. Datamodel for customer-order system.

 Acta Wasaensia 137

Figure 88. AdSchema for customer-order system.

Cu
st

om
er

_I
D

Fi
rs

t_
N

am
e

M
id

dl
e_

N
am

e
La

st
_N

am
e

Da
te

_o
f_

Bi
rt

h
Ge

nd
er

_M
FU

Da
te

_o
f_

La
te

st
_D

ep
os

it
Am

ou
nt

_o
f_

La
te

st
_D

ep
os

it
Cu

rr
en

t_
Ba

la
nc

e

Pa
re

nt
_I

D
Fi

rs
t_

N
am

e

M
id

dl
e_

N
am

e

La
st

_N
am

e

Da
te

_o
f_

Bi
rt

h

Ge
nd

er
_M

FU

O
rd

er
_D

at
e

De
liv

er
ed

_O
rd

er
_V

al
ue

O
rd

er
_D

et
ai

ls

O
rd

er
_I

D

Q
ua

nt
ity

_O
rd

er
ed

Pr
od

uc
t_

ID

Pr
od

uc
t_

Pr
ic

e

Pr
od

uc
t_

De
ta

ils

U
O

M
_C

od
e

U
O

M
_D

es
cr

ip
tio

n
In

ve
nt

or
y_

Le
ve

l_
ID

In
ve

nt
or

y_
Da

te
In

ve
nt

or
y_

De
ta

ils
Q

ua
nt

ity
_i

n_
St

oc
k

138 Acta Wasaensia

Table 51. Vertex properties.

 AdSchema properties

Node
index Node name Primary key

in database Degree Has lea-
ves

Member of
dominating
set

1 Amount_of_Latest_Deposit

1
 2 Current_Balance

1

 3 Customer_ID x 10 x x
4 Date_of_Birth

1

 5 Date_of_Latest_Deposit

1
 6 Derived_Order_Value

1

 7 First_Name

1
 8 Gender_MFU

1

 9 Inventory_Date

1
 10 Inventory_Details

1

 11 Inventory_Level_ID x 4 x x
12 Last_Name

1

 13 Middle_Name

1
 14 Order_Date

1

 15 Order_Details

1
 16 Order_ID x 5 x x

17 Product_Details

1
 18 Product_ID x 5 x x

19 Product_Price

1
 20 Quantity_Ordered

2

 21 Quantity_in_Stock

1
 22 UOM_Code x 2 x x

23 UOM_Description

1
 24 Parent_ID x 6 x x

25 First_Name

1
 26 Middle_Name

1

 27 Last_Name

1
 28 Date_of_Birth

1

 29 Gender_MFU

1

 Acta Wasaensia 139

Case 11. Father of All Data Models (Williams 2009b).

Figure 89. Father of all data models.

140 Acta Wasaensia

Figure 90. AdSchema for the data model.

th
in

g_
id

th
in

g_
de

ta
ils

ty
pe

_o
f_

th
in

g_
co

dety
pe

_o
f_

th
in

g_
de

sc
rip

tio
n

re
la

tio
ns

hi
p_

id
re

la
tio

ns
hi

p_
de

ta
ils

at
tr

ib
ut

e_
id

at
tr

ib
ut

e_
de

ta
ils

ty
pe

_o
f_

re
la

tio
ns

hi
p_

co
de

ty
pe

_o
f_

re
la

tio
ns

hi
p_

de
sc

rip
tio

n

da
ta

_v
al

ue
_i

d

da
te

_t
im

e
da

te
_v

al
ue

m
on

ey
_v

al
ue

nu
m

be
r_

va
lu

e
va

rc
ha

r_
va

lu
e

ty
pe

_o
f_

at
tr

ib
ut

e_
co

de
ty

pe
_o

f_
at

tr
ib

ut
e_

de
sc

rip
tio

n

 Acta Wasaensia 141

Table 52. Vertex properties.

