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ABSTRACT

Mantere, Timo {2003). Automatic Softwarc Testing by Genetic Algorithms. Acta Wasaensia
No. 112, 151 p.

This study examines aulomatic soltware testing by using genetic algorithm optimization lor
test data generation. The tested software sel consists of some small subroutines, toy
problcms, image processing filters, measurement soflware, and a large Lime-critical
embedded software. The goal was to verify soflware quality by [inding extreme situations,
bottlenecks or faulty behavior. Genetic algorithms are an optimization method that adapts (o
the given problem, (hus they are also able to adupt Lo the sollware to be tesled, and after
finding some slightly suspicious input parameter combinations, start to evolve more
dangerous parameier combinations.

Testing is both technically and economically an important part of high quality soltware
production. It has been estimated that testing accounts for half of the expenses in soltware
production. Much of the testing is done manually or using other labor-intensive methods. Tt
is thus vital for the software industry to devclop efficient, cost effective, and aulomalic
means and tools for software testing. Searching for softwarc crrors with genetic algorithms
might be one of the many steps needed towards this goal.

This study proposes that genetic algorithms can be used in automatic software testing to
generale lest data for system and module testing. In this study the genetic algorithms based
test data generation was applied Lo different kinds of software systems in order to verify the
proposed approach. Based on these experiments, the genetic algorithm finds suspicious
parameter combinations more cfficiently, compared to the random testing, and further more it
reveals more serious error situations containing these parameters. In system verification
genetic algorithms can be used to reveal input data characteristics that are problemalic for the
object software. The method can also be applied to search for more real soltware ervor
tolerances than the classic error limit estimation. Co-evolutionary genetic algorithms can be
applied to develop soltware parameters simultaneously with the testing.

Timo Mantere, Department ol Electrical Engineering and Industrial Management, University
of Vaasa, PO Box 700, FIN-65101 Vaasa, Finland. Email: timo.mantere@uwasa fi

Keywords: Genetic algorithms, optimization, reliability, software testing. test data
generation.
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Author’s contribution to the publications

Most of the work, discussed in this thesis and the research papers included, was carried out
by the author, while working as a member of the Genetic Algorithms Rescarch Group of the
University of Vaasa, under the guidance of Professor Jarmo Alander. Jarmo Alander was a
co-author of all papers included in this thesis. He was acting as the supcrvisor of my thesis
work and also as the leader of the research group. He checked all draft papers and stated the

essential changes needed and made suggestions for improvements.

According to the research contract betwecen the University of Vaasa and the industrial partner
ABB Transmit Oy, the papers [AMMMI8, AM99)] were inspected by the representatives of
ABB in order to prevent publishing any confidential information. Jukka Matila acted as

project manager at ABB, and he was a co-author for the paper [AMMMO98].

The author of the thesis is the principal author of all the included papers. The author carricd
out the required research work, programming, testing, experiments, and the problem solving
reported in the articles. The required compulter programs, including the genctic algorithms
were programmed and improved to better meet the task by the author. One exception was Lhe
paper [AMMMO98] where Ghodrat Moghadampour did the analysis of the test results. The

author did the test setup part and edited the results in the papcr.
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1 INTRODUCTION

Software testing is an essential task when (rying to achieve high soltware quality. Testing is
both technically and economically an essential part in high quality sofiware production. It
has becn estimated [Mye78, Nor93, Kit95] that tesling causes aboul half of the expenses
related to software production. Much of the testing is done manually or using other labor-
intensive methods. It 1s thus vital for the software industry to develop efficient, cost cffective,
and automatic means and tools for this task. Even partial automation of the testing with an
effective too} can bring considerable savings. Searching for software errors by genetic
algorithms might be one step towards this goal. New measurement techniques and metrics
are really nceded for assessing the quality and reliability of software as well as [or the
prediction and mecasurement of software production. According to the US Trade Ministry
[NISO2] software errors cost the U.S. cconomy $59.5 billion a year, approximately 0.6
percent of gross domestic product. They estimate that more than 30% of these costs could be
eliminated by earlier and more effective identification and removal of software defects with

an improved testing infrastructure.

Today, more and more new industrial products include microprocessors. The programs of
these embedded sysiems grow in size and become more complex, and therefore problems
with their software become more difficult and merc usual. From the viewpoint of Finnish
export, the most important programming lasks today are rclated to embedded electronic
devices. Performance is also an important quality and a competitiveness factor of computer

systcms.,

This thesis investigates the possibilities of applying genetic algorithms Lo software testing.
Generic algorithms (GA) [Hol75] are oplimization methoeds that are based on an arlificial
computational medel of evolution in nature and the Darwinian evolution process [Dar39]. A
kind of artificial ecosystem is generated in the memory of the computer where the virtual
beings compete for the chance of reproducing according to their fitness function values. The

{itness function is deduced from the optimization problem for which the artificial ecosystem
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tries (o adapt. The individuals of the virtval ecosystem should offer relatively good solutions

to the original problem after several generations of evolving.

Software testing in this work is applied by using the so-called “black box” approach |Bei90],
in which the program code or its execution is not traced or [ollowed in any way. The only
test information we have from (he execution is the input we feed to the softwarc interfaces

and the output (response) we get from the software.

Genetic algorithms are used as a rest data generator, which generates test cases for a tester
program that feeds them further to the tested software. A tester program traces software
interfaces and recognizes outputs caused by input data. A fitness function is based on the
selected software metric that we are trying to optimize. Genetic algorithms then gencrate new
individuals based on the fitness values that each individual obtains during the evaluation
process. After several gencrations have been (lested, the GA should have adapted to the

softwarc and generated test cases that find problematic situations for the software Lo be

tested.

1.1 Overview of the thesis

The framework of this thesis is based on (he publications [AMTV96, AMT97a, AMM97,
AMMMO97, AMMMOI8, AMP98, AM99. AMP99a, AMP99b, AMO00a, AMOOb, MAOO,
MAOla, MAOLb, MAOLc, MAO1d, MAO02a, MAO2b, MAO2c, Man03, MA03a, MAQ3b] that
have been published between 1996-2003. The papers shown in bold are included in this
thesis in full. This work is also a continuation of the Lic.Sc. thesis [Man99] that studies the
samc problem. The references [Man96, ML96] from the author also study the use of genetic
algorithms with another problem. Chapter 4 of the introduction is edited 1o the form of a

review arlicle about evolutionary software engineering [MAOQ3b].

A major parl of the research work behind this thesis was done in co-operation with Professor
Jarmo Alander. During the years 1996-98 research was done within a research program
called “Adaptive and Intelligent Systems Applications” of the Finnish Technology
Development Centre — TEKES. The industrial partners in this project were ABB Transmit

Oy 1996-98, and FBM Limiled Oy in 1998. ABB Transmit Oy is a major manulacturer of
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protection, control and automation products for medium voltage electrical distribution

networks. FBM Limited Oy is the leading manufacturer of mailing systems in Finland.

1.1.1 Structure of the thesis

Chapter 1 introduces lhe contents of this study, research objectives and Lthe main research
questions and hypothesis, Chapter 2 outlines the basic terms, methods, and describes the
history of software testing. Chapter 3 describes the concept of an evolutionary algorithm and
different types of cvolutionary algorithms are presented. Chapter 4 reviews the related work
in the Nield. Chapter 5 gives some examples of applying genetic algorithms to the software
testing problem. Chapter 6 presents and reviews the previously published articles included in
this thesis. Finally Chapter 7 summarizes the conclusions and suggests some areas for {urther

studies.

1.1.2 Background

In order to state the foundation of this thesis, it is appropriate 1o discuss the background and
objectives ol this study together with the justification for some [undamental decisions on

how this work was carried oul.

The original motivation for this research was our industrial partner's need for developing
new software testing methods to verify that the time crilical embedded software in their
product meets its tight response time requircment under all possible input situations. A kingd
of stress testing was needed. The optimization approach was adapted from earlier research
projects done in our group. Genetic algorithms were adupted e.g. to scveral problems dealing
with elevalor group control [AYT95], optimization of PID-controller parameters [AMT97b],

and cam shape design for a diesel engine [Lum99|.

The motivation for including image processing and halftone filter design in this study
originated from our other industrial partner, FBM Limited Oy. They had a need for adding
figures like company logos to address labels used in direct advertising. These labels were
printed in bulk with a very fast, but low-resolution ink jet marking machine. The machines
used did not support good graphics, so we tried to generate better threshold malrix halflone

filters for them with GAs [AMP98, AMP99]. That research was cxtended to the lest image
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generation 1n order fo connect our earlier research on software test data generation and image

filters in order to do experiments on the idea of testing the image processing soflware quality

by GA generated test images,

The testing of the accuracy of a measurement software using machine vision was due to the
planned cooperation with another research project going on at our laboratory. The solder

paste inspection based on machine vision is studied in this project [Rau0Q0].

The 1dea of applying co-evolutionary methods was motivated by our previous experience
with 1) generating halftoning filters with GA 2) generating test images for testing halftoning
methods with GA, 3) generating software test dala by GA 4) the goal of achieving better
software. The goals 1-2 and also 3—4 seem natural co-evolutionary pairs for which the

simultaneous optimization against the contradictory goal might lead to co-development.

Software testing is a field of engineering, where the gap between the statc of the art and the
state of the practice is exceptionally wide. Sollware testing has yct to become a fundamental
component of the software engineering curricula of universities. Papers presenting leading-
edge ways of improving the software qualily are published. They arc however, often not read
by those who might benefit most from them. Unfortunately, many of the state-of-the-art
methods are unproven in the field, and often they omit some important real-world dimensions
like return on investment [Kit95]. Kaner ef af. [KFNS9] state that “We have yet to meer a
computer science graduate who learned anything useful about sofnvare testing at the
university”, and (hey do not expect to meet many ol them over the next decade. Tamres
[TamQ2] slates Lthat “sofnware testing is not intuirive, and one must learn how 1o do it”, “not
all the good programmers are good testers”, “testers usually know more about programming
than programmers about testing”, and she also describes many real-life problems within the

testing profession.

Table 1 [Paa02] presents some of the discrepancies between the softwarc testing goals in the
research community and testing practices in the industry. The industry usually has practical
problems that arc too concise or lechnical to be the targets of scientific research. On the other
hand some widely researched methods like formal proofing of the code is too complex and

thus impractical to be applied in real industrial software production.
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Table 1. Some reasons for the differences between the research and practice [Paa02].

Research community: Industry:

Scientific preblems, new scientific results Business, new saleable products

General, profound, theoretical basis Swiftness, operational. inherited environment
Radical new methods Conservalive, old [amiliar methods that work
Model or method imporant, not the realization The realization decisive, nol models or methods
Scientilic community cvaluales the qualily Customers evaluate the quality

This work was seen as a chance to sec whether industry and researchers could benefit from
co-operation in software testing. The industrial pariners in this project offcred test cases by

which we could test our genetic algorithm based tesling ideas in practice.

1.2 Research objectives and coniributions

The research of this thesis was motivated by the rapid growth of the software industry. So-
called embedded systems arc becoming more and more a part of our daily lives, and all these
systems have software that is becoming increasingly complex. Therefore, there is a need for
studying new efficicnt and reliable automatic softwarc testing methods. Genelic algorithms
were chosen as a testing method, because they have grown in popularily in optimization of
engineering problems. At the beginning of this study there were only a handful of rescarch
papers that used genetic algorithms for software testing. Therefore we found this territory
relatively new, uncxplored and challenging. During these six years GA has become more
popular in this context and, as Chapter 4 indicates, several papers on the application of GA in
testing have been published. The use of heuristic optimization methods in software testing

has been called “search-based software engineering” [HIOL] and “evolurionary testing”
[MW93].

The original gencral research question was: “is GA capable of discovering software
weaknesses, such as finding software bottlenecks, or paramneter combinations that lead to

delayed responses or to no responses at all?”

The first PhD thesis on software testing with GAs was by Harmen Sthamer [Sth93], it
concentrated on structural testing with white box methods. Therefore whitc box methods and
test coverage testing were left out of this thesis. In 1996 we decided to concentrate on testing

the response and cxecution times ol software with GA. Coincidentally. the first publication
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with similar idea of temporal testing with GAs was published al that same year [WGG+96].
Later, Hans Gross wrote PhD thesis [Gro00] concentrated on the same topic as chosen by us,
so we decided 1o expand our application area. The topic of my thesis was cxpanded from
temporal lesting to include other testing types as well, e.g. tesling image processing
algorithms with test images, testing measurement software accuracy with GA generated

objects, and applying co-evolution for developing software parameters simultaneously with

testing.

The research questions and hypathesis of this thesis arc as follows:

¢ “Is generic algorithm based temporal sofnware testing capable of finding the worst

case execution times of the software?”

¢ “Is a genetic algorithm able 1o generate test images and test surfuces that can be used
Jor testing the qualiry of image processing software and a softvare system perforniing

measitrements by the aid of machine vision?”

o “Is it possible 10 apply a co-evolutionary genetic algorithm so that the changeable

software parameters can be optimized simultaneousty with the testing process?”

Our hypothesis in this study is that the answers for all these three research questions arc

positive.

The main contributions of this thesis are publications dealing with worsl-case execution time
(WCET) optimizalion with GAs. These are among the earliest publications in this field.
There are published papers about image and surface generation by GAs, but our papers secm
to be the only published ones on generating these images and surfaces for testing purposcs.
We also do not know of [Ala95a] any previous published papers on applying co-evolutionary

GA for developing software during the testing process.

An extensive lilerature search on applying evolutionary algorithms for oplimizing software
testing and sofltware quality problem was also done. We like to call this research area
“Evolutionary Software Engineering” [Ma03b] and review the most important papers in this
area in Chapter 4. This study was limited (o the black box testing strategy: the rescarch on

white box testing is only briefly reviewed in Chapter 4.
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2 SOFTWARE TESTING

In this study it is assumed that the rcader has a basic knowledge of sofiwarc testing. The
essentials of software lesting, and the details of many commonly used techniques can be
found in e.g. [Hel73, Hel88, Kit95, Mar95]. Therefore, this thesis only briefly describes the
history and motivation behind software testing, and the methods and concepts that were

directly used in this study.

The quality of a software system is primarily determined by the quality of the software
design and implementation process that produced it. Likewise, the quality and effectiveness
of the software testing process are primarily determined by the quality of the test processes
used. Typically, more than half of the errors are introduced to the system in the requirements
phasc. The cost of errors is minimized if they arc detected in the same phase as they are born,
and an effective test program prevents the migration of erors from a certain development
phase to the subsequent one. It has been estimated that repairing an error caught during the
system specification phase may be about 50 times cheaper than for an error detected in the
system testing phase [Jon78]. Bochm [Boe74] reports that 12% of the errors discovered in a
softwarc system over a three-year period were due to errors in the specification of the
original system requirements. In practice we often do not have a mechanism to detect these

errors 1t place until much later — often not until in the function and system testing phasc.

[Kit95]

Softwarc crrors are human errors. software is wrillen by people, and people make mistakes.
There are practically no commercial software systems without any errors. Some errors are
more disturbing, visible or costly than others, and the testing can never reveal all of them.
We cannot therefore Lolally prevent the occurrence of software errors. So the best we can do

is o try to locate them as earty as possible, and at least find and fix the most critical ones.

2.1 History of software testing

In the carly days of software devclopment. testing was regarded as “delugeing”, or fixing the

known errors in the software, and the devclopers themselves usuvally performed it. There



20 ACTA WASAENSIA

were rarely any specific resources dedicated to testing [Kit95]. Early works on program
lesting can be traced back to 1950 [Mil80]. During that time, even advanced software
systems had very limiled interaction, if any, with olher systems [Bab82]. Awromatic test
equipment (ATE} dales back to the mid-1950, when the maintenance of U.S. military
electronics started to face formidable problems due to complexity. The solution was the
concept of mullipurpose ATE, which promised testing at computer speeds, fully automatic
operation by less-skilled opcrators, virtual elimination of maintenance documents, and

universal designs adoptable to any test problem through the flexibility of programming

[Lig72).

In the lute 1950°s software testing was distinguished from debugging and became regarded as
delecting the errors in the software [Het88]. But the testing was still an after-development
activity. The underlying objective was Lo show that the given product worked and then ship it
to the customer. Researchers of computing science did not talk much about testing either.
Computer science curricula dealt with numerical methods and algorithm development, but

not with software engineering or testing. [Kit95]

The term “sofrware engineering” was invented in the late 1960’s. At that time there was a
“software crisis”, software being cxpensive, bug ridden, and impossible to maintain [SW99).
By the 1970’°s the term software engineering was used more often, though there was little
consensus as to what it really meant |Kit95]. The first formal conference on testing was held

at the University of North Carolina in 1972 [Het88].

In 1978 Myers [Mye78] defined testing as “the process of executing a program with the
intent of finding errors”. He pointed out that if our goal is 1o show the absence of errors, we
will discover very few of them. Establishing the proper goal and mind-set has a profound
effect on testing success. Baber [Bab82] states that by the [970°s the cases of “fully rried and
rested’ software that were found to be useless were no longer surprising, since they were
fairly common throughout the 1960's. The assumption that they represented a (ransient

phenomenon was beginning to prove false.

By the early 1980's “guality” became the popular theme in industry. Software development

professionals and testers started to get together Lo lalk about software engineering and testing.
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Groups were formed to eventually create the many standards we have today (JEEE, ANSI.
ISO). Intcrnational standards in full-published form are becoming too vast and detailed to be
guidelines for everyday practical purposes. However, they include imporlant guidelines, a
baseline for contracts and provide invaluable references [Kit93]. In 1981 Browne and Shaw
[BS81] stated (hat at the present sofhware engineering is a technical activity for which we

have developed a large sct of ad hoc engineering techniques without a corresponding

scicntific foundation.

Since the mid-1980"s (esting tools and automatic lesting have been the center of focus with
growing quantity and also due to increasing quatity. These tools include e.g. coverage
analyzers, test planning systems, and test design aids that can help to do the testing job more

efficiently and cost effectively. |[Dra99|

Table 2. The four eras of testing [Lai02].

[. The process pioneers

¢ Test management and tailored tools

II. Initiation of commercial testing tools

¢ Test coverage and white box lesting
III.  Current testing practice

* Regression and black box testing

¢ Static test automation
IV. Next generation testing

¢ Tesling process and stratcgy

¢ Dynamic test automation

Today, only about 10% of the cost of a large computer system lies in the hardware, while it
was over 80% in the 1950’s [SW99]. It has been reported that software costs are growing
15% annually, while productivity is increasing at a rate less than 3% [DG81]. Despite the
enormous advances in the last 30 years or so, the software development and testing process is
still very immature in most companies. The complexity and criticality of the software has
increased. Even many well-proven methods are still largely unused in industry today, and the

development of software systems remains inordinately expensive. |Kit95]
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Laine [Lai02] present the software testing tool industry point of view of the four cras of
soflware lesting practices shown in Table 2. Currently, the practices arc moving from the
third era to the fourth. The focus is to move from static to dynamic test avtomation and also
to test processes and strategies behind software production. He also claims that software size
and therefore also test requirements are increasing exponentially. The scalability of current
sofllware testing practices are increasing linearly; causing the expanding gap between lesting

requirements and testing praclices.

2.2 Terminology

In colloquial language there are scveral terms used 1o describe program errors (bugs).

According 10 the IEEE/ANSI standard [TEE90] they mean:

¢ Mistake: A human action that produccs an incorrect result.

e Fault: An incorrect step, process, or data definition in a computer program. The
outgrowth of a mistake.

* Failure: An incorrect result. The resull of the fault.

* Eyror: The amount by which the result is incorrect.

The definition of testing according to the IEEE/ANSI standard is: “The procesy of operaring
a system or component under specified conditions, observing or recording the results, and
making an evaluatrion of some aspect of the system or component” [IEE90]. The definition of
software testing according to the 1IEEE/ANSI standard is: “The process of analyzing a
software ftem to detect the difference berween existing and required conditions and evaluate

the featires of the software items” [TEE83).

2.21 Verification and validation

Verification and validation arc two basic forms of lesling. Verification is human testing,
because it involves looking at documents, specifications and the code on paper. Verification
15 Lhe process of evaluating a system or component to determine whether the products of a
given development phase satisly the conditions imposed at the start of the phasc {IEEB6].
Validation, on the other hand, normally involves executing the actual software or simulation.
Validation is computer-based testing, and it usuatly exposes symptoms of errors. Validation

is the process of cvaluating a system or component during or at the end of a development
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process to determine whether it satisfies specified requirements |IEE86]. Verification is

closer to static and white box testing, whereas validation is closcr to dynamic and black box

testing.
2.2.2 The white, gray, and black box testing

Two fundamental testing stratcgies are black box and white box testing. These represent
external or internal perspectives [He(88]. Black box testing is closer to dynamic testing.
whereas white box testing is closer 0 static testing. In bluck box testing the tests are derived
from the functional design specification, without any regard tofor knowledge of the internal
program structure, or code. The code is understood from the specification point of view, f.e.
what the software is supposed to do, but not how the code is actually constructed. Black box
testing will not test hidden [unctions, nor find errors hidden in them. Whitc box tests require
knowledge of the internal program structure and tests are generated with the help of code
specification [Kil93]. In wihite box testing the code could be statically analyzed against the
specification. When the code is executed with white box testing, it is traced, and the clausc,
deciston, condition, multiple condition, and path coverage are measured, also the dead code
can be delected. It can also be executed symbolically. Gray box resting is an intermediate
form, where code is not examined, but the black box testing is supplemented with the

knowledge of program structures.

2.2.3 Stress testing

In srresy testing we load the system until it starts to paralyze, e.g. when response times
become too long, the system ignores some inputs or is totally collapsing. The key parameters
of the system are strained with maximal load. According to Schifer [Sch96], stress testing
includes testing of performance, maximal speed, same inpuls, requests or faults to all lines
simultaneously, difficult searches, inappropriate values, efc. The purpose of stress testing is

to identify peak load conditions under which the system fails.

2.2.4 Fault seeding

Error seeding is a well-known method, in which some specific cirors are sceded inte the

software being tested. The goai is to find these seeded errors, and then to statistically
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cstimate the amount of real errors in the software by measuring how many of the seeded

errors were found.

2.2.5 Automation of software testing

Software testing is an expensive and time-consuming task. The purpose of automatic test data
generation is 1o reducc costs and human work. Normally, the large number of possible test
cases is a problem, and automatic testing can work round-the-clock and reduce routine work.
The profitability of automalic testing is achicved throngh repealing the tests for newer

versions or different configurations of the software.

2.2.6 Testing temporal behavior

The operation of real-time software is often presented with the help of the so-called state-
machine model. In a simple statc-machine only the slate, in which the impulse occurs, affects
the response. In the real software there are several processes and impulses that overlap.
causing the responses also to overlap, sometimes this results in uncxpccted delays. Load
varialions also have their sidc cffects. It is nol easy to predict the behavior of the systcin,
however, and embedded real-time software usually is required to meet some time constraints.
Temporal behavior testing tries to find those input situations where the system either fails or

nearly fails to meet its time constrains.

2.3 Research problem

Normally, when using genetic algorithms [or function optimization, the GA creates trial
solutions, which are then tesled by a static fitness function in order to evaluate their fitness as
a problem solulion. When we are generating test data with GAs the roles of the system parts
(GA and fitness function) change. Now the GA generates test cases, thal are passed to the
object system and there is no longer a static fitness function that directly would evaluate the
goodness ol the trial. Instead, the object system under testing executes its functionality
according 10 the received data, and the fitness value is assigned by observing whal the (ested

syslem does.
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23.1 Software testing as an optimization problem

When tesling software by a GA we optimize the input according to some criteria. We must
thercfore define or choosc the software metric we are optimizing. This metric should be

mcasurable [rom the software, either directly or indirectly.

We could use cvolutionary lesting with either white box or black box testing techniques. In
the first case, we can define the optimized metric to be e.g. some test coverage metric; code,
condilion, or path coverage. Therc we need an application that traces the software exccution,
and we try to generaie a test sct that gives the best coverage. If we choose the black box
approach, we will not trace the software execution, but instead trace what happens in the
softwarc interfaces. The optimized melric could be crror based, e.g. amount of warnings,
calculation or rounding erors, leakage of memory, erc., or temporal based ¢.g. best or worst

execution times or response times (B/WCET).

2.3.2 Software testing by genetic algorithms

It is important to observe that a GA doces not find any single error from the software with any
higher probability than random search. However, if the error siluation is composed of a
combination of input parameters, or a sequence ol operations by thesc inputs, then it is
possible that GA gains advantage. In practice this means that a GA tester uses trials with
several parameter combinations that cause minor faults and construcls new input sequences
that have more errors than pure random tests. When testing nondeterministic time critical
sollware with a temporal fitness function, GA recognizes inputs that cause delays; it starts to
favor the paramcter values ol these inputs, and hopefully eventually generates input that
causes maximal response delay. Note that the extreme execution times found in this way are
not necessarily globally maximal/minimal. There are methods like static analysis that can be

used in order to validate the extreme cases, but with large softwarce their use becomes

virtually impossible [MW98].

The GA based testing does not nced to separalety test faults like the index boundaries or
division by zero. If a division by zero happens, the GA recognizes the possiblc symptoms of

the sollware and should soon discover that error situation. The GA has also been applied o
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mutation testing [Sth95], where it effectively killed the mutants that were generated by

changing the boundary values.

The advantages of GAs over random testing include:
L. needs less human analysis, the GA pre-analyses the software according to the fitness
function,
2. aulomatically tests combinations of suspicious inpul parameters, and

3. may find the combination of paramelers that leads to more severe [ault behavior.

The testing sctups and GA parameters of this thesis are problem specific. Therefore we omit
the setup derails and GA parameters in this introductory part, instcad they are discussed in
the individual papers in detail. This thesis does not concentratc on finding optimal GA
paramelers, however, paper I deal with this problem bricfly. We believe there is no universal
good GA parameter setting, but instead the optimal evolutionary algorithm and its parameter
sct is different for each problem. As a rule (o find an error is much more important than to

trying to find optimal GA parameters.

Software testing in this thesis is done as a validation process. using the black box testing

strategy and dynamic Lesting.
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3 EVOLUTIONARY ALGORITHMS

Evolutionary algorithims (EA) belong to a branch of evolution inspired heuristic optimization
methods, the most well known being: evolution strategics, genetic algorithms, and genetic
programming [Mi198]. Methods used in this study were genetic algorithms, differential
evolution, and co-evolution. Last two of these are special variants, differential evolution,
sometimes called differential genetic algorithm, is not based on Holland’s original idea and is
not exactly GA at all, it is a rather new concept and method. Co-evolution contains two or
more GAs, in which population co-evolves either with predator-prey relationships, symbiotic

relationships, or parasitic relationships.

The history of genetics may start [rom Lamarck’s [Lam09] multifaceted theory of evolution.
Lamurck proposed that the obtained characteristics of an organism are inheritable by its
offspring. If a person lives in a mountainous terrain and develops muscular legs, their
offspring would inherit muscular legs. So the specialized traits for surviving in the
cavironment are passed to the offspring. The Darwinian [Dar59] theory is that a person who
has muscular legs has a genetic tendency for muscular legs, and will probubly have offspring
with a similar genetic tendency. There does exist EA versions that are based more on the

Lamarckian theory [Gre91], however, the great majority of EAs are based on the Darwinian

VIEW.

3.1 Evolution strategies

Evolution strategies (ES) |[Rec73] are a group of widely applhied optimization algorithms
based on the evolutionary principles. The hypothesis is that during the biological evolulion
the laws of heredity have been developed for the fasiest phylogenetic adaptation. In contrast
to the genetic algorithms, ES imitate the effects of genetic procedures on the phenotype.
Features of an optimized object are paramelerized as vectors of numbers. The presumption
for coding the variables is the realization of a sufficiently strong causality; small changes
must affect small changes. ES did not originally contain crossovcer, thus the idca was that
children would have a single parent [rom which they are mutated. Latcr, a varicty of

crossover operations have been added. Populations of these vectors are evolved via selection
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and variation processes over a number of generations. Fitness valucs, defined according to
the optimization, decide the individual’s survival probabilities from generation to generation.
The significant part of ES theory is the “evolution window™; evolutionary progress lakes
placc only within a narrow band of the mutation step size. This fact leads to the necessity [or

a rule of self-adaptation of the mutation step size, ¢.f simulated annealing.

3.2 Genetic algorithms

Genetic algerithins (GA) [Hol75, Gol89] are another group of evolutionary algorithms, that
use evolution principles, like selection, mutation, and recombination, that were originally
proposed by Charles Darwin [Dar59]. Genelic algorithms form a kind of clectronic
population that fights for survival, adaptling (o its environment as well as possible. which is
an optimization problem. Surviving and crossbreeding possibilities depend on how well
individuals fulfill the target function. GAs are used to solve complex optimization tasks. they
do mot require the optimized function to bc continuous or derivable, or even be a
mathematical formula, and that is perhaps the most important factor why they arc gaining
more and more popularity in practical technical optimization. The difference belween
evolutionary strategies and genetic algorithms is not always clear. GA and ES have become
more close to each other as population and recombination have been added to ES. The main
differences that remain are: in GA the individuals are encoded as a siring of values (binary
strings, integers, [toaling point numbers) called a genome, whereas ES use whatever
representuation fits the problem. EAs can work on the actual parameters that are encoded as
real numbers, GAs perform mutations and rccombination on an cincoded version of the
parameters. In EA mutations are normally distributed perturbations, frequent small changes
and infrequent large changes and the mutation rate decreases as the run time elapses, whereas
in GA mutation is usually fixcd size changes and always with the same rate. In ES offspring
replace parents only if they are more [il, only good individuals breed and no randomness is
involved in the selection. whereas in GA there is randomness in selection of survivat and

reproduction.
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3.3 Genetic programming

Genetic programming (GP) |Koz92] is an aulomated method for creating computer
programs, algorithms, or digital circuits. GPs require a high-level presentation of a problem.
Then by genctically breeding a population of computer programs and using the principles of
Darwinian sclection they perform automatic program synthesis using biologically inspired
operations, such as recombination, mutation, inversion, gene duplication, and gene deletion,
Usually GPs use trees as representation of individuals (fig. 1). Genetic operations are applied
to trees, branches and leafs. A leaf represents a single program command or a variable value,
while a branch represents some programming language construct of commands and variables,

usually subroutine calls.

o e\
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Figure 1. Represcntation of a GP solution as a parse trec, which is read from lefi Lo right. The tree

represents arithmetic cxpression: 7%X°+2.

Genetic programming is related to the evolutionary software testing in the sense, that when
generating software code with GP, we have a definition of what the resulting routine should
do. GP generates trial solutions. which are then tested against the specification. the closer the

output is to the desired output, the better the fitness.

3.4 Differential evolution

Differential evolution (DE) [SP95] is an optimization method that was crcated by Kenneth
Price, while trying to solve the Chebychev polynomial-fitting problem that was posed to him
by Rainer Storm. He came up with the idea of using vector differences for perturbing the
vector population. The discussions between them and several computer simulations brought

many substantial impravements, which made DE a versatile and robust tool.
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DE is a very simple population based, stochastic function minimizer. It trned out to be the
best genetic type algorithm for solving the rcal-valued test function suite of the st ICEQ
(International Contest on Evolutionary Computation)[BDL+96]. The essential idea behind
DE is a scheme for generating trial parameter veclors. Basically DE adds the weighted
difference between two population vectors to a third vector, this third vector is then
recombined with a selected vector x to create a new trial. A trial is tested and if its better than
x, it replaces v in the population. There is no nced for an additional mutation operator, ang

thanks to the weighted differences the scheme is self-organizing.

3.5 Co-evolution

Co-evolutionary computation (CEC) [DY97] generally means that an evolutionary algorithm
is composed ol several species with different (ypes of individuals, while a standard
evolutionary algorithm has only one single population of individuals. In CEC the genetic
operations, crossover and mutation are applied to only one species, while selection can be
performed ameng individuals of one or more specics. When we deal with an optimization
problem, the environmental conditions are either stochastic or immeasurable. We can then try
lo develop the environmental conditions concurrently with the problem. Change in one
population causes an environmental change in the other population. Trial solutions implied
by one species are evaluated in the environment implied by another specics. The goal is to

accomplish an upward spiral, an arms race, where both species would achieve ever better

results.



ACTA WASAENSIA 31

4 RELATED WORK

When we are interested in finding ways of making softwarc rcliable and faulless, or
developing new automatic means and tools for software testing, we find many interesting
connections between our research and previous research in the field of software testing. We
could thus review a large number of related studics, but in the following we will discuss only

works that arc most closely related to our subject.

The generation of test data for sofllware by EAs is the main relaied Lopic. In addition to this,
we are also interested in applying EAs as software qualily assistance and in using EAs for

other tesling purposcs, ¢.g. tesling digital circuits.

The growing interest in using metabeuristic search techniques in softwarc engineering
problems has gencrated a research network: Softwarc Engineering using Metaheuristic
Innovative Algorithms (SEMINAL). Their homepage <http://www.discbrunel.org.uk/
seminalproject/index.html> presents Lhe researchers involved in this area and lists research
topics. Another site <htlp://www.systematic-testing.com/> concentrates on functional and
cvolutionary software testing and their automation. The research communily has also started
to generate a benchmark problem library. However. currently it conlains only a few short C-
routines. There is also Software Testing Online Resources al the Misu site STORM
<http:/fwww.mtsu.edu/~slorm/> that includes a directory of researchers working in the field

of software testing.

4.1 Genetic algorithms in software testing

In this chapter we discuss previous rescarch on applying evolutionary algorithms to software

testing and software quality assistance.

4.1.1 Early works

The short history of applying genetic algorithis to software testing problems can be traced

back to 1992. The earliest referenced puper is Ellis er al. [XESLK92], in whicl the testing
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prototype TAGGER is introduced. The system was used for gencrating test data for programs

written in Pascal.

Shultz et al. used GAs for testing behavior based control software ol autonomous vehicles
[SGDY2, SGDIY3, SGD95, SGD97]. Their goal was to find a minimal set of faults that can be
toleratcd without significant performance loss of the control system. A chromosome
represents a sel of initial conditions followed by rules, which specify various fault modes thai
could be present in the control system. A GA was used (o search [or potential faults in the
software. The object controller software was designed for aircraft and an autonomous

underwater vehicle.

The st PhD thesis in the area was by Sthamer [Sth93] who studied the use of GA as a test
data gencrator for structural testing. The example programs are small procedures written in
ADA, including triangle classification, linear search, remainder calculation, and direct sorl.
Sthamer applies GA for branch, boundary, and loop testing, and also for mutation testing. He
observed that “GAs show good results in searching the input domain for the required test
sets, however, other heuristic methods may be as effective, 100”. “GAx may not be the final

answer fo the software resting problem, but do provide an effective strategy”.

4,1.2 Coverage testing

Pei er al. [PGGZ94] concentrated on pathwisc test data generation. By using test data
generation by GA they try to define if the selected subpath is feasible or nol. They compare
their system with Korel [Kor76) and believe that a GA based system works beller because it
processes the whole path simultaneously. Pei er al. also claim that their system is superior

when compared with many commonly used methods.

Waikins [Wat95] deals with path coverage optimization by GA, using the popular triangle
classification problem as an example. GA reached the same coverage as the random method

while sampling a smaller percentage of the complete scarch space.

Roper er al. [RMB+95] have also studied optimization by GA. trying to find a set of data that

will test the program until the required level of coverage is met. Roper [Rop26, Rop99] has
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also stated that using a GA often neatly avoids many of the problems of automatic test data

gencration encountered by other methods.

Smith and Fogarty |SF96] studicd test coverage optimization by a hybrid version of GA and
hill-climbing local search. Their application was also the triangle classification problem.
They claim (hat their system can generate (est sets that fully satisfy the given metric and
reduce he size of evolved test sets. Smith er al. [SBF97] continue that work, by generating
with a GA test programs for verifying the design of 4 microprocessor. The test problem is a
VHDL model of hardware, the test coverage is optimized and the results are compared
against the random method. The distribution of the results for a GA is significantly more

skewed towards higher fitness values than for the random method.

Warficld [War98] has received a United States patent for an aulomatic soltware testing tool
that generates test scripts based on state machine definitions. The system measures the code
coverage that cach test script achieves when fed to the tested user interface of API

(Application Program Interface). Coverage melric is used as the fitness value.

Another patent has been issued to Whitten [Whi98} at Sun Microsysiems for a method for
selecting a sct of test cases which may be used to lest software program products. The set of
test cascs is generated by the designer in the form of software thal exercises as many of the
code blocks in the product as possible. A GA is applied to determine which subset of test
cascs to usc. This is done on the basis of the fitness value using a combination of time and
coverage measuremenis. The aim is to delermine the set of test cases that exercises a

maximum number of code blocks in the minimum time.

Gounares and Sikchi [GSO1] at Microsoft Corporation have received a palent lor a system lor
adaptively solving sequential problems in a target software system utilizing modified GAs.
Stimuli to the target system are presented as actions, and a sequence of actions is a GA
chromosome. These chromosomes are applied to the target system one action at a time and
the changes in properiies of the target arc mecasured. The fitness valuc is defined so that
successive generations of chromosomes will converge upon the desired characteristics. For

software lesting Lhese characteristics are defect discovery and code coverage. Evolving ever-
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shorter chromosomes that produce the same defect minimizes defects in a target software

system, and the defect discovery rate is thereby maximized.

Michael er al. [MM98, MMS98] have developed the so-calted GADGET (Genctic Algorithm
Data Generation Tool) system that is fully automatic and supports all C/C++ constructs. The
system 1s used to obtain condition/decision coverage. Michael ef al. use triangle classification
and an autopilot control program for a Bocing 737 as example problems. They also studied
the performance of different GA variants and compared results with the random method —

GAs gained a much higher coverage than Lhe random method.

Pargas e al. [PHP99] have experimented with genelic algorithm based test data generalion
for statement and branch coverage using a control-dependence graph to guide optimization.
They tested six relatively small test programs and compared the results to the random
method. Their approach clearly outperformed the random method for three of the six test
programs, for the other three programs both methods find the optimal solution in the initial

population. They suggest that the use of GA could be more beneficial for complex programs.

Bucno and Jino [BJOO] have studied the possibility of using a GA to identify the potentially
infeasible program paths. They propose that monitoring the progress of the GA search could
identify an infeasible puath. Their approach combines earlier works by other authors and
introduces a new fitness function using control and data flow information to guide the search.
They use the so-called “parht similariry merric” as their fitness function. Results with their six
small test programs were very promising. The GA based approach reached 100% success rate
in unleasible path identification in lenth of the amount of command executions and time

needed by random search to reach 70% success rate.

4,1.3 Test data generation

Hunt [Hun95] used a GA for testing cruise control system software. In his implementation a
GA clwromosome represents the input and expected output. The fitness value is assigned, il
the measured output differs from the expected output. The greater the difference, the higher
the fitness value. The expected output is derived from the original software specification.
Hunt states that software is often developed by a third party, and the tester only has the

software, which hc treats as a black box and tests against the corresponding requirement
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specification. A GA chromosome must be able to represent all input values that the software
can process, as well as Lthe values that its single output can have. He claims that the
chromosome must be able 1o represent both the valid and erroneous inputs. In his approach
the GA 1s used as an aid for a human tester. The GA identifies failure scenarios. but it is up to

the human tester to identify the faults that led to the (ailure.

Yang [Yan98, JSXE95] have written a PhD thesis about using genetic algorithms to derive
test cascs and test data from the formal Z specifications in order to test the functional
behavior of the software. His aim was to show Lhe conformance of the implementation to its

specifications, i.e. the correctiness of the implementation with respect to the sel of test data

with which il was exercised.

Minohara and Tohma [MT95] have used a GA for parameter estimation of a so-called
“hyper-geometric distribution software reliability growth model”, where the increase of the
number of errors is observed as a function of time. Their GA chromosome represents a set of
parameter values. The fitness value is evaluated by testing crrors between the observed and
the estimated test-and-debug data. They are trying to minimize the amount of errors. Their

results suggest that the GA may be a more stable method to get the estimales.

Lin and Yeh [LYO1] have also studied automatic test data generation by a GA for a chosen
subpath. Their method uses so-called “normalized extended Hamming distance” 10 guide the
oplimization process and to test the optimality of the candidate solutions. Fitness function,
so-called SIMILARITY defines how similar the traversed path is to the target path, is used to
choose the surviving test cases. “Oprimalin” means that the test case (f.e. a parlicular input)
forces the program to follow the wanted path of program statements when executed. They

claim that a GA 1s able to significantly reduce the time required for automatic path testing.

4.1.4 Testing program dynamics

Kasik and George [KG96] have used a GA for emulating software inputs in an unexpected,
but not totally random way. The GA is used as a rcpeatable technique for generaling user
cvents that drive conventional automated test tools, so that the system can mimic different
forms of novice user behavior. The system tries to represent how ua novice user learns to usc

an application. The fitness value is given according to how much the actions performed arc
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guided by the chromosome to resemble novice-like behavior. The novice behavior is

described by a special reward system that is build based on observations.

Boden and Martino [BM96] used a GA 10 generate API tests. They concentrated on the
operating system error reatment routines. The [itness function was a weighted sum of
various factors of a Lest respousc with an atlempt to assess the sequences of operating system
calis. Boden [Bod98] has also received a US patent for an order-based GA based automated
testing of sofltware application interface, object method and command. The GA is used to

search and detect symptoms of software errors by generating Lest sequences.

Wegener ef al. [WGG+96, WGJI97, JTWI8, GWO8, MWO98, WBSO01] have studied the search
of the execution time exiremes of real-time software with a GA. They have compared their
results to the random testing and static analysis. Their object software has mainly been some
small examples or DaimlerChrysler embedded automotive clectronics software. They think
thal the static analysis and evolulionary testing together can effectively find the lower and
upper execution time limits. They claim that there is not much support for temporal testing,
and often testers just use the methods that are designed to test the logical correctness. In their
research the GA based tesling was much more effective than Lhe random testing, and
particularly cffective when a problem has many variables and a large input domain. In their
studies they measure execution times as processor cycles, so that interruptions erc. would not
have an effect on results. A few times their GA (ound more extreme time than was
previously known, they verified the ume by analyzing the control flow graph. They also
introduced the term “evolutionary testing”, which by their definition means: “the use of

metaheuristic search methods for 1est case generation”.

Puschner and Nossal [PN98] have applied a GA for test data generation for testing Worst-
Case Exccution Times (WCET). Tests werc cxccuted in a simulation environmenl on a
workstation and compared against random testing, best effort data generation, and static
WCET analysis. The GA results compared well with the static WCET analysis, and clearly
outperformed the random testing. They concludc that the GA is well suiled for WCET tests,

and with large input spaces the GA based method proved to be particularly favorable.
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Ostrowski and Reynolds [OR99] present the implementation of the so-called Cultural
Algorithms (CA) embedded with both the while and black box testing techniques. Cultural
algorithms are GAs that has the so-called belief space that is used to pass the culture
component, ¢.g. the acquired knowledge or accumulated cxperiences. [rom generation to
generation. The idea is that the faults diagnosed by CA that does black box testing are passed
to the CA that does the white box testing. The goal is automatic detection and isolation of

program faults.

Pohlheim et al. [WSP99, PohOl1] applied cxtensions of evolutionary algorithms (EA), called
dilferent strategies and compeling subpopulations to auntomatic soflware testing. Scveral
variants of GA are compeling Lo each other and the best results is selected as the final
solution of this technique. The object software was a DaimlerChrysler engine control
soltware module, and the goal was to perform structurc-oriented testing and temporal testing
of real time software modules. The EA results were compared to the results obtained by the
software developer with white box testing. The EA based automated test found always cqual
or even better cxecution times. It was observed that different EA strategies are successlut
with different software modules, each ol the strategies were particularly saccessful at a

specific point in time. By using competitive subpopulations with different EA stralegies one

can exclude unsuccessful ones.

The PhD thesis of Gross [Gro00] concentrates on temporal B/WCET testing of real-time
systems. He tries to measure “evolutionary testabiliny” by studying if there is a refationship
between the complexity ol the test objects and the quality of the outcome produced by
evelutionary testing. The example programs arc short routines written in C++. Gross states
that complexity as it is ‘seen’ by the cvolutionary algorithm is not much different {rom the
way humans may experience it. This means that programs that were difficult for human

analysis were also difficult for evolutionary testing.

The PhD thesis by Tracey |Tra00] deals with automatic lest data generation [or testing
safely-critical systems. He uses simulated annealing and genetic algorithms, but also random
search and hill climbing as the optimization methods. He defines the framework on how to
use them for generating test data for temporal WCET testing, assertion based testing, and

structural testing. It 1s observed that “genetic algorithim based approaches for strucrural test
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dara generation have a number of weaknesses thar restricts their application to real sofnvare
industry”. On the other hand, GAs secins to be, on average, the most effective and efficient

of the techniques he implemented in his work.

4.1.5 Black box testing

Bingul er al. [BSPZ0O0] apply a GA to test the war simulation software THUNDER with the
black box method. They applied multiobjective optimization with the Pareto method. and
definc three different ways to assign fitness values. They try to optimize sofiware behavior,
war strategies, and the running time. They claim that the GA was able Lo provide oplimal or

near optimal solutions.

In addition to our own reseurch there does not seem to be much work on black box testing
applications with GA. The applications and methods we have applied arc reviewed and

explained in more detail in Chapter 6.

4.1.6 Software quality

Hochman er al. [HKAH96, HKAH97] applied a GA to optimizc ncural network architectural,
learning, and training parameters. They call the result “evolutionary neural networks”, and
use them to detect fault-prone and not-fault-prone software modules. They compare their
method against discriminant analysis to discover software reliability problems. Statistical

analysis of their results secms to confirm that the performance of their approach is better.

Mansour ef al. {ME97, BM97] applied a GA to the optimal regression-testing problem. They
(ry to determine the minimum number of test cases for revalidating modified software in the
maintenance phase. They compare the GA based method with the branch and bound (B&B)
and simulated annealing (SA) based methods. The B&B method was the fastest, when testing
small modules, but as the size increases, and the number of test cases grows, the GA based
method becomes fastest. They conclude that in contrast to analysis-based optimization
methods, the complexity of the GA and SA does not grow exponentially with module sizes.
Results show that the GA and SA find an optimal or nearly optimal number of retests in a

reasonable time.
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Baisch and Liedge [BL97, BL98] used GAs for tiloring a luzzy rule basc of an expert
system uscd for sofiware quality prediction. Their object software is from a large real-lime
telecommunication system. The GA is used to classify the software modules into two classcs:
1. few faults (<5), 2. many faults (>20). The authors discovered that additional factors, like
fault history, change history, and size should be utilized. There were also several faults that
cannot be predicted by the system. They claim that the proposed system helps to decrcase

[aults by up to 50% afler changes in the modules.

Eveu et al. [EKCA98] used genelic progranuning (GP) approach for software quality
prediction. Their system predicts the relative quality ol each module, instcad of a classic
classification into fault-prone and not-fault-prone modules. Their GP uscd the size of code,
degree of reuse, and [aults in the previous releases Lo predict the number of expected faullts in
cach moedule. Their target was two actual industrial softwarcs, a large military
communication system, written in ADA, and a large telecommunication sysiem, wrillen in a
Pascal like lunguage. Both contain approximately 200 modules, from which they nse two
thirds as training data and the other third for validating the predictive accuracy of the best
model developed. Their conclusion was that GP is able to generate software quality models

based on data collected earlier in the development phase.

Burgess and Lefley [BLO1] applied GP to the estimation of a software project effort. They
use data collected [rom existing software projects, and generate estimation models for these
with GP. The estimation is done by using data available from the specificalion stage. They
compare their GP based method against the statistical and neural network based methods. It
is concluded that while the GP and ANN (Artificial Neural Networks) are able 1o provide

better accuracy, they require more effort for set up and training.

Aguilar-Ruiz e/ al. [ARRTOL] uscd cvolutionary algorithms 1o estimale software
development projects. They use a software project simulator that generates a database from
the soflware project. EA is then used to produce a set ol management rules. The aim is that
these rules will help the project manager to keep the project within the budget. and Lo reach
the quality and duration targets. The EA generated rules are generated against rules generated

by a commonly used C4.5 tool that uses a recursive algorithm that optimizes rules from
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decision trees. The practical results seem to demonstrate that the approach using the EA finds

betier solutions.

Jones e al. have written several papers on using GA in testing [JSE95, JSXE935, ISE96.
JES98, JW98, GIE99, GJEQD, STE94, WGJI97, and HI01]. In the article [HI01] they call this
new ficld of software engincering research “search-bused sofnvare engineering”. They argue
that software engineering is ideal for the application of metaheuristic search techniques. They
also note that the search-based technique must outperform the random lechnique in order o
be qualified as worthy of even being considered a successful application. The random
method therefore provides the lowest benchmark. If the metaheuristic method does not
outperform the random method, it is likely to be poorly implemented. They also expect Lo see
a dramatic growth in the ficld of search-based software engineering within the next few

years. They list the likely application areas and the developments thal the growing research

capacity will provide.

The rcscarchers in the {ield of “search-based software engineering™ usually test their own
object software thal is obtained from their industrial partners erc., therefore comparing results
is problematic. The only commonly used benchmark problem seems (o be the tiny triangle
classification problem. The problem is to classify whether three given numbers @, b and ¢
(length of triangle edges) form a triangle and of which type; sharp, straight or obtusc-angled.
The problem is usually used with the white box testing sirategy, while the path or condition

coverage is usually used as the optimization target.

Researchers that have used a GA on the software testing problem have usually reported
“good’, “excellenr”, “positive” or “enconraging” results. This might be partly due to the fact
that researchers are not so willing to publish negative results. Many researchers that have
earlier worked with traditional software testing methods now have focused their interest on

GAs, sec [Ala95a] for further references of evolutionary methods in software engincering.