AdSchema properties

Node
index Node name

Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 attribute_details 1
2 attribute_id x 4 x x
3 data_value_id x 6 x x
4 date_time 1
5 date_value 1
6 money_value 1
7 number_value 1
8 relationship_details 1
9 relationship_id x 3 x x
10 thing_details 1
11 thing_id x 4 x x
12 type_of_attribute_code x 2 x x
13 type_of_attribute_description 1
14 type_of_thing_code x 2 x x
15 type_of_thing_description 1
16 varchar_value 1
17 type_of_relationship_code x 2 x x
18 type_of_relationship_desc 1

142 Acta Wasaensia

Case 12. Sales force (Williams 2004d).

Figure 91. Data Model for SalesForce.com.

 Acta Wasaensia 143

Figure 92. AdSchemafor the data model.

ac
co

un
t_

id

ac
co

un
t_

na
m

e
ad

dr
es

s
ac

co
un

t_
de

ta
ils

us
er

_i
d

us
er

_d
et

ai
ls

co
nt

ac
t_

id
op

po
rt

un
ity

_i
d

ac
tiv

ity
_d

at
et

im
e

ac
tiv

ity
_c

ha
nn

el
ac

tiv
ity

_o
ut

co
m

e
ac

tiv
ity

_c
om

m
en

ts

op
po

rt
un

ity
_d

es
cr

ip
tio

n

co
nt

ac
ta

ct
iv

ity
_i

d

fir
st

_n
am

e

la
st

_n
am

e

em
ai

l_
ad

dr
es

s

ot
he

r_
de

ta
ils

144 Acta Wasaensia

Table 53. Vertex properties.

AdSchema properties

Node
index Node name

Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 account_details 1
2 account_id x 6 x x
3 account_name 1
4 address 1
5 contact_id x 6 x x
6 email_address 1
7 first_name 1
8 last_name 1
9 opportunity_description 1
10 opportunity_id x 3 x x
11 other_details 1
12 user_details 1
13 user_id x 2 x x
14 contactactivity_id x 6 x x
15 activity_datetime 1
16 activity_channel 1
17 activity_outcome 1
18 activity_comments 1

 Acta Wasaensia 145

Case 13. Simplified customer order system

Figure 93. Database schema diagram for customer order system.

Product_id

Units_in_stock Product_name

Units_per_order

Order_id

Customer_id Order_date

Customer_name

Figure 94. AdSchema for customer order system.

146 Acta Wasaensia

Table 54. Vertex properties in AdSchema graph.

AdSchema properties

Node
index Node name

Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 customer_id x 2 x x
2 customer_name 1
3 order_date 1
4 order_id x 3 x x
5 product_id x 3 x x
6 product_name 1
7 units_in_stock 1
8 units_per_order 2

 Acta Wasaensia 147

Case 14. Simplified customer order system

Figure 95. Database schema diagram for customer order system.

Product_id

Units_in_stock Product_name

Units_per_order

Order_id

Customer_id

Customer_name

Figure 96. AdSchema for customer order system.

148 Acta Wasaensia

Table 55. Properties of attribute nodes in AdSchema.

AdSchema properties

Node
index Node name

Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 customer_id x 2 x x
2 customer_name 1
3 order_id x 2
4 product_id x 3 x x
5 product_name 1
6 units_in_stock 1
7 units_per_order 2

 Acta Wasaensia 149

Case 15. Simplified customer order system

Figure 97. Database schema diagram for customer order system.

Product_id

Units_in_stock Product_name

Order_id

Customer_id

Customer_name

Figure 98. AdSchema for customer order system.

150 Acta Wasaensia

Table 56. Properties of attribute nodes in AdSchema.

AdSchema properties

Node
index Node name

Primary
key in
database

Degree Has
leaves

Member of
dominating
set

1 customer_id x 2 x x
2 customer_name 1
3 order_id x 2
4 product_id x 3 x x
5 product_name 1
6 units_in_stock 1

 Acta Wasaensia 151

REFERENCES

Williams, Barry (2001a). Accommodation Longterm - eg Employees. Available
from the internet <URL:http://www.databaseanswers.org/data_models/ long-
term_accommodation/index.htm>.