4.2 VLSl testing

GAs for automalic test data generation has had great success in VLSI circuit test pattern
generation [HSP94, AMTB95, OA95, LHRP96, HRP96, HRP98, KHS+97, RPGN97,
BYFROO, YWROO]. The goal of VLSI testing is to find the smallest (est set that could test the
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circuit complelely. Circuit and software testing differ from each other in that only one
program instance necds to be tested while each individual picce of hardware must be fully
tested thoroughly with the same test set. When the software version is acceptable it can be

copied infinitely without errors and without any need to test each peace of code individually.

See [Ala95b] for more references.
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5 EXAMPLES OF USING GENETIC ALGORITHMS IN SOFTWARE
TESTING

This chapter introduces two examples of how evolutionary algorithms can be applied 1o
software testing. The first cxample also illustrates the difficulty of selecting a proper software

metric, a problem that can occur even with relatively small and simple problems.

5.1 Example 1: Analyzing a faulty bubble sort routine

We give an cxample of sollware lesting using genetic algorithm for automatic test data
generation. The software to be tested is a simplc bubble sort routine thal was earlier
recognized to be faully, i.e. in some cases it does nol sorl the given input sequence correctly.
Several different targel functions. fitness functions, were adapled and tested in order to
recognize this faull behavior and its severily. The goal was to find the most crroncous

siluations.

Sorting algorithms are used to arrange the given material (a sequence ol # numbers} into
either an increasing or decreasing order. Sorting algorithms arc important, because sorting is
a common task in computing. Almost all data must be sorled before analyzing it or
displaying it more ilustratively. The well-known bubble sorl scans the list looking for
consecutive items that are in the wrong order, swapping them and continuing the scarch after
taking one step backwards. This scanning is done until the list is ordered, i.¢. no consecutive
numbers are in the wrong order. The bubble sort is a simple and efficient algorithm needing
O(n) steps if only a [ew items are out of order. If the martcrial is originally in a more or lcss
random order, bubble sort is slow and in thc worst case, when the input is in the reverse
order, O(n°) steps are needed. Aclualty, 1t does not make much sense to automate the testing
of such an clementary subroutine as the bubble sort routine. However, this simple example
was chosen because it can be analyzed [rom several points ol view, making it easier Lo

understand the method and its potential in more real sollware testing.

In this case we use pure black box type testing that docs not require any additional tools to

trace the software under exccution. The target funclion is the number of errors in the sorled



ACTA WASAENSIA 43

sequence. Therefore, the fitness measure is easy to calculale, because it is simply the amount

of pairs at consecutive array elements violating the ordering relation.

One of the most bencficial features of a GAs is that they can be simply applicd to many
different problems. This applies (o software testing also. The automaled testing algorithm can
be easily adapted to test other subroutines: the optimization algorithm itself does not nced to
be modified at all. Only the fitness function and the part of the program that sends test data
into the target soflware must be revised so that it is compatible with the interface of the new
target. The bit string or wray of numbers that form individuals or chromosomes in the GA,
are converled into the form of tables, arrays or variables that can be used as the call
parameters of to the subroutine to be tested. Hence the cost to automate Lesting of every new
routine in a software project with a GA should be lower than for traditional methods |Kan97,
Mar97, Mar98, Pet96]. The GA based approach may he hest suited for the timing and stress

testing that are also considered the best suited testing types for automation in general.

The GA solves optimization problems by calculating fitness values and favoring those
individuals that get a good [itness value. The idca of using a GA 1s self-analytic in the sense
that new individuals are created automatically based on fitness values without any human
intervention during the test run. However, the need for manuul analysis of the test data

cannot totally be eliminated, and usunally some statistical analysis is needed after the test runs.

The last generation of a GA contains more or less good solutions, here test cases that arc
difficult or have caused faults. The test cases of the last generation can be saved and rerun

after the faults have been fixed, to see if the problems were really removed.

Testing can be done by the following two approaches. The first is to feed strictly proper data,
and the second is lo feed also improper data to the system. The second data type is uscful
because il shows how the program reacts to improper data. The first data tells whether there
are some faulty responses to the formally correct inpul, The idea is (o give the GA Lhe
bounds, within which the proper data should be. We do not need any additional boundary
testing, because the GA should recognize if the near boundary values cause problems and

[ind the problematic boundary by itsclf. Also the test run will be different each time, because
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the GA reproduction operators (crossover points) and mutalions (do we mutatc and how) are

controlled by a random number sequence.

The goal to find as many errors as possible sounds straightforward. but even in our simple
cxample of bubble sorl we can come up with several different target functions. This might

cven lead the lester to less illustrative (of error behavior) testing results.

The bubble sort subroutine (written in C++) is called with two integer arrays: the numbers to
be sorted A and an index array for the final sorting order 7. In addition the function call
includes three integer parameters: the indices of the first () and the last (j) items to be sorted
and he last index (/imif) of A. The GA parameters used in this example are: population sizc

20. elitism 10, only uniferm crossover, and mutation probability 2%.

5.1.1 Testing with improper data

Improper data could mean that we are calling (he subroutine with the wrong data type, but
that is sometimes prevented by the compiler (erc. C/C++ or Java). However, if the variables 7,
J» and {imit are of the wrong data type the compiler may just make a proper conversion. When
testing the routine with improper data, the occurring ol runtime error should be allowed. so it
cannot be compiled into the same executable as the GA tester itsclf. It could be a totally
different executable, with which the GA communicates, or a dynamic link library or class

that is called in order to execule some subroutine.

The improper calls that are easy to generate include calling with Loo wide limits (calling with
fimir or j larger than the length of the reserved array); this usually lcads to a runtime ecrror.
Calling the subroutine with j > {imit caused a runtime crror. Calling with j < i the execution
simply returns back from the subroutine. Test cases including improper data are dilficult for
an optimization-based tester. If 4 runtime error occurs immediately after an improper input, it
is difficult to formulate a proper fitness function. The GA neceds some propertics to build on

and increase in order 1o optimize the problem.

The use of GAs i1s more straightforward when searching for errors with formally proper test
data, i.e. when the given input is formally correct and we try to find whether the tested

program might handle the correct input in a wrong way. It should be noted that a runtime
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error can occur with formally correct input also. but then we have probably encountered an

error of different type.

5.1.2 Erroris detected if a greater number follows a smaller one

In order to find the maximum number of sorting errors that the tested routine causes for an

input sequence we need a target function. The [rst target function (1) is

’Z(A[;[,-]] < Al1fi +1]} (1)

r

where we have used the C/C++ conversion (hat the comparison operator returns either o 0 or

L. This target funclion has the advantage that we do not need to know the right order, against

which to compare the results.
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Figure 2. Error histograms with GA optimization with the fitness function (1), counting the number
of elements sorted incorrectly.

Figure 2 represents the test results with functien (1), when sorting a fixed length array of 100
intcgers. Testing was usually done with free length arrays, but for practical reasons it is
easier to visualize the behavior of the erroneously sorted ilems using fixed length
representation. In Figure 2 From where denotes the index where the erroneously sorted item
originally was in the input vector, Where to? tells where il was located in the output vector
after the sorting operation. Where should? indicates the correct position and Error amoint

tells distance {rom the right position. Which wrong tells us in which indexes the erroneously
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sorted itcms have been detected (sce fitness function 2 below). The y-axis gives Lhe

corresponding count of cases.

The histograms tell that the [aulty items werc usually originally at the beginning of the array,
while they should be near the end in the sorted array. Actually, if we look at the target
[unction, we notc that this is expected, because we are only looking for small numbers ahcad

ol a greater number, so the [ormulation seems to be inadequate Lo reveal the worst possible

case,

Let us consider the possible sorting errors. This example shows 10 numbers {0, 1, 2, .... 9},

their correct order and three possible error types.

Table 3. Sorting error cases.

Correct order: 9876543210
Error case |: 9874633120
Error case 2: 9874365210
Error case 3: 9873654210

Table 3 shows Lhe possible types of sorting crror. Error case 1 represents the errors (marked
bold} that our first target function detects, i.e. smaller numbers ahead of greater ones. Error
case 2 has two errors of which the other (underlined) is not detected by the [irst Lurget
function. This is because the erroneous numbers are correctly ordered with respect to cach
other, but they are in a wrong position. For error casc 3 the definition of error is changed so
that we count as erroneously sorted all thc numbers that are not in their exactly right
positions. Thus if a smaller number is too early (bold) in the sequence, it pushes all the other

numbers further back (underlined) into wrong position with respect to the correct order.

5.1.3 Error is detected if the number is not in exactly the correct place

We can formulate a different model for the fitness function (2), if we count as crroncously
sorted also those numbers that are incorrectly pushed back one place, because one smaller
number has jumped ahead of them. Then there is an error if

S (Ale[l)# Al () @

I
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where A[I[7]] represents the output sequence and A|I'[{]] the right order. This model also
detccts the type 2 and 3 errors. However, for this target function we need the correct order 1o
compare with, which may in the real world software testing case be too sirict a prerequisite.

Optimizing with this filness function formulation leads to the results represented in Figure 3.
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Figure 3. Error histograms with GA oplimization with {2), for denolations sec after Figure 2,

Whal is nolable in Figure 3 is that the ranges of indexes. where errors have been detected are
moved towards the beginning. The Lrror amount curve that tells the one error caught by the
first target function can now be sorted much closer to the beginning of the outcome array.
Obviously that i1s also whal this target function aims for the optimization to do. Most items
will be out of order, if one small item is near the beginning of the output array, then the

subsequent items are pushed one position to the right.

This target function was designed to find out how badly things can go wrong, in other words,
what is the highest percentage of wrongly sorted items that a sequence can cause. This target
function can be used with either fixed length arrays, when we optimize the amount of faulty
sorted items in an array, or we can optimize with freely changing array lengths, when the
target function is proportional: amount of errors divided by the length of (he array. For the
latter case we found the worst casc to be 87.5% (7 of 8) of the ilems being sorted in Lhe

wrong place.
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5.1.4 Finding the shortest array being sorted as faulty

The Lhird target function was designed to find the shortest array that is sorted faulty. The
fitness formula is simply minimizing the array length while keeping sorting errors from
occurring. Finding the shorlest possible array that causes an improperly sorted output is also
handy for a programmer, when (s)he later tries manually to find where the tested routine

made the error. The less data you need to handle in order to reveal the error the betler.
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Figure 4. The development of the shorlest array being sorted as faully.

Figure 4 shows (hat an array of 3 numbers was the shortest wray found to be sorted faulty. In
this case, both the GA and the random search reach the same result, however test runs have
large variations; so the figure shows only one example. It sccms that the GA is able to find

the minimal array consisting of only three numbers using much less cvaluations than random

search.
5.1.5 Comparing the GA approach to the random testing

The GA approach is often compared (o random testing; this might be partly because of the
“no free lunch theorem” [WM93] and Lhe skeptics that claim that these methods are not any
better than a good or educated guess or random search. The no [ree lunch theorem says that
no method is better than any other method, if compared over the space of all possible

problems. Notice that the space of all problems contains all the known problems like TSP,
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SAT and a super astronomical number of other problems that can be crealed using basic
combinatorial operations. Hence. in practice most of the problems in this meta set arc
irrelcvant for practical purposes. In any case the rundom testing represents the lowest
benchmark limit to compare with. If the GA is unable to outperform the random method with

some problem, there is no sense to use it [or that problem.
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Figure 5. Error histogram with random tesling, using target functions (1) and (2).
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Figure 6. Evolution of fitness with the GA and randoim testing, using 1arget function (2).

Figure 5 shows the error histograms for the random testing method. The target function

formulation makes no difference with the random testing method, so the curves we

practically the same with the targel functions (I) and {2). Here we also notice, that the crror
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situalion seems to be the case, where a number from the beginning of the array has not been
sorted as ncar the end as it should be. That wrongly placed number is pushing others from

their position and causing the other errors.

Figure 6 compares how the best fitness function values develop with (he number of
evaluations when using the GA optimization and the random esting with the targel function
(2). The GA result seems to develop logarithmically, while random Lesting linds more cases
only slowly and obviously il would take a large amount of cvaluations before it reaches the

same error detection rate as Lhe genetic algorithm.

Table 4, Number of erroncously sorted arrays of 1000 test cuses generated, using target function (1).

Sorted wrong
Array size Random GA
3 165 867
10 416 806
100 592 803

We generated 1000 random permutations of 3, 10 and 100 items, fed them Lo the sorling
program, and noted the number of items in output not in a4 decreasing order, see Table 4. We
also let GA to optimize 1000 times each of these test array cascs. The numbers in Table 4
shows the means of 10 random or GA runs with at cach array sizc. Table 4 further indicates
that when creating arrays randomly, the length of the array greatly affects the sorling
correctness. With GAs there seems to be a negative correlation. This might be due to a less
uniform population with larger arrays or due to the fact that optimization becomes much
harder when the problem size grows. The reason is partly due to Lthe selection procedure in
the GA that reduces diversity more quickly with shorter chromosomes. A GA creates a much
higher number of faulty sorted arrays than the corresponding random method for all tested

wTay sizes.
5.1.6 Concluding remarks

Afler the above analysis we still do not know anything about the internal structure of the

lested program (black box Lesting) and what code limes caused it to malfunction. However,
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this is not necessarily the (esler’'s problem because the higher task is to test the given
software as well as possible and report as clearly as possible to the programmer what has
been found. Software developers can then do the searching, inspection, and fixing of the
erronecus code lines. As complete and accurate crror reporting as possible, essentially

facilitates the code-repairing phase.

[t 1s difficult to state which of the fitness functions is generally the “bess”, because they are
defined for dilferent purposcs. The recommendation is that one considers what one wants (o

find from Lhe software and then choose the oplimized softwarc metric based on deliberalion.

In this example a rather simple routine was tested using both GA and random methods. The
example demonstrates how 1o use a GA in black box testing. When optimizing with GA, it is
advantageous (o record how the best fitness function value develops. It is also recommended
to store the test data and results. These can then easily be transformed to e.g. spread sheet
figures that help the tester to analyze and visualize test results and discover the reasons for
the errors. In this case such recorded the [ollowing testing history data: in which indices
errors have been detected and also in which locations the erroneously sorted items werc
originally. For more about this example, see [AMOOb]. Other researchers have worked with

gencrating sorting algorithms with evolutionary methods |Kin93, KBH+97].

5.2 Example 2: Test images for halftoning methods

This example introduces a GA for automatic test image gencration to test the quality of an
image processing software. The goal was o reveal, whether genetic algorithm is able to
generate 1mages that are difficult for the object software to halftone, i.e. to find if some
prominent characteristics of the original image disappcar or ghost features appear duc to the

halftoning proccss.

There does nol seem to be much research in the ficld of test image evaluation. There are
many open questions to be solved. How does one determine a good test image? What are the
essential characteristics of a good test image? How do we determine that a particular image is
good for testing some specific image-processing algorithm? Researchers rely usually on
commonly used and very limited lest image sets. We encountered Lhis problem, when we

wanted Lo lest the image-processing system we implemented for an ink jet marking machine
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[AMP98, AMP99b]. In this study genetic algorithms are used for software testing purposes.

The principle of using a GA for generating test images is rather similar to the use of GA 1o

generate software test dala,

This cxample 1s a continuation to that given in paper IV [MAOO], and a prelude Lo paper VII
[MAO3a]. The preliminary results in the study [MAQQ] show that the background celour of
the test images was most susceptible to the distortions. We therefore concentrate on finding
oul how dominant the background colour is. In addition, we represent 4 new implementation
that has no longer just one parameter for determining the buackground color for each image,

but several parameters that define background segments and their colors.

The genetic algorithm in this study was written in Java. One of the advantages of Juva is its
gasiness to usc image handling procedures. However, the execulion speed of Java may not be

the best possible.
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Figure 7. Halltoning process with threshold matrix.
a) Threshold matrix, b) gray image. c) halfloned black and white image.

Digital halftoning [Kan99], or dithering, is a method used to convert continuous tonc images
into images with a Iimited number of tones, usually only two: black and white. The main
problem is to halftone so that the bi-level output image does not contain artifacts, such as
alias, moiré, lines or clusters, caused by dot placement [Bar99]. The average density of the
halftened dot pattern should interpolate as precisely to the original image pixel values as
possible, Evolutionary methods have been applied to generated halfloning patterns e.g. in

[KS96, NB97], lor mare references scc bibliography [Ala93c].
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Dithering methods include static methods, where each pixel is compared to a threshold value
that is obtained e.g. from a (hreshold matrix, generaled randomly. An other possibility is Lo
use a static median value as the threshold. Depending on the matrix this method can create
both frequency (size of the pixel size is static, bul the distance between pixcels vary) or
amplitude (the distance between dots are stati¢, but the size of thesc dots vary) modulated
halftones. There are also error diffusion methods, such as Floyd-Steinberg and Jarvis-Judge-
Ninke coefficients [Kan99]. In these metheds the rounding error of the current pixel is spread

into those neighboring pixels for which the bi-level value has not yet been determined.

Figure 7 shows an example of halftoning with a threshold matrix. The matrix is placed over
gray-value image matrix, and each pixel is compared with the corresponding threshold value.
If a pixel value is higher than the threshold it gets the value 255 (while), and otherwise 0
(black). The threshold matrix is then moved forward one matrix width and the comparison is
repeated. Figure & shows the idea of error diffusion dithering. X marks the pixel to be
dithered. If its value is higher than 127 we assign 255 for it, and zero otherwise. The
rounding error is then spread to the neighboring pixels proportionally Lo the error diffusion

coeflicients. When the current pixcl has been halftoned we proceed Lo the next pixel.
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Figure 8. Halltoning process with error diffusion method.
a) Error diffusion coefficients, b) gray tone image. ¢) image b afler dithering the first pixel.

This example concentrates only on {requency modulated halftoning methods. The three
halfioning methods used here are Floyd-Steinberg (FS) and Jarvis-Judge-Ninke {(JJN) crror

diffusions and thresholding (TH) with a 16X16 ordered threshold matrix [Kan99].
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To compare a dithered image with the originul one is obviously a challenging problem. One
cannot simply use pixel by pixel comparison, since dithered images usually have only Lwo
tones. The minimum difference by that measure would be achicved if every gray tone was
roundcd to the nearest tone (black or white), which unfortunately vsually results in a poor
image. Better image comparison methods have been developed [Kan99, Nil99]. One
alternative is to sum the pixel values from the corrcsponding arcas (mxn window) over the

images to sce if the average gray tones have becn preserved. With this method we can

comparc the images directly.

Also a set of methods called inverse halftoning [Kan99] have been developed. From these
the most common seems to be the low pass filtering method, in which images are [irst low
pass filtered and then the resulting images arc compared pixcl by pixel. The problem with
lowpass filtering 1s that the high frequencies will disappecar and the images get a somewhat
blurred overall appearance. However, this methed is easy to implement and it enables pixel
by pixcl comparison. In a way the blwring by low pass [iltering also resembles human eye
perception: when we look at the image [rom a distance the small details disappear and the
visual observation of larger objects is averaged out from the small details. Sullivan er af.
[SMROI1] have developed a low pass [ilter model that is based on the human eye transform

function.

Line by line comparison of the difference between the current and the previous pixel was
also tried. This method has been introduced in [EG99]. For example if we lake a chess board
and the mirror image ol it, and compare Lhe difference between consecutive pixels the images
the result is that the two images are almost identical. The result 1s totally the opposite when
comparing the images pixel-wise. If the imauges are not compared properly the received
divergence vulue between images may as well depend on a comparison used as the aclual

difference between the images or the dithering method / used.

Several Niness [unctions i.e. image comparison methods were (ested. In this example we used
the average density at the corresponding image arcas (SW), pixel by pixel comparison using
low pass filtered images (LP), and the tone difference between consecutive pixels (LS). The
fourth method used is a hybrid (HYB) of the three previous methods. The hope was that it

would inherit the advantages of all three but not their shortcomings. The hybrid was
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generated by first running each of those three methods (index /) individually five times
(index j) and then catculating the fitness gain from the best value Fj from the first population
to the last Fy. The three methods were then weighted by w; so that the gain/best result
proportion of all three methods was cqual (3).

5

5
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y=

W, =

(3)

5.2.1 The Implementation of the proposed system

The GA runs as an independent program and optimizes a set of parameler veclors which arc
used by an image generator 1o create images. These images are Lhen sent to the object
soltware, that halftones them and returns the resulting images to a pixelgrapper program. The
pixelgrapper reads pixels [rom both the test image and its halftoned transformation image
and sends an 8 bit pixel arrays of both images to the filness function evaluator of the GA
which calculates the sum of differences. GA gencrates the new parameter veclors by using
crossover and mutation, favoring those parent chromosomes that previously had gotten a

high [itness value.

Figure 9. An example of how the background and noise for Lhe synthetic tesl images were constructed.
a} Background segments. b) chaolic data to be added on image a.

Test images 1n this example arc created by oplimizing parameters, such as place, size and
color of elementary graphical objects, like lines, rectangles, circles and fonts (ASCII
characters), together with the background tiles and colour. All these objects arc ecncoded as a
GA chromosome. This kind of artificial images was chosen on the basis of our application of

testing the dithering metheds aimed for company logos.
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In paper IV the images contained [ive lines, onc rectangle, one circle and two characters,
That coding was rather inflexible and resulted in monotonic images. It required the
chromosome lengtl of 50 bytes (I byte for background color, 5 bytes per each line, rectangle
and cllipse, and 7 bytes for cach character). The population size was 50, elitism 50%, a Lotal
550 evaluations (initial population + 20 gencrations) were done, uniform crossover [Sys89]

was used and the mutation rate was 2%.

The quitc complex chromosome consisted of a Lotal of 79 parameters. From those the first 7
parameters were for background, three of them (xy, x2, and y; showed in fig. 9a) divide the
background into four segments and the other paramelers (by, b, by, and by) determine the
tone of each background segment. This way, one parameter does not dominate optimization,
However, the background might still become monotone if one scctor takes the whole space

or the tone parameters b; are cqual.

The next 70 parameters were divided into 10 groups of 7 parameters, each group defines an

elementary image object in the following way:

I. Image object (line, rectangle. oval, ASCII character); for characters also the fonl

style,
2. color,
3. x-coordinate of the starting point,
4. y-coordinate of the starting point,
5. length in x-coordinate direction or character font size,
6. length in y-coordinale direction or character font Lype,

7. not used or the character value {only printable ASCII characters were used).
All objects arc opaque and may cover earlier created objects, background is created first and

then the other objects on it.

The images generated this way were still quite monotlonous. One reason for this is that a
natural image usually has more variation between neighbouring pixels. Hence, the test
images were further diversified by adding chaotic data (scc fig. 9b) with the Verhulst

[Add97] logistic equation:

X =axy, X (l — X ) 4)
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The chaotic data was used rather than white noise in order to control the noise diversity and
(o keep Lhe added noise repeatable. The last two parameters of the chromosome consist of a
16-bit value a for the Verhulst function that was scaled 1o be a4 decimal number in the range
[2, 4]. The optimization process usually favoured chaos purameters that generated striped
patterns rather than patterns that resemble white noise (fig. 9b). The size of the generated
image was 256X256 pixcls. so that the values of most parameters fit into 8 bits. The
population size was 50, clitism was 40%, in total 3050 evalualions (initial population + 100
generalions) werc done, uniform crossover was used, and the mutation rate was 1%. The
(ransparent implementation of images by using a 98 parameter long chromosome was also
lested, however, the transparent objects did not seem (o bring anything new to the results, so

the transparent implementation is not discussed further in this examplec.

5.2.2 Experimental results

The resulls were generated by running five test runs with each dithering method and a
comparison method. so there were altogether 12 dithering/comparison method pairs and in
lotal 60 GA test runs. Each dithering/comparison method pair was also tested by randomly

generated test images. The number of random images was equal to that of the GA.
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Figure 10. Comparison of the best values with diffcrent lest image sets and
dithering/comparison method pairs. The fitness values arc normalized so that the
best Background value for each pair is exactly one.
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In paper 1V the tests runs with different dithering methods and image comparison method
tend to produce images with nearly the same dominating background tone 4. It is thercfore

interesting to see if the background tone in fact explains the whole result.

The results of GA optimization were compared to the results obtained by three other
methods: 1) with the randomly generated test images, 2) testing all possible monotone
images with tones between 0 and 253, 3) images from the commonly used, “standard”, test
image sct {Lcna, Bird, Boat, Goldhill, Mandrnll, Peppers} available eg in

<http://sipi.usc.cdu/services/database/Databuse.himl>.

c)

Figure 11. Test image found by GA causing the highest difference between the original and dithered
images. a) The best solution for TH-LP. b) low pass filtered image a, ¢} dithered image 2,
and d) low pass filtered image c.

Figure 10 shows a comparison of the best valucs obtained by using the test images generated
by GA (GA), the random method (Random}, testing all possible monotone images
(Background) or the test image set (Max{}). The figure collects the resulis from all
dithering methods used in this study combined with all comparison methods, altogether 12

halftoning/comparison method pairs. The best value found with each test set is divided by the
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best value obtained with the monotone images (Background), so the best value oblained

with the background test set is exactly | in each pair

From Figure 10 we can see thal for each of the 12 dithering/comparison method pairs the GA
has reached the besi fitness value for each item of the four image scts. The Random method
has usunally generated nearly as good solutions as the GA. Six times the GA and the Random
method generaled images that have gotten a considerably higher fitness value than the
monotonic images {(Background) or images [rom the standard test set (Max{}). Thc
results confirm that the background tone does not explain the whole difference, but that also

the other objects in the image are important [or explaining the high fitness result.

Figure 12. An example of a shadow image thal appears during the halltoning.
a) best solution for JIN-LS, b) low pass filtered image a,
¢) dithered image a, and d) low pass filtered image c.

The biggest difference belween (he images generated by the GA and the standard test images
was obtained for the combination of using the threshold matrix and low pass filtering (TH-
LP). The big difference in this purticular case seems to be due 1o the fact that the GA is ablc
to find weaknesses from the ordered dithering matrix and it generates image patterns that

result in considerable differences belween the compared images.
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Figure |1 shows an example of how the difference in TH-LP is composed. The GA has
found such chaos parameters that result in vertical stripes. Thesc stripes happen to be in such
a position that when dithered by the ordered threshold matrix the background becomes
considcrably darker. This phenomena is possible because the ordered dispersed dithering
thresheld matrix based on Bayer’s [Bay73] original model has different threshold value sums
in vertical colums, but the row sums are equal. If we arc able generate striped patterns that
fits perfectly to these differences, we are able to get either much darker or much lighter toned
vertical lines than in the original image. Interestingly also the circle in the low right corner
has become much lighter. The dark circle has thus totally disappeared into the background.
The left hand side images are the original and the dithered, while the vight hand side images

arc their low pass filtered forms.
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a) initial population, b) 10th generation population.
¢) final population, and d) the best solution found in 00 generations.
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Figure 12 shows an example of the typical shadow images that dithering generates, Figure 12
is from the JIN~LS pair that generates the second largest fitncss difference between the GA

optimized images and the standard test images

Figures [3a-c show an example of how the gray level histograms develop during the
optimization run. The gray tones that generate a higher difference between the original and
the dithcred image are rapidly increasing. In the original population tones are fairly randomly

distributed (fig. 13a). In the last generation tones are clustered around the dominating tones 8

and 246 (fig. 13d).
5.2.3 Concluding remarks

The results seem to confirm that the GA is capable of generating high quality test images [or
halftoning methods. Either some fealures of the original image disappear or some objects
appear. The changes were perceived either by comparing the original and the dithered image,
or by comparing low pass filterced versions of the images. The preliminary results of this
work show that the background tone is by far the most significant factor when (esting the
dithering methods. However, background tonc is clcarly not the only Factor. This study
confirms that objects in the background usually generale a larger difference than the solid

one tone image.

Statistical analysis ol the generated image parameters should be done in order to fully
determine possible correlating parameters. In this example the conclusions were drawn by
observing the images and analyzing only a few variables. After a satisfying fitness function
has been lound, the obvious application of the above testing method is automatic design of
dithering methods. Then, a GA is devoted to generate halftone {ilters while another GA tries
to create the hardest test image for each filter candidate. The best filter being the one where
the hardest test image is closest to (he original alter dithering. That approach is implemented
in paper VIL In general this kind of GA based approach could be used in the design and

testing of demanding software.
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6 INTRODUCTION TO THE ORIGINAL PUBLICATIONS

This chapter introduces the seven papers written over a five-year period. The papers have
been published in & scientific journal (IT) and conference proceedings (I, ITII—VT). The last

(V1I) has been submitted for publication.

The papers include velerences to many application areas: aulomation field buses (CAN and
LON), Bezier curves, electric network protection relays, ESIM simulator, fitness landscape,
image processing methods, the polyomino problem. structured light vision, efc. thal are not
explamed in detail in the introductory part of the thesis. For more details please see (he

original paper and references therein.

6.1 Paper I: Experiments with temporal target functions

The paper introduces a temporal fitness function. The experiments reported in this paper
were performed in 1998-99 during the process of testing a protcection rclay software, but the
results were published later. The first part of the paper illustrates the risk associated with a
small population size. In many reports where good and fast resulls have been received with a
small population size, the results are the best of several test runs. What is often omitted is the
information on how many times the run did not reach any reasonable solution. This leads to
the consideration of optimum population size, which is the compromise between small
population size, which may lead to good results fuster, if we arc lucky, and a larger
population size that usually leads to good resulls more slowly but more reliably, see [Ala92,
Ala99]. The results showed that GA optimization results are fairly inscnsitive to its
parameters ather than the population size. This cmphasizes the risk of not finding the optimal

area with too small 4 population size.

The second part of the paper concentrates on a popular method of tuning GA parameters with
another GA. This time this kind of meta-GA system is built so that the only fitmess
information that the higher level GA receives from the Tower level GA is its execution time,
i.e. how long the lower level GA nceds to optimize the given task with the GA parameler set

given to it as input from the higher level GA. This construction also simulates in a way the
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testing of real-time software. With a certain input domain the execution time of the system
under test is faster than with others. Even with the same input domain, the system does not
spend an equal amount of time, because the GA operation is highly nondeterministic. The old
individuals are retested in the new generation, and they usually then receive a different

fitness valuc from that of the earlier evaluations.

This kind of simulation was done in order to see il our GA can handle the temporal
optimization with some other, maybe cven more nondeterministic target function than the
protection relay software. The results seem Lo confirm that GA is capable of handling
stochastic or nondeterministic target [unctions, and is able to find “good” or “bad” parameter
combinations that cause long or short response times. The optimization of these limes
corresponds to the W/BCET optimization of the reul-time software. These results indicate
that the GA has a good chance of being applicable for temporal black box testing of large

cmbedded relay software.

6.2 Paper II: Searching protection relay response time exiremes using
genetic algorithim

This paper was originally published as [AMMMOY97]| and the version included in this thesis

was later published slightly revised as [AMMMO98]. The object software under testing in this

study is a large embedded sollware system, designed for a protection relay of an clectrical

network. The product was not yet on the market, when this study was done, thus the software

was still under development, and continually changing.

The goal was to find responsc time extremes of that software, when the input domain
consisted of CAN and LON communication messages, and digital measurement inputs
generated with the genetic algorithm. The software did not have other means to communicate
with the outside world, since the interface and other cards i the system communicated via

CAN messages.

The testing was done using the pure black box Lesting scheme: no code was traced, only the
communication that the softwarc made with the outside world and the timing of those

communications. The only fitness value GA rcceived was the responsc time, the time which
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the software nceded to reply 1o the input values gencrated by GA. See the Lic.Sc. theses

[(Man99, Mog99] for a more detailed report of this research.

The resulls indicate that GA is capable of finding paramcter combinations (hal cause
responses with long delays. In comparison to the random tests, the GA generates many more
lest cases, where the deadlines of responses arc violated with a greal amount. However,
Table 1 shows that the longest response time found in this test series did occur with the
random testing. We must emphasize that the tested system was highly nondeterministic and
that one extremely high response time with the random tesling was probably duc to some
inherent event, and the repctition of that input domain did not give as high response time
again. The author’s Lic.Sc. thesis [Man99] shows how the response time of the worst Lest

case varied when fed repeatedly, due (o Lthe nondeterministic nature of the target system.

The goal of this research was not to find the one extreme response time, but some
characteristics of the input domain that did cause long response times. GA succceded to
reach this goal, because it generated considerably more Lest cases in the high end of the

response time scale than the random testing did.

6.3 Paper lll: Automatic software testing by genetic algorithm optimization, a
case study

The paper is a continuation of the previous paper dealing with black box testing of the relay

software communication module and the temporal testing. This paper analyses how the lower

priority LON messages interfere with the higher priority CAN message handling.

When this study was done the proteclion relay product had just came onlo the market and its
software was close to the first production version. The object software was substantially
larger and more versalile than in the previous study. These facts were tuken into
consideration when the tested features were expanded to cover a larger part of the software.
In the previous paper we could not implement the whole software due to several problems
related 1o platform dependent reasons and thercfore a kind of mutilated software version was
used. In this study the tested softwarc version was more elegantly borderlined and interfaced
from the whole relay software. Due to this it was impossible to include a lot of hardware

specific functions of the relay software the test system. We also tried to classify the possible
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situations into a larger number of groups, in order to get more information on the new

software version.

The results in this and the previous paper show that a GA is able to learn input domain values
that lead to longer responsc times than just by using the random testing. It seems that after
finding the optimal scarch area, the GA focuses on it and is able (o [ind those more detailed
small paramcter changes thal lead to the final fitness peaks. The GA did find the time-slide
when the sending of the LON message had the strongest effects on the response time of CAN
message handling. The findings in this paper further show that the GA is applicable for
temporal black box testing of a nondeterministic system. From the results we were also able

Lo assess on what cffect the messages, and their timings had on each other.

6.4 Paper IV: Automalic image generation by genetic algorithms for testing
halftoning methods

This paper was our first attempt to expand the GA based testing system to a wider application

area. The field of image processing was selected, because we worked on that field in our

other research |[AMP98, AMP9%a, AMP99b, Pyy99]. where we generaled hallloning filters

with GA, and we wanted (o link that research to the study of GA based software testing.

Test image generation with GAs was inviting also because there is little research done on this
subject in general. GAs has been applied to image gencration earlier [Sim913, but not for
testing purposes. We felt that there is no reason, why a GA could not be used to generate
synthetic images. Our idea was to use these images for lesting image processing syslems,

algorithms and softwarc.

Usually, research studies in the image processing area use the same limited set of lest images.
No thorough research has been done on test images to define what makes some test images
good, and what characteristics they should possess Lo be appropriate for testing a particular
image processing method or algorithm. However, it is nol within the scope of this thesis to

find answers 1o these difficult questions, but keep our focus on test data generation.

The principle of using a GA for generating synthetic test images resembles software test data
generation. A GA generates a test case, an array of parameters, that is converted into a test

image (in this study) or input domain (soltware testing) and scnds it to the tested software.
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The environment then has the measurement system, that in this case compares the original

test image and the result image after it has been processed by the image processing software.

The first implementation of test image generation by a GA introduced in this paper was
simple and it was later extended [MAOIa]. However, we include it here because it was the
first one on the subject. and it represents the original idea and shows early results. In addition

the paper introduces the basic idea in detail and points out the relation to soflware testing.

The preliminary results in this paper show that synthetic test images generated by a GA can
reveal image charucteristics that can be problematic for digital halftoning algorithm/software
to reproduce. In most cases the images causing the highest difference value in cach test run
with the same halfloning method/image comparison system pair were [airly similar. This
finding does hint that the problematic test images have some properties in common that can
be recognized or found with GA optimization. The research introduced in this paper is

further developed in Chapter 5.2 (example 2) and paper VIl included in this thesis.

6.5 Paper V: Testing a structural light vision software by genetic algorithms —
estimating the worst case behavior of volume measurement

This paper is a [urther expansion of the GA based testing mcthod. The GA is used for

generaling simulated 3-D test surfaces in order to determine the error bounds of the proposcd

3-D vision measurcment software. Structured light vision software was choscn because it is

illustrative, visual, and casy to understand operation of an illumination bascd profile

measurement method.

The 1dea was to generate simulated test surfaces with a GA so that the measurement error of
the structured light vision software is maximal. In this way onc can draw conclusions about
which kind of surfaces cause the largest measurement error, and also the error bounds of the

proposed measurcment system and software.

Many factors influence the measurement crror, and thercfore it is not easy to determine the
maximum crror. In a real-lifc application there are many factors that affect the measurcment
error. These factors include accuracy of the camera used. illumination, reflections, imaging

or illumination angles, shadows and hidden shapes. In our simulated version many real-life
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problems were simplificd, but still the accurate calculation of measurement error remains a
difficult task. There were also some restrictions on the shape being measured, because the
simulated shapes must at least to some extent correspond to Lhe real-life problem at hand
[Rau00]. The focus of interest was not on lhe measurement error bounds of all possible

shapes, but only the shapes that fuifill the restrictions fixed a priori.

The measurements were also performed in order 1o collect data on the accuracy and speed of
the proposed 3-D measurement method. This was done in order (o see if it is applicable to
our real-life problem. The results show that accuracy and speed are linked together, by using
a more accurate camera and more imaging angles the accuracy improves, but the processing

speed greatly increases.

The rcsults show that a GA is capable of generating test surfaces that exlend Lhe error
bounds. The GA docs find parameters that cause the generated test surfaces to have
characteristics that make them difficult for the measurement software. We cannot say how far
or close to the largest possible error bounds are reached. but we know that the real-life
objecls that are to be measured with the system are not as varied, so the error bounds found

with the GA are most probably higher than those expected within the real-life application.

This research also revealed that the proposed measurement software has a problem with
combining surface height matrices obtained from several directional scans. This was obvious
because it was most accurate with scans from two directions, and the GA tesling was able to
find test surfaces that werec measured with higher relative error when using three or four scan

directions.

6.6 Paper VI: Developing and testing structural light vision software by co-
evolutionary genetic algorithm

The paper is a continuation of the previous one. The goal was to develop the measurement

software, so that the increasc of scanning directions increases the accuracy. The reason for

this is that they provide more height information (see the problem explained in the previous

chapter). The emphasis was on the idea ol developing the software simultaneously with the

testing. In order Lo do that, the object software must have a number of parameters that we can

change.
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The hypothesis here was that if we can tune software parameters simultaneously with the
tesling, we can use a co-cvolutionary GA that generates the worst test case for the current
population ol software versions (different parameter setups), and at thc samc time it
optimizes the parameter setups, so that the best current individuals of the software population

handles the worsl test cases as well as possible.

In order to test that hypothesis. the software is changed so that a dynamic rule base controlled
the method of combining different directional heights got from several directional scans. The
co-evolutionary GA thal simullaneously tried to generate harder 1est cases and better rule
combinations optimized the rule base. In order to handlc the test cascs as well as possible.
We hought that the more dynamic parameters we provide, the more accurate the system

should get, and the resulls conlirm this natural presumption.

In this paper random walks and simple fitness landscape analyses |Wei90] were used in order
to analyze how many steps away the optimal pcak is from the normal optimization landscape.
These tests were preliminary and such analyzing mecthods nced further consideration and
study. On the basis of this study, it sccms that the optimal peak is closer to the normal
landscape in the optimized system than in the non-optimized one. Therefore, the optimized
system is morc sensitive to the parameter changes. The oplimal area is more narrow in the
optimized system and the random tesl cases cause less significant accuracy errors, hence Lhe

test cases that cause large errors are more rare and extreme.

The results also showed that co-evolutionary tuning did clearly improve the software
accuracy. However, we cannot prove that this improvement was due to the co-evolution and
could not be achieved otherwisc. In order to further study and consider the benefits of using
the co-cvolutionary method it was also applied (o the problems ol image [ilter and test image

generalion, see research paper V11

6.7 Paper VII: Testing digital halftoning sofiware by generating test images
and filters co-evolutionarily

This paper is a continuation of paper I'V, focusing on the application of co-evolulionary GAs.

The aim is to develop lest images and halftoning filters concurrently with the co-evolutionary

genetic algorithm. The [itness of each filter is evaluated against all test images and vice
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versa. The best filter is the one with which the hardest test image, when dithered, differs least

from the original. Similarly, the hardest lest image is the one that, when halftoned with the

best image filter, differs the most from the original.

We test the hypothesis that co-cvolutionary development of image filters and test images will
lead to betler optimization results than just optimizing image filters and test images
scparatcly against some static test image sct or filter set. The results show that if bad image
filters appear in the filter population they arc soon killed from the population due 1o their

weak response to Lhe test images.

When using the co-evolutionary method, we can cxpect that the filters and images interact in
such a way that the test image set is developed so that it is hard for the current filter set, and
vice versa the filter set evolves so that il can handle the current test image sct as well as
possible. However, if the optimum is not in the area where these specics start to converge,
the mutation operator will cause a new type of filter or image individuals (o appear and the
interacting species roam into a different equilibrium situation. The co-evolutionary system
should therefore be able to identify if there exists some hard lest image characteristics or
good flters that cannot be found just by optimizing both separately against some slalic set or

itness function.

The other goal of the research was to find further evidence that by generating test images we
can ind some image characteristics that arc not repeated satisfactorily with the halftoning
software. This time we tried to uncover these characteristics by doing ervor seeding, where
the errors were caused by some image characteristics, and their severity depends on other
image characteristics. The power of the GA optimization based test system is that afler it
finds some problematic or suspicious parameters or combinations of them, it start to focus on
them by favoring them and gradually building the parameter combinations that cause ever

greater problems.
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7 CONCLUSION, DISCUSSION AND FUTURE

This thesis discusses genetic algorithin-based software testing. Scveral test cases and
problems wcre implemented and the corresponding test results were reported. Each example
and research paper included in the thesis had a slightly different research topic, intraduced in
them individually. This introductory part reviewed the main research framework and overall
research questions the individual lest cases tricd to answer. The literature related to the

research problem was reviewed.

The first research question was on the applicability of genetic algorithms in temporal lesting
of software. It was studied in papers I, IT and II1, and more gencrally in [AMTV96, AMT97a,
AMMY7, AMMMY7, AMMMO8, AM99, AM0GOa, MAQLc). The rescarch indicates a positive
answer to the question. In addition, the PhD thesis concentrating on the same topic by Gross
[Gro00] seems to have reached similar results independently. During the years when we
studied (his research topic, many other researchers also published a number of papers on
related research [e.g. W(GI97, PN98. MWOIS8, GIE99, Tra00] and which have positive results

with GAs in temporal testing.

The second research question focused on testing image-processing software with the test
images generated by genetic algorithms. Papers IV and VII, and more generally [MAQQ,
MAOla, MAOLb, MAO2b, MAO2c, MAO3a] discussed the topic. Also papers V and VI
[MAOId, MAO2a] are extensions of the topic as they explore the testing of a machine vision
based measurement software with the simulated test surfaces generated by a GA. These
studies seem to confirm that the GA is capable of generating test images and surlaces (hat
reveal some weaknesses in image processing or measurement software. In paper V1I error
seeding was tried to see if deliberately generated errors, that simulated the kind of errors we
were trying to find for real, could be [ound by our method. We found that these seeded errors
were effectively revealed by using these test images. The test surface generation also

revealed the type of surfuces that were measured most unsatisfactorily.
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The third research question concentrated on whether it is possible to optimize the software
parameters simultaneously with the testing with a co-evolutionary genetic algorithm. Two
applications of this method were presented in papers VI and VIT [MA02a, MA034]. In both
studies the system seems to tune better with co-cvolution than by just using the stutic Lest set.
We could not really prove that this gain was caused by the co-evolutionary optimization, and
that it could not have been obtained without it. However, the results were not as good. when

we tried Lo optimize both problems separately without the co-evolution.

The object problems are such that a direct comparison of the results with other studies is not
possible. The only commonly used benchmark problem (triungle classification) has usuvally

been used with white box testing methods, but those methods were omitted from this study.

This research has concentrated on evolutionary methods. Other heuristic methods like tabu
search, simulated anncaling, efc. were not used for comparison due to the schedule and
financing of the research, However, il was observed that the GA outperforms the random
method in all our applications, so the lower benchmark limit was always reached.
Furthermore, the Tracey’s PhD thesis [Tra00] includes comparisons between random testing,
hill climbing, simulated annealing and genetic algoritlim bascd approaches for software test
data generation and he came to the conclusion that GA was, on average, the most effective

method of these.

Tt seems that a GA is capable of finding different kinds of software weaknesses, and co-
evolution is beneficial in the tuning of software paramcters. There is a lot of space for futurc
rescarch in this field. Our results are encouraging. We expect that more studics on
cvolutionary optimization based software engineering will appear in the following years.

Implications for this is the rapidly increasing number of references in the field [MAQ3b].

A GA is well applicable to the problems that are discrete and those thal have no exact
mathematical cxpression or model, as is the case of software testing problem. Jones er al.
|[HIG1] claim that softwarc cngincering is ideal for evolutionary based optimization; none of

the findings here contradict this claim.
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The use of GAs is more up te the implementation; how the problem is encoded. If a GA does
not seem to outpower the random method it has been usually implemented poorly or wrong,
or the GA operators: crossover, mutation, selection schemes have been wrongly selected or
they have pathological vaiues. However, small changes in GA parameter values do not
usually affect the optimization result much. When properly implemented. a GA is highly
applicable for soltware testing. including testing coverage, timing. parameler values, or
finding calculation 1olerances, bottlenecks, problematic input combinations and sequences. If

the program parameters are changeable on the fly, the co-evolutionary GA can tune the tested

software during the testing.

We propose that a GA based automatic testing tool can be used Lo automatically generate test
data for module and system testing. Although a random generator can just as simply generale
the test data, a GA based testing more easily revecals problematic parameters and
combinations of them and starts to construct more erroneous situations using only a {raction

of the Lest cases that the pure random search methed generates.

Tesung the temporal behavior and test coverage simuitaneously is a topic of further research.
When testing temporal problems as WCET or BCET, there is not much guarantec about test
coverage and how much of the software is tested. One could combine the black and white
box testing views, and create a multi-objective fitness function, that includes the time-based
part and the test coverage based part. This kind of approach has not yet been discussed in the
literature. The only sludies suggesting something in this direction were by Whitley [Whi9g],
where Lthe goal was Lo exercise a maximum amount of code in the minimum time, Mueller
and Wegener [MW98] suggested combining temporal testing with structural coverage, and
Pohlheim [PohO1] who used both structural and temporal testing goals, but only the other one
of them seemed to be the optimization targct cach time. Since white box methods and

coverage testing was omitted from this thesis, it was not within the research framework to try

this kind of hybrid.

The Lesting of the quality of an image processing software with test images would require
more research. We applied our GA gencrated test images only for testing halftoning methods.
There are several other research questions in the image processing field, where the artificial

images might also be used.
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The co-cvolution approach has been applicd mostly in game-playing and artificial life
simulations. There is very little research on applying co-cvolution to software engineering in
general. Our implementation of co-evolution 1o the simullaneous software development and
lesting seems quite unique, and therefore it is mostly just a proposal at this point. However.

due to the cncouraging results got the possibilities of applying this method to software

engineering descrve more research,



74

ACTA WASAENSIA

REFERENCES

Keys in alphabctical order.

(Add97]

| Ala92]

[Ala954)

(Ala95b]

[Ala95¢]

[Ala99]

| AMOOa]

[AMOOb]

[AMO99]

Addison, Paul S. (1997). Fractals and Chaos: An Mustrated Course. Brislol,
Philadelphia: Institute of Physics Publishing.

Alander, Jarme T. (1992). On oplimal population size of genetic algorithms. In:
CompLuro 1992 Proceedings, Computer Systems and Software Engineering, 6™ Annnal
Enropean Computer Conference, The Hague. 4.-8. May 1992, 65-70. Eds Patrick
Dewilde and Joos Vandelwalle. Silverspring. MD: IEEE Compuler Sociely Press.

Alander, Jarmo T. (Feb. 13. 2002). An Indexed Bibliography of Genetic Algerithms in
Camputer Science. Vaasa: Depariment of Information Technology and Production
Economics. Universily of Vaasa. Report Scrics No. 94-1-CS [cited 8.4.2003).
Available: ftp://garbo.uwasa.{i/cs/report94-1/gaCSbib.ps.Z.

Alander, Jarmo T. (July 10. 2002). An Indexed Bibliography of Genetic Algoritluns in
Electronics and VLSI. Vaasa: Department of Information Technology and Production
Economics, University of Vaasa. Reporl Series No. 94-1-VLSI, [cited 8.4.2003].
Available: fip:/garbo.uwasa. fi/cs/reporl94- 1/gaVLSIbib.ps.Z.

Alander, Jarmo T. (Oct. 4, 2002). An Indexed Bibliography of Genetic Algorithms in
Optics and Image Processing. Vaasa: Department of Information Technology and
Production Economics. University of Vaasa. Report Series No. 94-1-OPTICS [cited
8.4.2003]. Available: [ip://garbo.uwasa.fi/cs/report94-1/gaQPTICShib.ps. Z.

Alander. Jarmo T. (1999). Population size, building blocks. fitness landscape and genctic
algorithm search efficiency in combinatorial optimization: an empirical study. In:
Practical Handbook of Generic Algoritims. 459-485. Ed. Lance D. Chambers. Boca
Raton, FL: CRC Press LLC.

Alander, Jarmo T. and Timo Mantere (2000). Genelic algorithms in software 1esting —
cxperiments with temporal lurget functions. In: MENDEL 2000 6th Iniernationcl
Conference on Soft Computing. June 7-9 2000, 9-14. Ed. P. O8mera. Brno, Czech
Republic: Brno University of Technology & PC-DIR.

Alander, Jarmo T. and Timo Mantere (2000). Genetic algorithms in autematic software
testing — analysing a faully bubble sort routine. In: SreP 2000 — Millennium of Artificial
Intelligence, The Sth Finnish Artificial Ielfigence Conference. August 28-31 2000,
SteP 2000, vol. 2, 23-32. Ed. H. Hy6tyniemi. Helsinki University of Technelogy, Espoo,
Finland: Publications of the Finnish Artificial Intelligence Society 16.