Williams, Barry (2001b). Physical Data model for Accidents. Available from the
internet <URL: http://www.databaseanswers.org/data_models/accidents_at_work/
accidents_physical.htm>.

Williams, Barry (2004a). Data model for Afghanistan Rainfall. Available from
the internet <URL: http://www.databaseanswers.org/data_models/
afghanistan_rainfall/index.htm>.

Williams, Barry (2004b). School Management System – A Physical Data Model.
Available from the internet <URL:http://www.databaseanswers.org/data_models/
school_management_ systems/school_management_system_physical.htm>.

Williams, Barry (2004c). Apartment Rentals Data Model. Available from the in-
ternet <URL: http://www.databaseanswers.org/data_models/apartment_rentals/
index.htm>.

Williams, Barry (2004d). SalesForce.com – Four Major Entities. Available from
the internet <URL: http://www.databaseanswers.org/data_models/
salesforce_dotcom/index.htm>.

Williams, Barry (2009a). Data model for Parking Tickets. Available from the
internet <URL: http://www.databaseanswers.org/data_models/parking_tickets/
index.htm>.

Williams, Barry (2009b). The Father of All Data Models. Available from the in-
ternet <URL: http://www.databaseanswers.org/data_models/ fa-
ther_of_all_models/index.htm>.

Williams, Barry (2011). Data model for Customer Deliveries. Available from the
internet <URL:http:// www.databaseanswers.org/data_models/ custom-
er_deliveries/index.htm>.

Williams, Barry (2012a). Data Model for a Patient Monitoring System. Available
from the internet <URL:http://www.databaseanswers.org/data_models/ pa-
tient_monitoring_system/index.htm>.

Williams, Barry (2014a). Data Model for Occupational Health. Available from
the internet <URL: http://www.databaseanswers.org/data_models/ occupation-
al_health/index.htm>.

Williams, Barry (2014b). Customer, Inventory and POS. Available from the in-
ternet <URL: http://www.databaseanswers.org/data_models/ custom-
ers_inventory_and_pos/ index.htm>.

	Acknowledgements
	1 INTRODUCTION
	2 RESEARCH PROCESS
	2.1 Design research approach
	2.2 An overview of the study

	3 GRAPH THEORY CONCEPTS
	3.1 Connectivity, walks, and paths
	3.2 Components in undirected graph
	3.3 Tree
	3.4 Matrix representation for a graph
	3.5 Adjacency matrix for directed graph
	3.6 Vertex – dominating set of a graph

	4 DATA STRUCTURES AND MODELS
	4.1 Data structures, data models, and ontologies
	4.2 Network data model
	4.3 Hierarchical data model
	4.4 Entity-Relationship data model – ER Model
	4.5 Relational data model
	4.6 Semantic link network – SLN

	5 ADJACENCY MODEL
	5.1 Adjacency schema
	5.2 Modeling adjacency relation systems with AdSchema

	6 UTILIZATION OF ADJACENCY MODEL IN DATAMODELING
	6.1 Modeling graphs with Adjacency Model
	6.2 Graph-based modeling of the relational data
	6.3 Modeling relational data with adjacency model
	6.4 Modeling relational database schema with AdSchema
	6.5 Extended AdSchema

	7 ANALYZING GRAPH REPRESENTATION OF RELATIONAL DATABASE
	7.1 Identifying dependencies, tuples, and relations
	7.2 Extended analysis of ARS based graphs
	7.3 Database reconstruction
	7.3.1 Complex dependencies in adjacency relation system
	7.3.2 Facts table in adjacency relation system
	7.3.3 Reconstructing the database

	8 UTILIZATION OF MULTI-OBJECTIVE OPTIMIZATION IN GRAPH ANALYSIS
	8.1 Multi-objective optimization
	8.2 Recognizing keys with multi-objective optimization
	8.3 Utilization of goal functions in key identification

	9 CONCLUDING REMARKS