Alander, Jarmo T. and Timo Mantere (1999). Automatic software testing by genetic
algorithm optimization, a casc study. In: SCASE'99 — Soft Computing Applied to
Software Engineering, April 11-14 1999, 1-9. Eds C. Ryan and J. Buckley; Limerick.
Ircland: University of Limerick.



|AMMY97]

ACTA WASAENSIA 75

Alander, Jarmo T., Timo Manltere and Ghodrat Moghadampour (1997). V'esting sofiware
response limes using a genetic algorithin. In: Proceedings of the Third Nordic Workshop
on Genetic Algorithins and their Applications (3ANWGA). Augusl 18-22 1997, 203-208,
Ed. J. T. Alander. Helsinki, Finland: Finnish Artificial Intelligence Society (FAIS).

[AMMMO97]Alander. Jarmo T., Timo Mantere, Ghodrat Moghadampour and Jukka Matila {1997).

Searching proicction relay response lime extremes using genctic algorithm — software
qualily by optimization, In Proceedings of the Fourth International Conference on
Advances in Power System Control, Operation & Management (APSCOM-97). volume
I, November [1-14 1997. 95-99. Hong Kong: TEEE.

[AMMMO8]Alander, Jarmo T., Timo Mantere, Ghodrat Moghadampour and Jukka Matila (1998).

[AMPO8]

[AMP909a]

| AMP99b|

[AMT97a]

[AMT97b]

[AMTBO5]

Searching protection relay response time extremes using genctic algorilhm — soltware
quality by optimization {a revised version of [AMMMY7]). Eleciric Power Sysiems
Research 46. 229-233,

Alander, Jarmo T.. Timo Mantere and Tero Pyylampi (1998). Threshold malrix
generation for digital halfloning by genelic algorithm optimization. In: faretfigent
Systems and Advanced Manufucturing: Inteliigent Robors and Compurer Vision XVII:
Algorithms, Techniques, and Active Vision, volume SPIE-3522, Boslon. MA. 1-6
November 1998, 204-212. Ed. D. P. Casasent. Bellingham, Washington: The SPIE
Press.

Alander, Jarmo T.. Timo Mantere and Tero Pyylampi (1999). Digital halftoning
optimization via genelic algorithms for ink jet machine. In: Euroconference: Parallel
and Distributed Computing for Computational Mechanics 1999, EURO-CM-PAR, 20-25
March 1999, Abstracis, Lecture and Research Presentarions, 83-84, Weimar, Germany.

Alander. Jarmo T., Time Mantere and Tero Pyylampi (1999). Digital halftoning
oplimization via genelic algorithms for ink jet machine {An extended version of
[AMP99a]). In: Developments in Computational Mechanics with High Performance
Computing, 211-216. Ed. B. H. V. Topping. Edinburg, UK: CIVIL-COMP Press.

Alander, Jarmo T., Timo Mantere and Pekka Turunen (1997). Genetic algorithm based
soltware testing. In: Ariificial Neural Nets and Generic Algorithms, Proceedings of
International Conference (HCANNGA97), Norwich, UK, April 1997, 325-328. Eds G.
Smith, N. Steele and R. Albrecht. Wien, Austria: Springer-Verlag (Printed 1998).

Alander, Jarmo T.. Ghodral Moghadampour and Pasi Térmiinen. Evaluating the benefit
of fuzzy logic for PID-control by means of genetic algorithms - casc: [requency
controller. In: Proceedings of the Third Nordic Workshop on Genetic Algorithuns and
their Applicarions (INWGA), August 18-22 1997, 321-331. Ed. 1. 1. Alander. Helsinki,
Finland: Fimnish Artificial Imelligence Society (FAIS).

Almaini, A. E., J. F. Miller. P. Thomson and S. Billina (1993}. State assignment of [inilc
state machines using a genelic algorithm. In: [EEE Proceedings on Computers and
Digital Technigres, Volume 142:4, 279 —286.



76

ACTA WASAENSIA

[AMTV96] Alander, Jarmo T., Timo Mantere, Pekka Turunen and Jari Virolainen (1996). GA in

[ARRTOL]

[ATI6]

[AYT95]

|Bab82]

[Bar99]

[Bay73]

[BDL+96]

[Beis0]

|BJOO]

[BLOI]

[BL97]

program testing. In: Proceedings of the Second Nordic Workshop on Genetic Algorithins
and their Applications (2NWGA). 19.-23. August 1996, 205-210. Ed. J. T. Alander.
Vaasa, Finland: Proceedings of the University of Vaasa. Reporls Nr. 11.

Aguilar-Ruiz, I. S., T. Ramos, J. C. Riguilme and M. Toro (2001). An cvolulionary

approach to estimating sofiware development projects. Sofnware Technology 43:14. 875-
882.

Alba, E. and J. M. Troya (1996). Testing software using order-based genetic algorithms.
In: Proceedings GP-96 Conference, Sianford, CA, Tuly 28-31 1996. Eds 1. R, Koza, D.
E. Goldberg, D. B. Fogel. R. L. Riolo. Cambridge, MA: MIT Press.

Alander, Jarmo T, Jari Ylinen and Tapio Tyni (1993). Optimizing elevator group control
paramcters using distributed genetic algorithms. In: Arrificial Newral Nets and Genetic
Algorithms, Ales, France, 19-21 Apr. 1995, 400-403. Eds D.W. Pearson, N.C. Sleele
and R.F. Albrecht. Wien, Austria: Springer-Werlag.

Baber. Robert L. (1982). Softwvare Reflected. Amsterdam, Netherlands: North-Holland
Publishing Company.

Barten, Peler G. 1. (1999). Conirast Sensirivity of the Human Eye and Its Effects on
Image Quality. Bellingham, Washingion: SPIE Optical Engineering Press.

Bayer, B. E. (1973). An oplimum method for two-level rendition of continuous-tone
pictures. n: JEEE fnrernational Conference on Communications 1, June 11-13 1973, 11-
15. New York, NY: JEEE.

Bersini, H., M. Dorige. S. Langerman. G. Seront and L. Gambardella (1996). Results of
the first international contest on evolutionary eptimisation (1st ICEQ). In: Proceedings
of 1996 IEEE International Conference on Evolutionary Compuiation (ICEC *96), May
20-22 1996, 611-615. Nagaya: Japan: Nagoya University.

Beizer, B. (1990). Software Testing Technigues. 2. New York. NY: Van Nostrand
Rheinhold,

Bueno. P. M. and M. Jino (2000). Identification of potentially inleasible program paths
by monitoring the search for test data. In: Proceedings ASE 2000, the Fifteemth IEEE
International Conference on Automated Software Engineering, 209-218. Grenoble,
France: [EEE.

Burgess, C. J. and M. Lefley (2001). Can genelic programming improve soflware efflorl
estimation? A comparative evaluation. fnformation and Software Technology 43, 863—
873.

Baisch, E. and T. Liedtke (1997). Comparison of conventional approaches and soft-
computing apprcaches for sofltwarc quality prediclion. In: 1997 [EEE International
Conference on Systems, Man, and Cybernetics, Computational Cybernetics and
Simudarion 2, 1045 —1049. Orlando, FL: IEEE.



[BLI8]

[BM90]

[BMO7]

[Bod9g]

[Boe74]

[BS8I]

[BSPZ00]

|[BYFROO]

[Dar39}

[DG81]

[DMS94]

[Dra99]

(DYS7]

ACTA WASAENSIA 77

Baisch, E. and T. Liedtke (1998). Automated knowledge acquisilion and application for
softwarc development projects. In: Thirreenth IEEE Canference on Awtomated Software

Engineering, 13-16 Oclober. 1998, 306-309. Honolulu, Hawaii: TEEE Computer
Society.

Boden, E. B. and G. F. Marltino (1996). Tesling software using order-based genetic
algorithms. In: Proceedings GB-96 Conference. Stanford. CA. 28-31 July 1996, 461-
406. Eds J. R. Koza, D. E. Goldberg. D. B. Fogel and R. L. Riolo. Cambridge, MA: MIT
Press.

Baradhi. G. and N. Mansour (1997). A comparative study ol [ive regression lesting
algorithms. In: Proceedings of the Australian Software Engineering Conference 1997,
174-182. Sydney: IEEE Computer Society Press.

Boden, E. B. (1998). Awromated Testing of Software Applicarion Interfaces, Object
Methods and Commands. U.8. patent no. 3,708,774 Issued January 13, [998.

Bochm, B. W. (1974). Some steps towards lormal and aulomaled aids to sofiware
requirements analysis and design. [n: /FIB74. 192-197. Amsterdam, Netherlands: North-
Helland Publishing Company.

Browne, I. C. and Mary Shaw {198 1). Toward a scientific basis [or software evaluatien.
In: (PSS8I1].

Bingul, Z., A. S. Sckmen, S. Palaniappan and S. Zein-Sabatto (2000). Genelic algorithms
applied to real time multiobjective oplimizalion problems. In: Proceedings of the IEEE
SoutheastCon 2000, 95 - 103. Nashville, TN: 1EEE,

Boschini, M.. X. Yu, F. Fummi and E. M. Rudnick (2000}. Combining symbolic and
zenelic techniques for efficient sequential circuil lest generation. In: Proceedings of the
[EEE Enropean Tesr Workshop 2000, 105-110. Cascais, Portugal: IEEE Computer
Society Press.

Darwin, Charles (1839). The Origin of Species: By Means of Natural Selection or The
Preservation of Favoured Races in the Struggle for Life, A reprinl of the 6th edilion,
1968. London: Oxford University Press [cited 8.4.2003).  Available:
htip:/Awvww literawre.org/authors/darwin-charles/the-origin-of-species.

Denicoff, Marvin and Robert Graflon (1981). Software metries: o research initiative. In:
[PSSS]].

Davies, E., J. McMasier and M. Stark (1994). The use of genetic algorithm for flight rest
and evaluaiion of artificial intelligence and complex softivare svstems, Report AD-
A284824. Paluxent River, MD. USA: Naval Air Warfare Cenler.

Drabick, Rodger (1999). Growth and maturity in the itesting process. Iniernational
Software Testing Inslitule |cited 8.4.2003]. Available: <htip:/fwww.softlest.orgfarticles/
rdrabick3.htmz,

Darwen P. 1. and X. Yao (1997). Speciation as auwtomatic ¢ategorical modularization.
{EEE Transactions on Evolutionary Compuration, 1:2, 101-108.



78

[EG99]

[EKCASE]

[GJEQO]

[GIE99]

[GN96]

[Gol89]

[Gre91]

{Gro00]

[GS01]

[GW9S]

[Het73]

[Het83]

[HJO1]

ACTA WASAENSIA

Eklund, Patrick and Fredrik Georgsson (1999). Unraveling the Thrill of Melric Image
Spaces. In: Discrete Geometry for Computer Imagery. LNCS 1586. Eds G. Berirand, M.
Couprie and L. Perrolon. Marne-la-Vallée. France: Springer-Verlag.

Evewt M., T. Khoshgoftar. P. Chien and E. Allen (1998). GP-based software quality
prediction. In: Proceedings of the Third Annual Conference of Genetic Programming
1998, 60-65. Madison, Wisconsin: Morgan Kaufmann.

Gross, H. G., B. F. Jones and D. E. Eyres {2000). Structural performance measure of
evolwtionary testing applied to worsl-case timing of real-ime sysiems. In: [EEE
Proceedings on Sofrware 147:2,25-30.

Gross, H. G.. B. F. Jones and D. E. Eyres (1999). Evolulionary algorithms for Lhe
verification of execution time bounds for real-time software. [EE Colloguium on
Applicable Madelling, Verification and Analysis Techniques for Real-Time Sysiems (Ref.
No. 1999/006). 8/1 -8/8.

Graham, P. and B. Nelson (1996). Genetic algorithms in software and in hardware — A
performance analysis ol workstation and custom computing machine implemcentations.
In: Proceedings of IEEE Svmposium on FPGAs for Custom Compiding Machines. 216 —
225, Napa Valley, CA: IEEE Computer Society Press.

Goldberg. D. E. (1989). Genetic Algorithms in Search, Optimizaiion, and Machine
Learning. New York, NY: Addison-Wesley.

Grefenstette, J. J. (1991). Lamarckian learning in mulli-agent environments. In: Fourth
Iirernational Conference on Genetic Algorithms. San Dicgo. CA, 303-310. Eds R.
Belew and L. Booker. San Maieo. CA. USA: Morgan-Kaufmann.

Gross, Hans-Gerhard (2000). Measuring Evolutionary Testability of Real-Time Software.
Phl} thesis. Pontypridd, Wales: University of Glamorgan.

Gounares, A. and P. Sikchi (2001). Adaptive Problem Selving Merhod and Apparatus
Utilizing Evolutionary Computation Technigues. U.S. patent no. 6,282.527. Issued
August 28, 2001.

Grochtmann, M. and J. Wegener (1998). Evolutionary testing of icmporal correctness.
In: Proceedings of the 2nd International Software Quality Week Europe (QWE [998).
Brusscls, Belgium. November 1998. Sun Francisco, CA: SR/Institute, Inc.

Hetzel, W. {1973). Program Test Metliods. Englewood Cliffs, NJ: Prentice-Hall.

Hetzel, W. (1988). The Complete Guide to Sofrware Testing. second cdilion. New York,
NY: John Wiley & Sons, Inc.

Harman, M. and B. F. Jones (2001). Search-based software engineering. /nformmation and
Software Technology 43. 833-839.



|[HKAH96]

[HKAH97]

[Hol75]

[HRP96]

[HRPIE|

[Hun93]

[TEES3]

[[EES0]

[[EE9D]

[JES98]

[Jon78]

[JISE95]

[JSE96]

ACTA WASAENSIA 79

Hochman. R., T. M. Khoshgoltaar, E. B. Allen, and J. P. Hudepohl, (1996). Using the
genetic algorithm to build optimal neural networks for faull-prone module detection. In:
Proceedings of ithe Seventh International Symposium on  Software Reliability
Lngineering. Oct 30 — Nov 2 1996. 152-162. White Plains. New York: IEEE Computer
Socicty Press.

Hochman, R., T. M. Khoshgoftaar, E. B. Allen and J. P. Hudepohl. (1997). Evolutionary
neural networks: a robust approach to soliware reliability problems. In: Proceedings of
the Eight International Symposium on Software Reliability Engineering, 13-26,
Albuquerque, New Mexico: IEEE Computer Sociely Press.

Holland. John (1975). Adapration in Natral and Artificial Systems. Ann Arbor, MI;
University of Michigan Press. Reissued by The MIT Press, 1992.

Hsiao. M. S.. E. M. Rudnick and J. H. Palel (1996). Aulomalic lest generation using
genetically-engineercd distinguishing sequences. In: Proceedings of 14" VLSI Test
Symposium 1996, 216 -223. Princeton, NJ: IEEE Computer Society Press.

Hsiao. M. S.. E. M. Rudnick and J. H. Patel (1998). Application of genetically
engineered finile-state-machine  sequences 10 sequential circuit ATPG. /EEE

Transactions on Computer-Aided Design of fntegrated Circuits and Systems 17, 239-
254,

Hunt, J. (1995). Tesling control software using a genclic algorilhm. Engineering
Applications of Artificial Intelligence 8.6, 671-680.

TEEE/ANSI (1983, re 1991}). IEEL standard for software test decumentation, IEEE Std.
829-1983.

IEEE/ANSI (1986. re 1992). IEEE standard for sofvvare verificarion and validation
plans, IEEE Std. 1012-19806.

IEEE/ANSI (1990). IELE standard glossary of software engineering rerminology, IEEE
Std. 620.12-1990,

Jones, B. F.. D. E. Eyres and H. H. Sthamer (1998). A strategy for using genetic
algorithms to automate branch and fault-based testing. Thie Computer Jowrnal 41:2, 98—
107.

Jones, T. C. (1978). Measuring progrumming quality and productivity. /BM Sysiems
Journal 17, 39-63.

Jomes, B. F., H. H. Sthamer and D. E. Eyres (1995). Generaling test dala for ADA
procedures using genetic algorithms. In: First Imernational Conference on Genelic
Algoritlons in Engineering Systems: Innovations and Applications, GALESIA, 65-70.
Scheffield, UK: Iec Cenference Publication. No 414.

Jones, B. F., H. H. Sthamer and D. E. Eyres (1996). Automatic structural testing using
genetic algorithims. Seftware Engineering Journal 11, 299-3006.



80

[JSXE95]

[JW98]

[Kan97]

[Kan99]

[KBH+97]

[KFN99]

[KG96]

[KHS+97)

[Kin93]

[Kit95]

[Kor76]

[Koz92]

[KS96]

[Lai02]

ACTA WASAENSIA

Jones, B. F.. H. H. Sthamer. X. Yang and D. E. Eyres (1995). The autcmatic gencration
of soflware test data sets using adaplive search techniques. In: 3™ Internationaf
Conference on Software Quality Management, 435-444. Seville, Spain: Computational
Mechanics Publications.

Jones. B. F. and J. Wegener (1998). Mcasurcment of cxtreme execulion times for
software. JEE Colloquiran on Real-Time Systems (Digest No. 1998/3006). 4/1-4/5.

Kaner, Cem (1997). Improving the maintainability of automated test suitcs. In:
Proceedings of the Tenth Inrernarional Qualiry Week. San Francisco. CA: Software
Research.

Kang, Henry R. (1999). Digital Color Halftoning. Bellingham, Washinglon: SPIIZ
Oplical Enginecring Press & New York: IEEE Press..

Koza, John R., Forest H. Bennett ITI. Jeffrey L. Hutchings, Stephen L. Bade, Martin A.
Keane and David Andre (1997). Evolving sorting networks using geneiic programming
and rapidly reconfigurable field-programmable gate arrays. In: Workshop on Evolvable
Svstems. International Joint Conference on Ariificial Inteiligence, Nagoya, Japan, 27—
32. Ed. Higuchi, Tetsuya.

Kaner. Cem, Jack Falk and Hung Quoc Nguyen (1999). Tesring Computer Software, 2nd
Edition. New York, NY. USA: John Wiley & Sons.

Kasik, D. J. and H. G. George (19906). Toward automatic generation of novice user test
scripts. In: Proceedings 1996 Conference on Human Factors in Computing Systems, CH{
96, Vancouver, BC, Canada, Apnl 13-18 1996, 244-25]. New York, NY: ACM Press.

Krishnaswamy, D)., M. S. Hsiao. V. Saxena, E. M. Rudnick, J. H. Patel and P. Banerjee
(1997). Parallel genelic algorithms for simulation-based scquential circuit test
generation. In: Proceedings of the Tenth international Conference on VLSI Design, 475-
481. Hyderubad, India: TEEE Computer Society Press.

Kinnear, Kenneth E. Jr. (1993). Generality and difficully in genetic programming:
evolving a sort. In: Proceedings of the Fifth International Conference on Genetic
Algorithins, San Maleo, CA. Ed. 8. Forrest. Los Altes, CA: Morgan Kaufmann.

Kit, Edward {1993). Software testing in the real world — improving the process. New
York, NY, USA: Addison-Wesley.

Korel, Bogdan {1976). Automated software test data generation. /EEE Transactions on
Sofnvare Engineering 16:8, 870-879.

Koz, John. R. (1992). Genetic Programming. Cambridge, MA: The MIT Press.

Kobayashi, N. and H. Saito (1996) Halftoning technique using genetic algorithms.
Systems and Compuiters in Japan 27, §9-97.

Laine, Antti (2002). Testaus ja testauksen laatu. Presenlalion in Testaus ja laalu seminar
3.-5. 9. 2002, Silja Serenade [ciled 8.4.2003]. Available: http:/fwww.pcuf.fifsylyke/
yhdistys/arkisto/risteily2002/Conformiq_Sytyke_pres.pdf.



[T.am09]

[Lam99]

[LHRP9G]

[Lig72]

[LYOL]

[MAQOQ]

IMAQ 4]

[MAOLD|

[MAOIc]

|[MAOLd]

ACTA WASAENSIA 81

Lamarck. I. B. (1809). Zoological Philosophy. Originally published as Philosophie
Zoologigue, Translated. with an introduction, by Hugh Elliot. London: Macmillan and
Co., Lud.. 1914 |[cited 8.4.2003].  Available: hup://members.aol.com/evomecly
index.html.

Lampinen, Jouni (1999). Cam Shape Optimization by Genetic Algorithmns. Acta
Wasaensia. No. 70, PhD thesis. Vaasa, Finlad: University of Vaasa.

Lee, T.. I. N. Hajj. E. M. Rudnick and I. H. Patel (1996). Genetic-algorithm-based test
generation for current testing of bridging faults in CMQOS VLSI circuits. In; Proceedings

of 14" VLSI Test Symposium 1996, 456-462. Princeton, NJ: IEEE Computer Society
Press.

Liguori. Fred, ed. (1972). Awomatic Test Equipment: Hardware, Software, and
Management. New York, NY, USA: [EEE Press.

Lin, Jin-Cherng and Pu-Lin Yeh (2001). Automatic test data gencration for path tesling
using GAs. Informarion Sciences 131, 47-04.

Mantere. Timo and Jarmo T. Alander (2000). Aulomatic image generalion by genetic
algorithms for testing halfioning methods. In: [nrelligent Sysiems and Advanced
Manfacturing: huelligent Robots and Computer Vision XIX: Algorithms, Techniques,
and Active Vision, Volume SPIE-4197, Bostion, MA, November 5-8 2000, 297-303. Ed.
D. P. Casasent. Bellingham, Washington: SPIE.

Mantere. Timo and Jarmo T. Alander (2001). Testing halfioning methods by images
generated by genetic algorithms. In: Arpakannus 172001, Special issue on Bivinformatics
and Genetic Algoritiuns. 39—44. Espoo. Finland: Finnish Artificial Inelligence Society
cfo Technical Research Centre.

Manlere. Timo and Jarmo T. Alander (2001). Automalic test image generalion by
genetic algorithms for (esting halftoning methods — comparing results using a wavelel
filtering. In: Proceedings of the 2001 Finnish Signal Processing Symposiwm FINSIG'01,
Helsinki University of Tcchnology, Espoo, Finland, June 5, 2001, 55-58. Eds J.
Tanskanen and J. Martikainen. Espoo: IEEE Finland Section.

Mantere, Timo and Jarmo T. Alander (2001). Automatic soltwarc testing by
oplimization with genetic algorithms — introduction to the method and consideration of
the possible pitfalls. In: MENDEL200T 7th Iternational Conference on Soft Compuiing,
June 6-8, 2001. Brno, Czech Republic. 19-23. Eds R. Malousek and P. O¥mera. Brno,
Czech Republic: Brno University of Technology & Kuncik,

Mantere, Timo and Jarmo T. Alander (2001). Testing a structural light vision software
by genetic algorithims — cstimating the worst case behavior of volume measurement. Tn:
Intelligent Systems and Advanced Manufaciuring: Intelligent Robois and Computer
Vision XX: Algorithms, Technigues, and Active Vision, volume SPIE-4572, Newlon,
MA, October 29-31 2001, 466-475. Eds D. P. Casasent and E. L. Hall. Bellingham,
Washington: SPIE Optical Engincering Press.



82

[MAOZa]

[MAO2b]

[MAQ2c]

{MAQ3a]

[MAO3D]

[Man03|

| Man96]

[Man99]

[Mar95]

| MarS7|

[Mur98]

ACTA WASAENSIA

Mantere. Timo and Jarmo T. Alander (2002). Developing and testing structural light
vision software by co-evolutionary genetic algorithm. In: QSSE 2002 The Proceedings of
the Sccond ASERC Workshop on Quantarive and Soft Compuiing based Software
Engineering, Feb 18-20 2002, 31-37. Banff, Alberta. Canada: Alberta Software
Engineering Research Consorlium (ASERC) and the Depariment of Electrical and
Computer Engineering, University of Alberla.

Mantere, Timo and Jarmo T. Alander (2002). Testing halltoning methods using genetic
algorithms — comparing resulis using Haar wavelet filtering. In: MENDEL2002 8th
International Conference on Soft Computing, June 5-7, 2002. Bmo, Czech Republic,
103-108. Eds R. Matousek and P. OSmera. Brno: Brno University of Technology &
Kuncik Jan.

Mantere. Timo and Jarmo T. Alander {2002). Generating and testing halfloning fillers
co-cvolulionarily. Unpublished, accepted (o be published In: Proceedings of 2002
WSEAS International Conference on Electronics, Comtrol and Signal Processing.
Singapore. December 9-12. 2002, 6 pages (Not yet printed at the date of this Lhesis).

Manterc, Timo and Jarmo T. Alander (2003). Tesring digital halfioning software by
generating test images and filters co-evolutionarily. Unpublished, included in this thesis,
a revised version of [MAO2c], submitted to SPIE’s Photonics East: Intelligent Robots
and Computer Vision XXI, 27-31 October, Providence, Rhode Island, USA, 14 pages.

Mantere, Timo and Jarmo T. Alander (2003). Evolurionary software engineering, a
review. Unpublished, preliminanly accepled to Applied Soft Computing. 24 pages.

Manlere, Timo (2003). Software Testing by Evolutionary Algorithms. Unpublished,
accepted 1o be published In: Proceedings of Southeasiern Software Engineering
Conference, April 1st - 3rd, 2003, Huntsville, Alabama, USA, exiended abslract draft
version 3 puges (Not yet printed at the date of this thesis).

Mantere. Timo (1996). Sihkonhankinnan optimoinii [The optimization of the it
commitment problem in electrical power distribution]. M.Sc. (hesis, 100 pages. Vaasa,
Finland: University of Vaasa, Department of Information Technology and Production
Economics.

Mantere, Timo (1999). Auromaattinen ohjelmien testaus optimoimalla gencettisilid
algoritmeilla [Aniomaric software testing by optimizing with genetic algorithms|. Lic.Sc.
thesis. [25 pages. Vaasa, Finland: University of Vaasa, Department of Information
Technology and Production Economiics.

Marick, Brian (1995). The Craft of Sofrware Testing — Subsystem Testing. Englewood
Cliffs, NJ: Prentice Hall.

Marick. Brian (1997). Classic tesling mistakes. In: Proceedings of STAR 97, Sixth
International Conference on Software Testing, Analysis, and Review, May 1997. San
Jose, CA: Software Qualily Engingering.

Marick, Brian (1998). When should a test be automated?. In: Proceedings of the 11ih
International Software Quality Week Conference (QW'98), May 1998. San Francisco,
CA: Software Research Inc.



|ME97]

[M1il80]

[Mi198]

[ML96|

[MMO8]

[MMS98]

[Mog99]

[MT95]

[MW9R]

[Mye78]

[NB97]

[Nil99]

ACTA WASAENSIA 83

Mansour, N. and K. El-Fakih (1997). Natural optimization algorithms for oplimal
regression testing. In: Proceedings of the COMPSAC '97, The Twemy-First Annval
Iternarional Compuier Software and Applications Conference, 1997, 511-514. Los
Alamitos, CA: IEEE Computer Sociely Press.

Miller, Ed (1980). Program testing — An overview for managers. In: JEEE software
testing nitorial. TEEE Compuler Society Press.

Michell, Melanic (1998). An Introduction 1o Generic Algorithins. Cambridge, MA, USA:
MIT Press.

Mantere. Time and Ilpo Lindfors (1996). Comparison of unit commitment metheds. In:
Proceedings of the Second Nordic Workshop on Genetic Algorithms and  their
Applications (2NWGA), 19.-23. August 1996, Vaasa, 245-250, Ed. I. T. Alander. Vaasa.
Finland: Proceedings of University of Vaasa, Nro. 11.

Michael, C. and G. McGraw (1998). Automated software test data generation for
complex programs. In: Proceedings of 13th IEEE Iuternaiional Conference on
Antomared Software Engineering, 136-146. Honolulu. HI: IEEE Compuler Society
Press.

McGraw, G., C. Michael and M. Schatz (1998). Generaiing Software Test Data by
Evolution. Technical Report RSTR-018-97-1. RST Corporation. Suite #230, Ridgetop
Circle, Sterling, VA 20166. February 9, 1998.

Moghadampour, Ghodrat (1999). Using Genetic Algoritfuns in Testing a Distribution
Proreciion Relay Software — A Statistical Analyvsis. Lic.Sc. thesis, Vaasa, Finland:
University of Vaasa, Department of Information Technology and Production Economics.

Minohara, T. and Y. Tohma (1995). Parameter estimation of hyper-geomelric
distribution softwarc reliability growth model by genetic atgorithms. In: Proceedings of
the Sixth International Symposium on Software Reliability Engineering, 324-329.
Toulouse, France: IEEE Press

Mucller, F. and J. Wegener (1998). A comparison of slatic analysis and evolutionary
lesting for the verification of liming constraints. In: Proceedings of the 4th IEEE Real-
Time Technology and Applications Symposium, June 1998, 144-154. Denver. USA:
IEEE Press.

Myers, G. I. (1978). The Arr of Software Testing. New York, NY: John Wiley&Sons.

Newbern, J. and V. M. Bove, Ir. (1997). Generation ol blue noise arrays using genetic
algorithm. In: Human Vision and Electronic Imaging 1, Feb. 1997, San Jose. Volume
SPIE-3016. 401-450. Eds B.E. Rogowilz and T.N. Pappas. Bellingham, Washington,
USA: SPIE.

Nilsson, Fredrik (1999). Objective quality measures for halftoned images. Oprics, Image,
Science and Vision 16:9, 2151-2162.



34

[NISOZ2]

[Nor93]

[OA95]

[OR99]

[Pan02]

[Pet96]

[PGGZ94]

[PGK99]

[PHP99]

[PNOS|

[PohOl]

[PSSS1]

[Pyy99]

ACTA WASAENSIA

NIST (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing,
US Department of Commerce, National Institule of Standards and Technology (NIST).
Planning Repon 02-3, May 2002, 309 pages [cited 8.4.2003]. Available:
hitp://www.nist.gov/director/prog-olc/report02-3.pdf.

Norman, S. (1993). Sofnvare Testing Tools. London: Ovum Lid.

O'Dare, M.J. and T. Arslan (1993). Generating lest patterns for VLSI circuits using a
genetic algorithm. /EE Electronics Letiers 30:10.

Ostrowski, D. A. and R. G. Reynolds (1999). Knowledge-based software testing agent
using evolutionary learning with cultural algorithms. In: Proceedings of the 1999

Congress on Lvolutionary Computation, CEC 99, 1657-1663. Washinglon, DC: IEEE
Press.

Paakki, Jukka (2002). Testaus teoriassa ja kéytdnnéssda. Presentation in: Testaus ja laatu
seminar 3.-5. 9. 2002, Silja Serenade [cited 8.4.2003]. Available: htlp://www.pcuf.fi/
sylyke/yhdistys/arkisto/risteily2002/sylyke-09-02.pdF.

Pettischord, Bret (1996). Success with test automation. In: Proceedings of the Ninih
Inrernational Qualiry Week. San Francisco, CA: Software Research Tnc.

Pei, Min, Erik D. Goodman. Zongyi Gao and Kaixiang Zhong (1994). Auwromated
Software Test Data Generation Using a Generic Algorithmn. Technical report 6/2/1994,
Beijing, China: University of Aeronautics and Astronaulics.

Pal, Sankar K., Arhish Ghosh and Malay K. Kundu (1999). Soft Computing for mage
Processing. Heidelberg, New York: Physica-Verlag.

Pargas, Roy. Mary Harrold and Robert Peck (1999). Tesl-data generation using genetic
algorithms. The Journal of Sofnvare Testing, Verificaifon and Reliabiliry 9, 263-282,

Puschner, P. and R. Nossal (1998). Tesling the results of static worsl-case execution-
ime analysis. In: Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS
'98), 1998, 134 — 143. Muadrid. Spain: TEEE Computer Socicty Press.

Pohlheim, H. (2001) Competition and cooperation in exteaded evolulionary algorithms.
In: GECCO’2001 — Late Breaking Papers. Ed. L. Spector. San Francisco, CA: Morgan
Kaufmann.

Perlis, Alan, Frederick Sayward and Mary Shaw, Eds (1981). Softvare Metrics: An
Analysis and Evaluation. Cambridge, MA: The MIT Press.

Pyylampi, Tero (1999). Rusterointimenetelndn kehitiiiminen mustesuihkutulosiimelle
geneettiselld atgoritmilla {Developing Digital Halftoning Methods for Ink Jet Prinier
with Geneting Algorithms]. M.Sc. thesis. Vaasa: Finland: University of Vaasa,
Department of Information Technology and Production Economics.



[Rau00]

|Rec73]

[RHSP94]

[RMB+95]

[Rop96]

[RopS9]

[RPO5]

[RPGN9S7I

[SBF97)

[Sch96]

[SF96]

[SGD92]

[SGD93]

ACTA WASAENSIA 85

Rautakoura, Timo (2000). Suunnitelma pastanpainon laaduniarkkailjiirjestelmésii
wiww-polijaiseen wikimuy-, operus- ja konhwtuskiivnéén — [A Plan for Solder Paster
Quality Control System for WWW-based Research, Teaching and Training Use]. M.Sc.
thesis. 61 pages. Pori. Finland: Tampere Universily of Technology.

Rechenberg, 1. (1973). Evolulionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Stuttgart, Germany: Fromman-Holzboog.

Rudnick, E. M.. J. G. Helm, D. G. Saab and J. H. Patel (1994). Application ol simple
genelic algorithms to sequential circuil test generation. In: Proceedings of EDAC
European Design and Test Conference 1994, 40-45. Paris, France: I[EEE Computer
Society Press.

Roper, Marc, lain MacLean, Andrew Brooks, James Miller and Murray Wood (1993).
Genetic Algorithms and the Awutomatic Generation of Test Data. Technical report
RR/95/195 |EleCS-19-95]. Glasgow, UK: University of Strathclyde.

Roper, M. (1996). Cast with GAs —automatic test dala generation viz evolutionary
computation. In: [EE Colloquiim on Compitter Aided Software Testing Tools, vol. IEE
Digest No. 1996/096. London. April 23 1996, 7/1-7/3. T.ondon, UK: IEE.

Roper. M. {1999). Software tesling —searching for the missing link. In: Information and
Software Teclnology 41, 991-994.

Rudnick, E. M. and J. H. Patel {1995). A genetic approach Lo test application lime
reduction for [ull scan and partial scan ciccuils. In: Proceedings of the 8th International
Conference on VLS Design 1995. 288 -293. New Delhi. India: IEEE Press.

Rudnick, E. M., I. H. Patel, G. S. Greenstein and T. M. Niermann (1997). A genetic
algorithm framework for test generation. [EEE Transactions on Compitter-Alded Design
af Integrated Civcuits and Systems 16, 1034 —1044.

Smith, J. E., M. Bartley and T. C. Fogarty (1997). Microprocessor design verificalion by
two-phasc cvolution of variuble length tests. In: IEEE Internarional Conference on
Evolutionary Compuaation [997. 453-438. Indianapolis: TEEE Neural Networks
Council.

Schiifer, Hans (1996). World of Sofnware Testing. Seminar publicalion 15-16. Apr. 1996.
Tampere, Finland: Pirkanmaan tietojenkisittcly-yhdistys ry.

Smith. J. E. and T. C. Fogarty (1996). Evolving sofiware test data — GA's learn self
expression. In: Evolutionary Computing. LNCS 1143, Ed. T. C. Fogarty. Berlin,
Germany: Springer-Verlag.

Schuliz, A. C.. 1. I. Grefensteute and K. A. De Jong (1992). Adapiive iesting of
controllers for autonomous vehicles. In: 71992 Sympositan on Autonomons Undervarer
Vehicle Technology, June 1997, 158-164. Washington DC: TEEE.

Schultz, A. C., I. I. Grefenstette and K. A. De Jong (1993). Test and cvaluation by
genctic algorithm. IEEE Expert 8, 9-14,



86

[SGDY5]

[SGD97)

[Sim91]

[STES4]

[SP95]

[SRM91]

[Sth95]

[SWS9)

[Sys89]

[TamQ2]

[Tra00]

[War08]

[Wal95]

[WBSO01]

ACTA WASAENSIA

Schultz, A. C., 1. 1. Grefenstelte and K. A. De Jong (1995}. Applying genetic algorithms
to the testing of intelligent controllers. In: The Workshop on Applying Machine Learning
in Praciice ar IMLC-95, 9 July 1995, 41-48. Tahoe City, CA: Naval Research
L.aboratory, Techical Report AIC-95-023,

Schultz, A. C., 1. I. Grefenstelte and K. A. De Jong (1997). Learning to break things:
adaptive testing of intelligent controllers. In: Handbook of Evolutionary Computation,
(G.3.5:1-10. Eds T. Biick, D. Fogel and Z. Michalewicz. Oxford, UK: Oxford Universily
Press.

Sims, K. (1991). Anificial Evolution for Computer Graphics. In: Computer Graphics
(Siggraph 91 Proceedings), July 1991, 319-328. New York, NY: ACM Press.

Sthamer. H. H., B. F. Jones and D. E. Eyres (1994). Generating test data for ADA
generic procedures using genetic algorithms. In: Proceedings of the ACEDC 1994, 134—
140. Plymeuth, UK: Unmiversity of Plymouth.

Storm, R. and K. Price (1995). Differential Evolution — A simple and efficient adaptive
scheme for global optimization over continuous spaces. Technical report TR-95-012,
[CSI, March 1995 [cited 8.4.2003]. Available: [tp:/ftp.icsi.berkeley.edu/pub/techreports/
1995Ar-95-012.pdf.

Sullivan, J.. L. Ray and R. Miller (1991). Design of minimum visual modulation halfione
patterns. [EEE Transactions on Systems, Man, and Cybernerics 21:1.

Sthamer, Harmen-Hinrich (1995). The Automatic Generation of Test Data Using Genetic
Algorithuns. PhD thesis. Pontypridd, Wales: University of Glamorgan.

Singpurwalla, Nozer D. and Simon P. Wilson (1999). Statistical Methods in Software
Lngineering — Reliability and Risk. New York, NY: Springer-Verlag.

Syswerda, Gilbert (1989). Uniform crossover in genelic algorithms. In: Proceedings of
the Third huemational Conference on Genetic Afgorithms, George Mason University.
June 4-7, 1989, 2-9. Ed. ]. D. Schaffer. San Mateo, California: Morgan Kaufmann
Publishers. Inc.

Tamres, Louise (2002), Introducing Sofnwvare Testing. London. UK: Pearson Education
Ltd.. Addison-Wesley.

Tracey, Nigel James (2000). A Search-Based Awtomared Test-Data Generation
Framework for Safery-Critical Software. PhD thesis. York, UK: University of York.

Warfield, R. W. (1998). Awromated Software Testing Tool. 1.S. patent no. 5,754.760.
Issued May 19, 1998.

Watkins. Alison L. (1995). The automalic generation of lest data using genelic
algorithms. In: Proceedings of the 4th Software Quality Conference, July 4-5 1995. Eds
I. M. Marshall er . Dundee, Scotland: University of Abertay.

Wegener, J., A. Baresel and H. Sthamer (2001). Evolutionary test environment for
automatic structural testing. fnformation and Sofnvare Technology 43, 841-854.



[Wei90]

[WGGH96]

jWGJI97]

[Whi9§]

[WM93]

[WSP99]

ACTA WASAENSIA 87

Weinberger, E. D. (1990). Correlated and uncorrelated fitness landscapes and how to tell
the difference. Biological Cybernetics 63, 325-336.

Wegcener., .. K. Grimm. M. Grochtmann, H. Sthamer and B. Jones (1996). Systematic
testing of real-time systems. In: Proceedings of the 4th European Conference on
Software Testing, Analysis & Review EuroSTAR 1996. December 1996. Amsterdam,
Netherlands: Software Quality Engineering.

Wegener, I.. M. Grochtmann and B. Jones (1997). Tesling lemporal correciness of real-
lime systems by means of genctic algorithms. In: Proceedings of the 10th International

Software Cheality Week (QW '97). May 1997. San Francisco, CA: Sefiware Research.
Inc.

Whiten, T. G, (1998). Method and Computer Program Product for Generating a
Computer Program Product Test that hicludes an Optimized Set of Computer Program
Product Test Cases, and Method for Selecting Same. U.S. palent no. 5.805,795. [ssued
September 8, 1998.

Wolpert, D. and W. Macready (1993). No Free Lunch Theorems for Search. Technical
report 93-02-010. Santa Fe Institute.

Wegener J., H. Sthamer and H. Pohlheim {1999}. Testing the temporal behaviour of real-
time Lasks using extended evolutionary algorithms. In: Proceedings of the 7th European
Conference on Software Testing, Analysis and Review (EuroSTAR '1999), November
1999. Barcelona, Spain: Soltware Quality Engineering.

| XESLK92] Xanthakis, S., C. Ellis, C. Skourlas, A. Le Gal! and S. Katsikas (1992}. Applying genetic

[Yan98]

[YWRO0Q]

algorithms to sofiware testing. In: Proceedings of the 5th Iniernational Conference on
Software Engineering & It's Applications. Toulouse, France.

Yang., Xile (1998). Automaiic Testing From Z specifications. PhD thesis. Pontypridd.
Wales: University of Glamorgan.

Yu Xiaoming, Jue Wu and E. M. Rudnick (2000}. Diagnostic test generation for
sequential circuits. In: Proceedings of the Internarional Test Conference 2000. 225-234.
Atlantic City, NJ: IEEE Computer Society Press.

Referred WWW-sites {cited 8.4.2003]

Software Engineering using Metaheuristic hmovative Algorithms

hoip:/fwww.discbrunel.org.uk/seminalproject/index.himl

Selected Papers on Software Testing  htip:/hwvww.sysiematic-testing.com

Software Testing Online Resources  hup:/Awvww.mtsu.cdu/~storin

The USC-SIPI Image Database hup://sipi.usc.cdu/services/database/Database. himl



38 ACTA WASAENSIA

REPRINTS OF THE PUBLICATIONS

ERRDATA
Paper I1:

Unfortunalely this paper includes some mistakes that occurred during the publication phase: the list of
references is in the wrong order. the right order is to rcnumber 1. 2. 3. .. , 23 1o the following order: 2.
3.6.8.5.21. 12,4, 1,16, 17, 14, 11, 18. 20. 13, 15. 9. 10, 7. 22, and 23. The Mean (ms) for the GA-
total in Table 1 should be 223.45 as it is in |AMMMO97]. However, these crrors do nol affect the
general findings of this paper.

Paper III:

This paper does include some typo's caused by some kind of Windows and Unix LaTeX version
incompatibility, that made parls of ihe Lexts that were commented off from the manuscript appearing.

like lonely words “of" in Chapler 5.. “whole™ in Chapter 5.1. the word “linked” before ESTM in
Chapter 5.1, and the mark ; in Chapter 6,

Paper VI:

This paper includes one found mistake: when the test run represented in Figure 3 was made. there
were not zeros in the max and min clauses of equation 2. This does nol affect the main results, but
explains why the Surface valuc can be lower than the Parameters value in Figure 3.
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GENETIC ALGORITHMS IN SOFTWARE TESTING
- EXPERIMENTS WITH TEMPORAL TARGET FUNCTIONS

Jarmo T. Alander and Timo Mantere
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M this paper we simnlate the software response time by a genetic algorithm based system. The object was to determine
whether a genetic algorithn cowdd handie largely nondeterministic target finctions. This study was a part of a software
testing project, where the goal was to test large time criticed embedded sofewvare with genetic algorithms, The behavior
of the embeddued system was recognized io be highly nondeicrministic, therefore it was considered necessary 1a test the
method with some other highly nondererministic problem. We are also considering the question of good GA parameters,
optimal population size and the visk of not finding the oprimal solution.

Keywords: genclic algerithms, sofiwarc testing. lest data generation, response time, optimal paramelers, population
siz¢, nondelcrministic [itness

L. Introduction

Software lesting 35 an essential task when Irying o achieve high sothware quality. Manual testing is usually time
demanding and expensive, Therelore there is a strong demand for creating new testing echniques, I has been estimated
L1. 2]. thal saftware testing cosis over 30% ol total expenses in sofiware system developiient. So even a partial (esting
aulomation with an effective 100l can produce considerable savings.

In order 1o aulomate soliware testing by genetic algorithms (GA) we need Lo define some target fonction,
soltware metric. In our carlier study [5. 4] the target funclion was simply the response time ol the tested sofiware.
Genetic alporithm was used as the test dala generator. The lest data was mainly liming related information. GA sent the
informalion Lo the lested software and measured the response time (rom certain input to some specific output obscrved
at the soflware inlerlce,

The problem encountered in the above lesl experiment was the large nondeterminism, identical input sequences
resulied in quite dilferent outputs. To further study whether that kind of nondeterminism can be acceptuble and whether
the obtained test results still are valid we decided to mode! nondelerministic systems by using enly the response (ime as
the oplimization target,

1.1 Genetic algerithms

Genelic alporithms [3] are oplimization methods (hat mimic evolution in nature [6]. Genelic algorithms form a kind of
clectronic population that Nghts lor survival, adapling as well as possible 1o its cnvironment, which is an aptimization
problem. Surviving and erossbreeding possibililies depend on how well individuals fulfill the larget function. GA
repraduces new individuals by crossbreeding good individuals, it also adds some mutations, i.c. bil changes 1o the
individuals. The sct of the best solutions is usually kept in an array called the population.

1.2 Related work

Genelic alporithms have previously been adapied 10 automatic soltware test data gencration in several studies [7. 8, 9,
10, and 11]. Parametcr optimizations with GAs have been deall fe. in {12]. Genelic algorithms have been adapled (e a
nondeterministic problem, fe. in [13]. Optimizing GA with another GA have been dealt Le. in [14, 15,16, and 17]. Sce
also the bibliography [18].

2. Representition of test problems

In this chapter we briefly presenl the lest problems that were used 1o pre-evaluate the GA test approach. These tests
were also used (o analyze il there exist good GA parameer combinations. In the next chapler that concentrates en time
based testing the goal was 10 (ind GA paramcicr combinations that teads ¢ither o aceeleralion or retardation of the
oplimization speed. The test problem sct was introduced in [19]. All problems are encoded into a 34 bit long
chromosome.

6" International Conference en Soll Computing MENDEL 2000, Brno, Czech Republic. Junc 7-9, 2000 9
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2.1 Polyomino problem

[n the polyvomino problem [19] the poal is o cover a dxd rectanpular area with seven building blocks, [rom which two
are Ix| blocks. two 1x2 tiles, one 2x2 tile and Lwo L-shaped tiles (2x2-1x 1} The coordinales of the polyominoes were
cncoded inte a 34 bil long chromosome. These building blocks are presented in figure . This problem belongs (o the
scl of layout design problems.

Figure 1: The huilding blacks in the pelyomino problem and the recranpular 4x4 areu they should cover

The fitness lfunction ol the polyomino problem is the area covered by the polyominos. The optimum is 16. The
fitness lunction only counts how much of the area is covered; it doesn't penalize for overlapping tiles or parts that
surpass the boundarics ol the aren, This problem has several different optimal selutions, i. e. the paris can be ordered in
several ways, while siill getling he otal arca covered. GA opiimizes the problem by moving and rotating the given
seven building blocks.

\When optimizing a polyomino problem with different GA paramcters, it was discovered that the problem is
solved the quickest with a smaller population. Other parameters did not have such a clear influcnce on the processing
speed. This finding confirms resolls presented in Alander [19].The crassover rate [20] showed a tendeney 10 be guile
high, Many I the best selution had this parameler around 85%.

The lasiest optimal solutions were found with relatively small population sizes. Figure 2 shows the number ol
trials nceded in the difterent GA opimization runs as the function of pepulation size. There was a slopping condition
of 20.000 wsicd solutions. Tf the optimum had not been found before reaching iL, the search would be given up.
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Figure 2: The amount of trinls as the function of papulation size when solving the polyomino problem

Figure 2 illustrates that quile often the optimaun is not found belare reaching the stopping condition. The figure
also shows a moving average leend, the rend clearly illustrating that actually (he speed increases when population size
decrcascs. This is becanse (he risk of nol linding the solution increases with decreasing population size. This illustrates
the importance of population size on linding the optinium and also the risk involved. In practice the optimal population
size should be a compromise between efficiency and tolerable risk.

2.2 All ones and mux sum prablems

In the all ones problem (onemix) [21] the Nitness funclion is the number ol one bits of the 34 bit long chromasome.
This problen: has one maximum, which obviongly has the value 34. This problem has been largely used to test GAs,

6™ International Conference on Soft Computing MENDEL 2000. Brno, Czech Repubtic, June 7-9, 2000 10
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The [itness function of 1he max sum problem is (he sum ol certain [elds of the purameter amy, seven pieces: d,
4.5, 5, 6, 6 and 4 bits long cach. Acwally the liclds correspond to those used to encode the polyomino Gite coordinales,
The optimal clromosome for both the all ones and e max sum problem is identical; all 34 bils assigned one,
However the fitaess function is diflcrent. Max sum has onc maximum. which is 233 (153+1 343 1+31463+63413), This
problem may sound easy. bul it isn't neeessarlly the case for GA. because even smaller numbers may have scveral
ones, [e. 15 have 4 ones. but 16 only one, so there are several local optimae. This problem is lincar, and thos relatively
eusy o solve.
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Figure 3: Distribution of trinls ns the function of Figure $: Distribution of ftrials as a function of
population size when solving the all ones problem population size when solving the max sum preblem

In conclusion Ngures 2-4 show the interesting phenomenon, that the smaller the population sizes the Faster the
processing. Unlortunately at the same lime Lhe rish of not (inding the optimal solution increases. This observation can
be made also from the trend curves,

The all ones problem didn't seem to be sensilive (o any olher lested parameters than population size. The max
sum problem also didn't seem 10 be very sensilive 1o any other GA-parameter values than pepulation size. perhaps with
the exception that with this problem GA scems 1o favor large mulation probability, All these observalions lead 1o the
conclusion that the population size has a strong influcnce en processing speed and the risk involved. The other GA
parameters didn't seem 1o have such great effect. GA is robust and capable of linding a good sclulion, even if the
paramelers were widely changed.

" 7000000 — —e— polyomino. GA

| —— polyomino, basic
! 6000000 +—— .., .. onemax, GA I - 2
I +.-0--- anemax, basic :
aoaoo !
50 ; max sum, GA .
= 4000000 ! max sum. basic .
'3
=
1) 3000000
]
|
2000000 -
4000000
5 —|

i Fitness value 16734233

Fipure 5: Basic solution {0} distributions of the test problems, and the corresponding distributions due to GA
optimization (¢).

When oplimizing these three problems with GA. we achieve the Lypical solulion distributions due lo GA
oplimization (figore 3), which differs quite a lol from basic distributions {alse shown in {ig. 5). which sccms 1o be
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almest Gaussian. As expected GA heavily favors the solulions near the high end ol the solution space. Figure 5 was
crealed by making 1500 GA oplimizalion runs with random GA parameters lor cach of the three example problems.
For practical reasons parameters were limited: population size between 2 1o 311, clitism between | 10 population size-
1. and the other paramelers (crossover, mutation, change-operation and creating new raies) between | o 99 %, The
basic distributions of the lunclion values were crealed by gencraling as many random trials a5 GA used in Lhe
corresponding case.

As sialed earlier the onemax and max sum have the same optinal chiromosome, however the distdbution of the
vilues of the max sum [unction is wider and has less kurtosis. However, under GA optimization these two problems
achieve nearly identical trial distribution.

3. Simulating temporal fitness lunctinns

The goal was to create lemporally nondelerministic filness functions, This was realized by letting the Miness function be
another (secondary levely GA that solved one of the above example problems. GA-optimization run is strongly
nondeterministic taking diflurenl amounts of time {figs 2-4), cven with the same GA-parameters, because of the
different selution paths. The top level GA then optimizes paramciers of the sccond level GAs.

The Nitness funciion for these tests was the tme tha genetic algorithm needed 1o solve the given problem with
the given inpul paramelers: population size. amount of elitism, crossover-, mutation-, changing-, and crealing new
probabilitics. This sclup resulls a quile nondelerministic tarpel system, a syslem that was though simulate ey the
testing of response limes of real lime embedded systems,

A syslem can be optimized with twvo different ways, either minimizing or maximizing the respanse time of the
sccondary level target system. This corresponds to cither (rving (o optimize the parameters of the secondary GA, so
that the rarget problem is solved as last as possible. or to [ind bad GA parameciers that Icad 10 long problem solving
time. The latler one correspends more o the wsling ol real 1ime systems and (inding the bottlenceks and problematic
parameter combinations thal lurther lead o long response times. Figure 6. shows the resulis of minimizing and
maximizing the 1arget syslem response lime while using the polyomino problem as the second level 1arget problem.
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Figure 6: The average response limes via generations when the secondary GA solves the pelyomino problem.

The maximizing of the response Gme seems 1o be quite casy, 1.¢. bad GA input puramelers are easy 1o find. The
trend when maximizing response ime is clearly inercasing, While when minimizing the response time progress [airly
slowly, hence il secems 1hal good GA parameters are quile hard to optimize, Fig, 6 also shows that with boih
optimizalions the average response tile is similar at the siart. The curve of gencralion average has Jarge Mluctuations,
which is due 1o the nondeierministic nature of the problem. Because of the nondeterminism the survivors were tesled
again in the nexl generation.

In figure 7 we can see similar trends as in lig. 6, but this time the targel problem s all ones. This problem seems
lo be more sensitive to the GA parameters (han the corresponding polyomine case, because maximized response time
takes a large leap at the beginning. Hence bad GA paramcters are cven casicr (o find with this problem. The averages
of the response times lor the minimizing and maximizing cases are much lurther apar after the start than lor the
polyomine problen.

Figure 8 represents further the evolulion for tie max sum problem. In the maximizalion casc the response time
inereases strengly, so it seems that GA casily finds bad parameters.

Lel us take a closer look at the st run log and especially at the input parameters thar caused the long response
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times: The bud input parameter combinatien for the max sum problem seems o be high population size and low
clitism. For the other problems the bad combination seems o be such in which the clitism is either low or almost as
high as the papulation size, Other parameters didn't seem 1o have any clear elfect on response time. When nsing the all
ones problem Ihe bad parameler combination seems o lead to quite similar response time each time. Other problems
seem lo be more nendclernministic; hence the sume parameter combination causes more variely 10 the measured
response lime.

The operation syslem adds even more nondeterminismi into the system and that causes somelimes irregular
abnormally long responsc limes.

1800 ¢  —e— minimization } | {3000 — —e-minimization ‘

| ,
1600 || —a— maximizalion —o— raximzation
| u T 2500 :

1400 | {' ,{\

n w
£ 1200 -bb\.p\—_-n,-ﬁm AP £ 2000
£1000 | ; *‘V e g
° a00 o 1500
= L ;3
§ 600 |- - - | t54000]
Z ' 'E

s00

r | H 1] - r
0 10 20 30 40 soi o 10 20 a0 40 50
Gonerations I H

Generatlons

Figure 7: Response times trends when using the atl wnes  Fipure 8: Response times trends when solving the max
prohlem as the secendary level ¢argel problem sum problem as the secondary target function

All the above tesis show that cven with a nondelerministic larget function GA can lind input paramcter
combinations that cause a long response . This finding is promising when designing responsc lime testing of eritical
real 1ime sofiware, [ence i1 seems that these Lests contirm aur carlier Mndings with real lime software lesting [, 3],

4. Discussion and conclusivns

This simulation and modeling was mainly done to sce if response (ime can be used as an oplimization goal and if GA is
able te ind problematic parameter values when the targel sysiem is nondeterministic. When using only response Lime as
the target function there is clearly a risk that the whole search base is not checked, i.e. it doesn'l by any meuns verify
high cade or path coverage. However, when the geal is not so much to find bugs, bt 1o confirm Tast responsc Lo all
possible signals und messages, this oplintization methed can be used 1o find borttlenceks, i.c. difficult inpul parameter
combinations thal cause long response Limes.

The results confirm that GA based testing is able (o [ind problemalic paramelcr combination even with
nondelerministic largel functions,
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Abstract

In this work we study possibilitics o aulemate the searching and measuring of response time extremes ol protection relay
software using genetic algorithm optimization, The iden is lo produce lest cases to reveal potentially problemalic situations
causing processing time extremes in the software of an electric network protection reliy. The tesling was done using @ relay
sofllware in a simulator environment. In the comiparison performed, the penctic algorithm-hased method was clearly betler than
a pure rundem test method. < 1998 Elscvier Science S.A. All rights reserved.

Kevwords: Genetie algorithms; Distribution systems: Reul time conteol; Safety; Simulation; Sofiware testing

1. Introduction

I ailure in the sollware for a power distribulion system
may have severe consegquences; thus, Lhe requirements
for precision and relfability are high, Testing s very
laborious, beciuse the amount of work grows exponen-
Lially with the code size, which is already considerable
and steadily growing with new Minctions. Testing soll-
ware manually is slow, and thus expensive, and in
addition demands inventiveness and highly skilled per-
sonncl. Automaled testing can reduce both time und
costs needed lor performing Lests. Studics show that Lo
thirds of the development costs of embedded systems are
caused by softwire development, about hall of Lhese are
testing costs [1). The most common way of generaling
test dala is random. which is considered a weak method
[2]. For (his rcason, efforts have been made Lo eplimize
duta using various methods, including heuristic ones.

In our method, genetic algorithm creates (generales,
simulates} and sends data inpuis (o the tested relay
program: CAN and LON nicssages. manuil user com-
mands and status information [rem the electric network.
The time that wested programs tuke lo process the scnt
inlormation (response time} is used as o Atness function.
These tesponse lime extremcs are searched by genetic
oplimization.

* Correspending author. E-nuil: jurmoe.alanderifiuwasa. i

0378-7796,98;$19.00 & 1998 Llcvier Scicnce 5.A. All rights reserved
P S0378-7796(98)00013-3

2, Genetie algorithm

Genetic algorithm is a nondeterministic oplimizalion
mecthod that imilates natoral cvolulion. The possible
solution space of oplimized problem is encoded us bils
{renes) and bil strings (chromosomes). 1n this case, one
individual represents lest cases, they contain dati sec-
tions for CAN and LLON messages. time variables (ot
the time between two CAN messages and the time
between a CAN messuge and a possible LON message.
the individual alsa contains variables that tell the GA
whether a LON load message is going to be sent and
whether the CAN muessage is sent with the address of
1/0 card 1 or 2. The initial population is usually created
at random. Alter the initial population is created, we
test the individuals in it one at the lime by sending Lhe
messages expressed in the individual 1o the tested relay
program. We wait lor the response messapge, usually a
CAN message, thal represents new vilues for [/O card
outpuls, The time between the sent CAN message and
the response message is used as a filness value {respense
lime). After we received fitness values for all individu-
als, we replace hall of the population by crealing new
individuals by crossover and mutalions. This occurs so
that we sorl the populalion by htness value and remove
the hall with the poorest fitness values and then we
creale new individuals by crossover, which means that
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we selecl Lwe individuals from Lthe population that was
lelt and mix their chromosomes (bit strings) by ran-
domly selecting part of the one or Lthe other parent,
then we change some bits in the new individuals (muta-
tion}. The best individuals from the previous generation
are kept for the new gencration, so (hat their good
gualities will not be lost {ehitism).

In our casc. population size had varicd belween 30
and 30 While creating the data of the Section 6, iU was
40, from which 20 were renewed Lo the next generalion,
Mutation probability has varied between 4 and 30%
depending on to which variable is under reproduction.
Both single-point and multipoint crossovers were used.
Al first, old ndividuals were not tested again; but later
they were. Because of the nondeterminism of the testing
system, the tested individuals do nol have the same
fitness values gvery time.

GA is suitable when an oplimized [unction cannot be
solved with more accurale deterministic melhods, In
combinatorixl oplimization like Lhis, it is impossible Lo
prove that the found optimum is a globul one, or lo
determine how close Lo the optimal solulion we are. It
is usvally also quite dillicult to predict Lhe location of
the global extremum from (rundom) sumples.

2.1, Related work

Suatistical Lesling of soflware is inleresting bul
difficult. Tt involves excercising a system with random
inputs. e inpul distribution and the number of lest
duta being determined according Lo given Lest criteria,
It is, unlike random lesting, based on a probabilistic
generalion of test data. It may be appropriaie in situa-
lions where, for instance, the mean cxeculion lime or
the probability of violuting a deadline are of interest.
Since operationatl inpul distribution is not usually avail-
iable at the program unit level, statistical structural Lest
scls may be uscd us lest data for Lesling the execulion
time [3]. In cases where the probability of applying an
input daes not change during the execution of the
softwire, using statistical aspects of the lesting process.
such as rcliability. mean time to [aijure (MTTF) and
mwean time between failures (MTBF) [4].

The automalic generalion of lest data using GA has
been studied by Xanthakis et al. (5], Davies cl al. [6].
Jones el al. [7]. Watkins [8]. Kasik and George [9]. Alba
and Troyaz [10], Boden [11]. Gunavalhi und Shan-
mugam [12], Smith and Fogarty [13] and Roper [14].
See [13)] for some Turther references. Studies have been
mestly based on Lhe while-box lesting methedology.
However, here we are using a black-box Lechnique.

Recently Lhere has been a growing interest Lo usc
GA-based methods (o st VLSI circuils [16 19]. See
[20] lor lurther references.

3. Statistical software testing

Events that possibly cause sollware fajlure do not
have the saume probability of occurence. Consequently,
the likelihood of dilferent [uture events are assessed
through a probabilily distribution. which is based.
when possible, on observational data. The most inter-
esting part in the probability distribution is the area
which docs not have observational data. but is of low
probability and high consequences.

Extreme events arc ol low probability and high sever-
iy und their risk is represented by the tils of a
probubility distribution. Even theough many commeon
mecthods of distribution sclection may represent the
central lendency, however, they do nol represent ex-
treme evenls accurilely.

Exireme event distributions may be used 10 assess
risks in three dilTerent siluations; situations ol ample
duta, situations of sparse dala and situatlions of no
data. The iden of selecling extreme event distributions
i5 1o simulate occurrence of cvents with a low
likelihood.

4. Network protection relay

The relay is a microprocessor-based embedded sys-
tem and il normally conlains several processing and
interface units that communicate with cach other, and
relay and control units of Lthe distribution network. 1L is
used {or protection, control, measuring and supervision
of the radial cleciric newwork {21].

Proteclion funclions of the relay terminal include,
e.r. overcurrent {also directional), carth faull (also di-
rectional), residual voltage, over/undervoltage, thermal,
breaker failure and autematic autoreclosing.

Conltro! [unctions of the terminal include: conlrolling
ol network (c.g. circuil-breakers), stalus indication and
interlocking.

Measurements that the terminal performs are: phase
currenls and phase-lo-phase vollages, residual current
and voltage, active und reactive power and energy
demand values of current and power, [reguency, power
factor, disturbance recorder, harmenics and cvemt
buiTer.

Supervision ol the terminal: Irip circuit supervision
for vwo oulputs, circuit breaker ready, SI6 gas pressurce
and internal self supervision of the relay.

The terminal has two independent scrial ports [or
communicalion: they support the prolocols: LON bus
[22], SPA bus and YDLEWS,

Because of the nature of the lask. protection relay
should work pretty Tast, it should react within 30 ms
(legul norm) (rom the discovery of a sericus failure.

Time demand for the embedded relay soltware is
cven shorter, it should react in 20 ms. However, in the
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simulated environment response limes of relay software
are nalurally somewhat longer than those in the targel
cnvironment. and in addilion conlain some noise.

5. Sinwlation system

In this work we have used an ESIM simulator envi-
ronment, which is designed to be a test automalion Lool
for embedded real-time soliware development. ESIM
makes 1t possible 10 use a workstation PC for tesling
embedded system sollware written in the C or C+ +
programming languages.

ESIM provides a sel ol gencric services (building
blocks) for simulating real-time operating systems. The
user deseribes the inpul and output system (the applicu-
Lion-specific hardware). ESIM then simulates the 17O
system and the operaling system of the application,
allowing the user Lo monilor what is huppening in each
ol them. Application isell is unchanged, bul the hard-
ware drivers are modified so that instead of handling
physical hardwiare objects, they call the service Munc-
tions provided by ESIM [I].

The GA and the tested program run separately in
their own ESIM Lasks. which communicate with cach
othier through simulated ESIM hardware porls. Both
programs, GA and the tested program, run under their
own ESIM applicalions, cither in the samec Windows
NT workstation or both in their own NT, which are
connecled together by a LAN.

GA sends simulated input to the tested program and
measures the response time (Fig. 1). The response time
is Lhe time il 1akes [or the wested program to process Lhe
operations caused by Lhe inpul paramelers it received.
When the tested program is complele, it sends a re-
sponse signil. The response time is the fucss value, by
which the scarch is guided.

GA is interfaced 10 the relay program via ESIM in
tiree dillerent interfuce peints. [t has direcl access lo
the memory dalabase {shared memory area) of the relay
software, so that it can rcad and write informaltion
dircelly, Sccond, it is inlerfuced to the internal commu-
nication lines (CAN bus} of the relay terminal, where it
can send and receive control messages. Third, i1 is
incrfuced o the LON bus connection poinl. where it
can send and receive network messages.

PC Si

Elene,lic ‘

gorithm Program

Message Flow

Fig. 1. Propram testing by G in w simulated environment.

Table |
Diescriplive statisties of the ol respanse times for G and pindom
methods

Gasowl Rundom-taial

blean {ms) 11145 190,56
5.1, {ms) 116.66 57.85
Count 4750 4151

Minimum (ms) 90.00 80.00
Maximum (ma} 761.00 E11.00
Raunge (mu) 671.00 731.00
Skewness 1.20 1.28
Kurtosis 1.39 261
Medion {(ms) 200,00 161.00

GA simulates

e inlernal communicalion inside the relay terminal be-
tween its CPU and digital inputfoutput cards and
manual commands interface card (CAN bus). GA
sends and receives the internal messages Loffrom
these cards throuph inlernal message lines.

e the electric network information. such as informu-
tion from the convenlional current and vollage
transformers or new current and voltage sepsors by
writing information directly 10 memory database of
the relay program.

» other relays in the LON network by sending network
messages o the relay program.

6. Results

The first Llesl case was to compare the GA-based
method with a simple random lesting method. The
mast important communication lask in the relay is Lhe
communication between digital inpulfoulput cards and
the CPU (CAN bus). In this test. load of the CPU is
increused by sending lower priorily LON nelwork
Incssages.

In order to examine the performance of the GA-
based inpul dala generator, we ran the GA and randem
tester 20 times on o simulator. In order 1o combine the
input data cases generated by bolh methods, we used
descriptive statistics (Tuble 1).

As Table 1 shows, it is obvious thal the average and
the median processing times ol a lest case generated by
GA are longer than of the test casc generaled by the
random method, 5.2 in the GA method is also larger,
bul the processing lime distribution range is nirrower.

Notice that the values shown in Table | arc [rom the
simulaled environment, and they are over 10 times
longer than largel environment Limes, but are precise
enough proportionally for diagnostics and a pood slarl-
ing point for further analysis.

For the most reliuble results, we need o repeat the
experiment with the real relay, However, il envolves a
lot of electronic and logical interfacing work.



98 ACTA WASAENSIA

ra
[}
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GA/{GA+random)

A 250 500 o [ms)

B

Fig. 2 Relative distribution of totsl respense vime (ot tesl cuse in
three intervals,

The relative number of generaled test cases GAY
(GA =+ random} in three response lime inlervals (o ==
[0.249] ms, B =[250.499] ms, €= 500 ms) arc shown
in Fig. 2. when exaclly the same amount ol tesl cases
were seneraled by the GA method and the random
method. 1t scems obvious that GA penerales more
input data cases with longer response limes. The ran-
dom method generates 12% more cascs in the shoriest
(poor} time range 4, while in turn the GA method
generales 41% more inpul data cases in the middle
range 8 and 376% more cascs in the extremal lime
ringe C.

By calculating the siatistical significance of the differ-
cnce belween averape processing lUmes. we can be 93%
conlident that the average response time of the lest case
generaled by GA s at least 15%, and al most 19%,
longer than the average response time of the test case
penerated by Lthe random method.

The second lest case was lo determine in which phise
during the internal message handling and processing
{messages between CPU and digital /O cards) the
LON bus message delays the response the most (Fig. 3},

[n Fig. 3 it can be observed that if there is no LON
bus message load for CPU, I/O card messages are
handled Tasler than in cases thal there are. Also. the
state the LON message Is received scems 1o have an
cllect on the response tme. The response in case B s

A 8 c D

£ 300
g 250
E 200
E 150 -
2 100
¢ 501
§ O
&

=

Fig. 3. Mean response Llimes i four cases: A, no LON loud for reliy;
R, LON message is sent simulianeously with 1/C card message; C,
LON message is seat alter [;O card message; and D, LON messuge is
received afler CPU seiuds response message o 1jO cord.

LT Afanider ot af. [/ Elcelric Power Sysicms Reacarch 46 (1995} 239333

on avcrage 77% longer that in case A. and respectably,
in cases C and D, 27 and 53% longer than in case A.

7. Conclusions and Tuture

[t scems that GA-based search can be used for
searching prolection relay software response lime ex-
tremes, when lesting relay sofuwvare and its reliability.
The problems might be in finding a characteristic fitness
fonction and [actors that influence the test results.
Problem complexity and nondeterminism might also
cause problems. which increases the difficulty of soft-
ware Lesting [8,23].

There seems to be significant dilferences between test
dala cases produced by GA and the random method,
wilh GA clearly a better method.

Future research should concentrale on more precise
analysis of messuge interruptions, study the impact of
frequency of sending [fO card messages, and influence
of the time between the sent [JO card message and the
LON bus message.

The new version of the ested sollware is under
implementation in the lest simulation environment. It
includes more modules from the actual Larget environ-
menl. Some modules were left ofT from the first imple-
mentation in order 1o make adjustment to simulated
environment casier. Tests with the updatled sortware
version include first the comparison Lo the old measure-
ments and then some new measurements that will be
made possible by the new version.

The adjusting of the system into a lesl bench that
contains un actual relay terminal 1s also underway. A
lest wilh the real protection relay unil should contain
comparable esis with simulated environments first, and
then more tests thal become possible by using the
whole relay unit.

Further information on this work can be found in
our anonymous Mp server {ftp.uwasa.R) in diree-
lory ¢s/repork87-5.
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AUTOMATIC SOFTWARE TESTING BY GENETIC ALGORITHM
OPTIMIZATION, A CASE SUDY

JARMO T, ALANDER AND TIMO MANTERE

ABSTRAGT. In this work we have studied the [easibility of program Lesting automalion by using
oplimization via genetic algorithm. The main objective of the study is Lo find potentially prob-
lematic sitnations by maximizing the response 1imes of a ralher large real-time embedded system.
The results show that the genetic aplimization is able to outperform pure random testing. The
identification ol the problemalic input helps the programmer Lo fix performance bottlenecks.

1. INTRODUCTION

Performance and reliability are among the most important quality criterion in the planning,
realization and use of computer systems. The objeclive is to guarantee at least the minimurn
performance in any case. For example in some real-time systems absolule response time constraints
are set. In general speed is an important competition factor in software marketls. Unfortunately it
is diffienlt to reach good performance in practice.

Requirements [or precision and reliability of embedded soltware are usually high, e.g. a failure
to meet a response time constraints might have severe consequences both in cconomics and human
terms. It has been estimated that about two thirds of the total costs of product development
projects of embedded systems consist of software development work, of which about hall is testing
costs [17]. Thus softiare testing will cause up to one third of the total product development costs.
Testing is laborious, because it tend Lo increase exponentially with the code complexity. Manual
testing is slow and thus expensive, Software grows and becomes more and more complicated
bringing with it probleins related to its performance.

It has been said that when testing soltware, one should examine only small sections at a time,
otherwise it easily results that somewhere is a fault, but it is extremely difficull to locate. However
in this work the goal was to test the whole software as one picce. In larger software the performance
problems are usually cmphasized. There can be millions of lines of source code produced by
hundreds of programimers. Even if there was no perforinance problem in the code written by the
individual programmer, such will easily appear in the integration phase. Testing is a vital part of
software development and aulomation makes it faster, more reliable and cost efficient.

1.1. Research problem. The object of this study is software testing aulomation; how Lo realize it
using a combinatorial optimization method called genetic algorithm (GA). A real-tilne embedded
system must usually rcact within a given response time. This can be seen as an optimization
problem: find those i.e. problem cases, causing the longesl response timnes.

The object of this study is a communication module of a rather large embedded soltware,
consisting of about 11 Mb of source code written in C. We performed automatic black-box type
stress testing, by using a GA, that optimizes input parameters, stimuli from the environment Lo

Key words and phrases. Soltware engineering, soltware testing, combinatorial eptimisalion, embedded systems,
genclic algorithms, simulation.
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the sollware. The objective was to find the exiretne respouse times, in order to reveal bolllenecks,
which must be corrected. A simnlation environment was used mainly for cost reasons.

Related work. In the field of sollware testing GA has been applied mainly Lo the automatic test
data gencration [13, 14, 16, 18, 19, 20, 22, 25, 26, 27]. These studies have concentraled on the
optimization of branch coverage; in other words finding Lest sets thal covers all possible paths of the
program. Especially reference [13] is interesting because in it several problems are dealt with both
a GA and random method. For more references on GA in software testing see the bibliography [2].
A closely related application area of GAs is VLSI testing [3].

2. GENETIC ALGORITHMS

The genetic algorithms have steadily reached growing popularity during the last twenty or so
years as a general method to solve difficult optimization problems [2]. The method is based on the
recombination of genes in the same way as it takes place in nature. This combined to seleclion
leads to Lhe growth of the average fitness of the population. GA is not perhaps the best possible
method in a given Ltask but it is robust and more or less suitable [or most complex optimization
tasks.

A GA [lorms a sort of artificial simple electric ecosystem, where digital beings (bit-strings, that
represent parameter values) struggle for survival and reproducing possibilities, GA is a method
especially suited for high power digital computing. It is at its best when [acing problemns that
can’t be solved with exact meihods or at least within a given processing time. GA is often
applicable when the number of parameters or their variations is considerableie. when combinatorial
explosion prevents us [rom Lesting all possibilities. The reason [or Lhe growing popularity of genetic
algorithuns is probably the fact that GA does not set any a priori restrictions on the targel [unction.
It does not need to be smooth, meaning it does not need to be derivative or even he continuous
and it can have several local optitnum. The target function doesn’t even need 1o be expressible in
a mathematical form, if one can eg. measure fitness somehow.

The stucy of genetic algorithms started in 1975, when John Holland developed the first GA at
the University of Michigan [11]. He utilized evolulionism to number sequences that would live,
reproduce and die like living organisms. He got the idea after having heen convinced that living
organisms can solve an optimization problem like adaptation to its naitural environment beller
than even the most powerlul supercomputers. In order to describe it, Holland borrowed terms
from the glossary of genetics. However, all the concepls can be interpreted exactly and are casy
to implement.

Benelits of GA include that it can easily be run on parallel processors and it can easily be
adapted to different problems. i deesn’t provide mnch programming and is usually relatively
efficient in difficult problems. GAs belong to the so called soft computing methods, whicli inchude
such metheds as artificial neural nets and [uzzy logic.

3. SOFTWARE TESTING

Software that has been compiled is syntactically correct, but it usually contains an unknown
number of semantic errors. These errors are searched by code validation or by running the program
using some testing method [12, 17, 24). The amount ol testing is not necessarily equivalent to the
eflectiveness of testing: a few carelully planned test cases can lead to better results than an intensive
random experiment. However, one should not forgel that even the best tests cannot save a badly
designed program.
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A comprehensive test would require the testing with at least every acceptable inpul. The test
resull depends not only on inpul but also on the state of the program. Thus input should be
tested with all combinations of different states. Unfortunately comprehensive (esting is impossible
in practice. This does nol mean that investment to testing would not be worthwhile, bul that the
[unctionality of the program should not be trusted teo much.

3.1. Automation of testing. It has been estimated that software testing takes 30-50% of the
working time of a software project [9]. In terms ol manpower testing is expensive and susceplible
to errors. Already partial testing automation will bring significant savings and improves program
quality. Software testing automation can benefit from the following [7]:

e The testing can be prepared even before all the necessary tools are available; this was also
parily Lhe case in this study.
It accelerates the testing essentially.
The tests can be done at least partly unmanned.
The repeatability helps to locate also infrequent error situations.
It reduces the amount of routine work.
Opportunity for remote Lesting.

There arc also some drawbacks:

¢ The planning of tests and analysis ol resulls may be laborious.
s Requires better trained lesting tool developers and users.

Soflware can be so complex Lhat one cannot easily deduce whal response results from a given
inpul. Thus determining the proper test data can be difficult. Soltware may e so non-deterministic
that the respousc time is due to more the non-deterministic nature of the soflware aud testing
system, than the given input.

4. EMBEDDED SYSTLMS

Embedded system refers to a computer system that has been integrated into an electro-mechanical
device. The electronics part of the embedded system conirols electric and mechanical functions of
the device. The processor of the system executes the so-called embedded software, which is to read
impulses from the environment and to process responses to them. Usually the embedded software
is real-Limne, this means that it has 1o respond within given time constraints.

4.1. Real-time soltware. The operation of any sequential program has a well delined beginning
and end, while a real-time software is in an infinile loop constantly interacting with its environment.
An impulse originating from Lle enviromnent starts a series of events, which results in soine sort
of response. Real-time software is usually required to meet some response time constraints,

The operation of the real-time software is oflen presented with the help of the so-called state-
machine model. In a simple siate-machine only the state, during which the impulse occurs affecls
the response. The actual soflware is seldom in accordance with this simple model, however. The
actual software can process several impulses overlapping causing also the responses to have Lendcy
to overlap, resulting in sometimes unexpected and unfloresecable interactions. The load variations
can cause dramatic behavioral changes. Thus it is not usually easy to predict the behaviour of the
systernn.

5. EXPERIMENTAI SETUP

The object embedded systemn has been designed to carry out many lunctions as a power distri-
bution protection device (relay) control unit. It is responsible [or 1he pritnary protection functions
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of the device and auxiliary functions including controlling functions, measuring functions and
surveillance procedures. The device contains actually several processing and interface units, which
communicale with cach other and other protection devices. The system have two separate serial
ports, which support several communication protocols.

On the whole the system hosis a quite demanding soltware, which should operate fast and
reliably in all circumnstances. Tt was still under development during our project.

of

5.1. Simulation environment. The testing was done using a simulation environment, which was
chosen originally because of cost reasons. Another obvious reason was that the hardware was not
yet completed when the project started.

The simulation environment was ESIM, a program development tool for the simulation and
testing of Lhe cmbedded systems. It’s a product of a Finnish company called Prosoft. ESIM is
designed to be able to simnulate any given embedded system, provided that the soflware is written
in C or C4++ language (23]. linked ESIM provides opportunities to monitor program execution.
Furthermore it provides simulation [unctions for the interlaces (ports, buses, user interface), the
operating system, registers, Lasks, semaphores, etc.

whole

5.2. Field buses. The communication between the modules is done via Reld buses. The testing
concentrated on the load testing of the message-processing unil. There were two main field buses
in use, CAN {(controller area network) and LON (local operating network).

The tested target was Lhe communication unit, which operated nnder the main CPU. The object
sollware was constructed in such a way that it uses a CAN {controller area network) bus for all data
transler between the main CPU and other electronic modules, including I/O-cards, key pauel, and
LCD-display. The sarne processing unit also handles LON bus messages. Communication interface,
CAN and LON field buses are also the natural interface to the software. Tn our test CAN bus data
transfer was simulated and tested, while software behaviour was monitored. The main objective
was to study if lower priority LON message processing has some ellect on ihe processing of higher
priority CAN messages.

CAN is a serial bus which has been developed for the data transfer of advanced real-time
and decentralized control system devices, in which for example the sensors and regulating units
communicate directly with each other without the help of any intervening control unit. The CAN
bus is a so-called multi-master, in other words several nodes can access the channel simultaneously.
The CAN protocol is relatively simple which makes the programming of applications fairly easy.
The high reliability of the data transler has also been slaled as onc of its advantages. The CAN
message contains 0 to 8 byles of inlormation. The data transler rate can be cliosen in the range
125kl-1MDb/s, data transfer distance is dependent on the chosen speed. One CAN bus can conlain
2032 objects according to CAN 2.0A specifications [8].

LON is originally a ficld bus developed mainly for building automation [10]. In the LON
bus the processor and memory reside in each control unil, meaning that the net does not need a
centralized control. The most important application areas iclude real estate, industrial and process
antomation, vehicles ete small systems. The devices of different systems can be connected to the
same LON bus. The data transfer channel is open and the devices of several different manufacturers
cun be connected to it.

5.3. The GA used. GA simulates the messages that the field bus message handler receives from
the I/O-cards and display /interface cards when communicating through the CAN bus. When
communicating via the LON bus, it simulates other similar vnils in the net. Furthermore, it
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Random GA
Count 10,000 | 10,000
Mean [ms] 155.47 | 214.73
Std. deviation [ms] 65.52 | 101.89
Minimum {ms] 19.00 | 22.00
Maximum [ms] 44400 | 576.00
Range [1ns] 425.00 | 554.00
Median [ms] 157.00 | 194.00

TaBLe 1. Descriptive statistics of response times of test cases created by the GA
and the pure random method.

simulates the operation ol the digital signal processing unit and writes information directly in
Lthe databases located in a cominon memory. A test case record conlains among others the delay
between two CAN messages, an optional LON load message, send times, data fields, and sender
addresses. The fitness value is the time [rom the sending of the CAN message to the receiving of
the CAN answer message.

The first generation in GA is created using the Windows random number generator. The genetic
operalors used to create new generations were single point and uniform crossovers Logether with
mutation. We re-evaluate the individuals selected from the previous generation, hecause the system
is rather non-deterministic. The mosl important parameters of the GA used in this study have
been: single point and uniform crossover of equal rate, the total crossover rate being 70%, mutation
rate 8%, population size 100 of which 30% of the best are selected for the next generation (clitism).

6. RESULTS

T this work both the genelic algorithm and the tested software were run under the ESIM
simulator in the same workstation, which was a PC equipped with a Pentium 200 mmx processor
and Windows 95 operating system. Observe that Lhe processing times should not be directly
compared to those of the target environment, in which the objecl software runs considerably
faster.

In order to compare pure random and a GA based method, 10,000 test cases were generated
and tested by both methods. Table 1 represents the corresponding deseriptive statistics. ;From it
we can see that the average response time of test cases created by GA is much longer (38%) than
that of the random method. This implies thal GA is able to find and favor some test cases that
lead to longer response {imes.

Figure 1 shows the distribution of response times for both methods. As we can see Lhe histograms
are quite similar, except thal the GA method has an additional peak between 300 and 400 ms.
Obvionsly GA has been able to identily some input parameter combinations resulting to longer
response times. In order to find those parameters Lhat cause the difference we caleulated the
correlations between all input varinbles and response time. Almost all of these correlalions were
very small, of magnitude 0.1 or less. The highest correlation (0.45) was found between the response
time and in which state of the CAN message processing the LON message was sent.

To demonstrate how strong the effect of LON message sending is on the response time we draw
fignre 2, where test cases were divided into two groups “no LON messages” and "LON message
sent. during the test case”. It is clear that the additional peak at the longer response time end
was almost totally created from Lest cases, where the LON message was sent. So it is obvious that
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FIGURE 2. Response time dependeusy on LON sending,

the GA based method [avors the LON message sent during the test case more than the random
method. We identify six different states of CAN message processing when a LON message can be
sent {figure 3). It is obvious thal the longest response times can be expected if the LON message
is sent shortly before the CAN message. This is probably due to the fact, that in that case ihe
program starts to process the received LON message, before the higher priority CAN message
arrives causing the interrupt handler to start the processing of the CAN message. In figure 3 both
the GA and random methods perform similarly in all six classes, while the overall response time
is much higher with the GA method.

Furthermore we divided all test cases into the same six classes given in figure 3 and figure 4.
From the latter it is obvious that GA learus the problematic test parameters and creates many
more test cases [or the most problematic class B than the random wethod. The time segments in

the six classes are not equal, which explains that neither method creates evenly distrityuted test
cases.
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FiGurr 3. The six CAN message processing states, when LON load message
can be sent. A=no LON message, B=LON message shortly before the CAN
message, C=LON and CAN message simullanconusly, D=LON message same time
as program processes CAN message, E=L.ON message simultaneously as tested
program starts to generate replay to the CAN message, F=LON message alter E,
but before replay CAN message comes back [rom the program.
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Ficure 4. Distribution of test cases produced by the GA and random methods.
For the notalions used see figure 3.

6.1. Comments and discussion. It was discovered that at thie beginning of the testing the frst
couple of test cases caused the longest response time. The tested software is a stale-machine. Thus
we will get rid of this problem il we succeed to move the state-machine between the tests to a more
random state.

Because of the non-determinism every test case should be evaluated several times, the average
of which could be used as the fitness value for cach test case,

The genetic algorithm parameters ellect on the test results wus also studied briefly, but this
optimization problem was not especially sensitive to the GA parameters. This is in good agreement
witly our and other studies on the sensilivity ol GA based optimization (1, 4].
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7. CONCLUSIONS

This study shows that the genelic algorithm is applicable in pure black box type software testing.
It was significantly more cfficient in finding the suspect input parameter sets than random testing.
When analyzing the resulls it turned ont that the simple slatistical analysis combined with some
graphics is most useful.[21]

We find the resulis of this study encouraging and recommend that GA based oplimization can
be seriously considered when developing software Lesting automation. However, more research on

the possibilities of different kind of program testing with GA should be done in order to evaluate
its [ull potential.
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ABSTRACT

Automalic test image generalion by genelic algorithns is intraduced in this work. In general the proposed method has
potential in fonetienal soflware lesting. This study was done by joining two dilferent projects: the [first one concentrales on
sollware test dala penerition by genelic algorithms and the second one siedied digital hallioning for an ink jet marking
machinge also by genetic ulgorithm optimization. The objeet sofltware halllones images with different image [iters. The geal
was la reveal, il genetic algorithm is able 10 penerate images that are diflicoll for the object sollware to halllone. in other
waords 1o find if some prominent characteristics of the original image disappear or ghest images appear due 1o the hallioning
process. The preliminary resulis showed (hat genetic algorithm 1s able o find images that are considerably changed when
hallioned, and thus reveal polcntial problems with the halfloning method, i.e. e¢ssentially wsts for errors in Lthe hallioning
sollware,

Keywords: Dithering, genetic algorithms, digital halNoning, image (iltering, test image gencration. software (esting, image
comparison

1. INTRODUCTION

There docs not scem 1o be much research in the Geld of 1est image evaluation. How 1o delermine a good Lest imapre. What
are the cssential characieristics of a good wst image? How 1o determine thal a particular image is geod for lesling some
specific image processing soltware? Merc ofien than not researchers rely on commonly used and very limited test imae
sets (fig, 1).

Figore 10 Lena image dithered by
() Floyd-Steinberg error dilTusion (b)Y Jarvis-Judee Ninke {c) Threshald matris method
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Part of the SPIE Conierence on Intellivent Robols and Computer Vision XTX: 297
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We encounlered this problem, when we wanted 1o wst the imape-processing sysiem we implemented for an ink jet marking
mauchine' % In our other study™ * * we used genetic alporithms (GA) lor solbware (esting purposes, [n this work we 1y to
combine the knawledge af these lwo previous studies and use GA lor gencraling test imagces for halfioning soliware.

. .. . e . .

The object software was originally developed wilh the Khoros™ image processing system, but later translated into Java. The
genelic algorithm {(GA) was also written io Java. The advantage of Java is its cusy Lo use image handling procedures, but the
speed 15 nol Lhe best possible, however it outperlormied most ol the lunclions of Khoros that we needed.

1.1, Genetic algorithms

Genetic algorithms” are optimization metheds that mimic evelution in nawre. They are simplificd computational models of
evolutionary biofogy, A GAs lorm a kind ol electronic population, the members ol which iight for survival, adapting as well
as possible to the environment, which is actually an oplimization problem. GAs use genetic aperalions, such as sclection,
crossover, and mutation in order to generale solulions that meel the given optimizalion constrains ever belter and betler.
Surviving and crossbreeding possibilities depend on how well individuals fulfill the larget function. The set of the besl
selutions s usually kept in an array called popolation, GAs de not reguire the oplimized function lo be conlinuous or
derivable, or even be a mathematical formula, which is why they arc gaining more and more pepularity in practical wechnical
oplimization. Today GA mcthads lorm a broad specirum ol hevrislic eplimization methads.

Genelic algorithm were previcusly adapted 10 the dithering problem™ ', For Turther references of GAs in image processing
sce bibliography'' or book'®. Tmage gencration with GA is uscd at Ieast in*'. Image gencration for algorithm validation is
represented in'*. GAs has previously been adapied (o autematic sefware test data peneration in several studies, see” ¥ and
references Lherein.

1.2, Dithering

Digital halfioning®. or dithering. is a method uscd (0 convert conlinuous tone imuages inte images with a limited number of
lones. usually only two: black and white. The main problem is o do the halfioning. so 1hat the bi-level resolt image does not
conluin arlifacts, such as moiré, lines or clusters, caused by dot placement'®. The average density of the halitoned dot patiern
should interpolate as precisely the original image pixel values as possible.

Dithering methods include static methods, where cach pixel is compared 1o a threshold value that is obtained fc. [rom a
threshold matrix, gencraled randomly or is a siatic median value. There are also error diffusion methods, such as Floyd-
Sieinberg and Jarvis-Judge-Ninke used in this paper. In these methods the rounding error of the current pixel is spread into
those nelghboring pixels, the bi-level value of which is not yet determined.

2. THE PROPOSED METHOD

The proposed method is shown in ligure 2. The GA runs as its own program and oplimizes parameter vectors which arc
used by an image producer 10 create inages, which are further sent 1o the objeet sofltware, that halliones it and returns the
resulting image. The pixelgrapper reads pixels rom both the test image and ils hallioned Lransformation image and
transmils 8-bit pixel arrays of both images to the Mtness function evaloator. The difference between these images is used ay
the fitness function, GA pgenerales new parameler veclors by using crossover and mutlation, lavoring lhose parent
chromosomes that previeusly had gotten a high fitness value,

Test images can be created by twe difterent ways, cither using an image bitmap as a genetie algorithm chromosome, which
is rime consuming and thus restricts one Lo use only relatively small images. Another way is 1o oplimize parameters, such as
place, size and color of elementary graphical objects, like lines, reciangles, circles and letlers. together with the background
color all encoded as a GA chromosome. Several (iiness functions were tesied: the average density at the corresponding

image areas, edge location comparison, pixel by pixcl comparisen using low pass fillered images, and tonc diflerence
belween consecutive pixels.

298



ACTA WASAENSIA 111

2.1. Comparing the images

Comparing a dithered image with the original onc is obviously a challenging problent. One cannot simply use pixel by pixel
comparison, since dithered images usually have only two tones. The minimum dilference by that measure would be
achicved il every gray lone were rounded 1o the nearest tone (black or while), which in pructice usually results in poor
images.

- - 15 17 . . .

Better image comparison melhods have been developed™ 7. Que allernative is 10 som the pixel valucs (rom the
corresponding areas (o window) over the images (o sce il the average gray tones have been preserved. With this method
onc can compare the images directly. and this is one of the methods that we used.
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Teal image
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Figure 2: The proposed GA based method o tes) dithering soltware syslem

A sel of methods called inverse halfioning'® has been developed. From these we used (he perhaps mast cammion low pass
filtering method. Ln this method images are first low pass fillered and the resulling images are then compared pixel by pixel.
The problem with lowpass Gllering is that the high frequencies will disappear and the images get a somewhat blurred overall
appearance. However, this method is easy to implement and it cnables pixel by pixel comparison.

Another comparison methed we tricd is a line by line comparison of the diffcrence between the current and the previous
pixel. This method is introduced in®. For example il we 1ake a chess board and the micror Image of it, comparing them
pixel by pixel we pel the resull that the Lwo inages are as lar lfom each other as can be. 11, on the contrary, the comparison
is done by comparing the dilTerence between consecutive pixels in cach image. the sum of the difierence will be very small.
[I'we use the absolute value ol diflerence between pixels, the two images are identical, i« the sum of the difference is zero.
This method can be vsed to compare low pass fillered images. and may be used 1o some extent with also the original and
halftoned images.

Yet another method 1o find [eatures that have changed is Lo use edge detection, lor example the Prewitt, Robens or Sobel
edge detection flters'. Edge detection can be applied to low pass filiered images and to seme cxtent o original images a5
well.

3. EXPERIMENTAL RESULTS
3.1. ITmplementation: bitmap
Qur fNirst implementation was based on an integer {8-bits) coded GA, where the whole image bilmap was encoded as a GA
chromosome. A pene was thus an integer value benween 0 and 235 {grayscale values). The lenglh of one GA chromosome
was equal 1o the image size (Fe. 256 with 16x16 image). The uniform crossover™ was used by choosing randomly a gene

from one of the parents. A randomly selected pene was changed by a random grayscale value with the mutation probability
0.01. Other GA parameters: population size 30, elitism 40%, 10,000 individuals evalualed.

188
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3.2, Results

This implementation was (ound o be very stow. So it was used only for small images. where the oplimal solution may still
be caleulaled, just to check thal the GA oplimization works properly for the problem. The images produced by this method
were just shapeless noise,

The simplest halflone [iler 35 (o round each gravscale value 1o (he closest bi-level image value, in practice with 8-bils, 0 or
255 (= w). black and white respectively. The maximum error is achieved if each pixel has the grayscale values L2 or
[w2] (rounds 10 0 and w). The maximum error, calcolated pixel by pixcl, for image size 1616 is then 32,512, GA reachued
the value 30.135.

Another method for which the maximum error is casily caleulated is the threshold matrix filter. 15 we use 2 16x16 matrix.
which has exactly one of each threshold values /, e [0, 255]. the maximum error is reached il every pixel 1s ither LrJor
[#,]. The maximum crror is now 48,133, GA reached the value 31,721,

The third Miter we tested was the Floyd-Steinberg error diltusion method. In thal test the maximum error is more dilTicult 1o
calculate, since the crror is spread o neighboring pixels, bul we can assume that 1t is less than 32,512 beeause of the
dilTusion eMiccl. GA reached the value 27,292, Wilh the Jarvis-Judge-Ninke error dilTusion method GA reached the value
39304,

3.3, Implementation: fealure veetor

[n our second implementation we used ineger coded GA. where the chromoseme consisted ol image paramelers thal define
features, such as background color, what objects, which color, what size and where 10 generate them. ‘This encoding has
some similaritics with genetic programnting pringiple™, The size of the generuted image was 256x256. so that the valucs of
maost parameters; upper left and lower righl x and y coordinales ol objecls, color gray lones. and ASCII valuc of leners,
would [it 8-bits. However the font uscd. font style and size had o be scaled, The coding used in the images represented in
the result section generated [ive lines, onc rectangle, one circle and rwo leulers into the west image. That ceding required the
chromosome length 50 hytes (1 [or background color. five per cach line, rectangle and ellipse, seven for each letter).
Papulation size was 30, elitism 30%, only 550 evaluations (initial population + 20 generations) were made because of the
hcavy time demand on cvaluating dithering resull, only uniform crossovers, and mutation probability 2%.

3.4 Resulis
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Figure 3: The development of GA (iiness fvs, number ol iterations with comparisen method LP,
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All'test runs with each dithering method together with each comparison method was repeated at least Give times in order 1o
gel some eerlainty that some (est repeatable features could be found. The very first observation was that the separale Lest
rons with the given dithering methed and image comparison method tend 1o produce images with nearly the same
background tone &. Table | collects the backpround colors of the best solulion images Found in each test run. Table 1 shows
the result that with almost all dithering/comparison method pairs the best Lest image had nearly the same backpround tone A
in all separate west runs. Note that with 8-bit representation f.c. b= 8 and 4 = 246 are complements of cach other and lead to
the sante minority pixcl density. It is cbvious that b is a significant factor when evaluating halfioning quality. However the
comparison method usced also clearly had an ¢flect on the result. So it is essential (o find a proper comparison method.

The nolations used hereon Le. LP-F8 = comparison method L2 combined with dithering method F2.
The optimization result with GA vsually develops logarithmically, fig. 3 shows the development of optimization with [rst

method. However with as short optimization runs s in this the development is quite small, only between 2 10 30 % from
the best of initial population 1o the best overall.

Table 1: Buckground tone & of best test imapes in cach run,

Comparison method Dithering method Test run
1. 2 3. 4 5.

LEF  Low pass (ilwered images F5 Floyd-Steinbery error dilfusion 3 24 L LN
pixel by pixel JJIN Jarvis-Judge-Ninke error diffusion | 246 246 23 HI] 246
TH GA oplimized threshold miatrix 205 203 206 203 201
L5 Low pass fillcred images by Fs _ 65 63 65 65 67
the dillerence belween JJIN 180 189 182 178 32
sequential pixels TH 158 153 155 157 159
S Sumi of Llones inside FS 17 s 4 16 209
comesponding observation JIN 47 212 154 46 157
windows TH 153 | 6] 2] 53] s
DE  The difference between lound | F5S 158 154 153 152 157
cdoes in ariginals JuIN T3 140 1391 137 112
TH 123 118 113 118 119
DL The difference benween found | ¥ 242 211 Bl M6l 245
edges in low pass (ilered JI 233 232 27 236 J234
images TH 201 201 201 207 206

3.4.1. Pixel by pixel com parison after low pass filtering (Method LE)

a b c

Figure 4: GA generated st images (or Floyd-Steinberg error diflusion filer.
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LP-F5, Test runs resulted in an image, where & €[8. 13] or b = 246. 1t scems that these gray lones gives the kind of
minority pixel placement 1hat resulis in a highly foggy-looking Image afier Butterworth low pass filtering (see fig. 5¢). The
minority pixels in the dithered images are also visibly disturbing 1o the human eye (g, 3b), since (hey seem (0 creale new
fealures that are not existent in the original image. The other GA pencrated fealures with these images seemn surpristngly
consistent, in every {esl run GA crealed only lines, bul nol rectangles, ovals and only rarely leters. Even the line placing
belween separale lesl runs may look quile alike Tor the uman observer {sce fig. 4). Figure 3¢ shows the grainy result ol a

ACTA WASAENSIA

Figure 5: Test image generated by GA for Floyd-Steinbere crror diflusion method,

(a) Low pass filiered image ¢,

{b) Dithered inwnge dc.

(cy Low pass filered miage b,

a b
\ .1‘-.
/
c d

Figure 6: Test image lor Jarvis-Judge-Ninke error diffusion filter found by GA.

{(a) Optimized gray image, b = 246,
(c) Dithcred image a.

{b) Low pass Miltered image a.
{d} Lowy pass filered image ¢.
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low pass (iltered hal{tone imape. This kind of grainy appearance proves o be furthest (rom the original, when comparing
low pass fillered images pixel-wise,

LP-JJN. The results seem quite siniilar 10 those at LP-FS. T'est runs resulted in an image for which & was =[241(, 246] (the
best found solution of each run), Wilh this halftone filler GA also did not generate any cllipses or rectangles, only lines and
rarely letters, This might be because all possible objects may be halfioned quite properly, bul losing the whole background
color ereates a greal ditTerence.

With this dithering methed the difference between the images scems 1o be composed of the backpround color totally
vanishing {filter docs not repeat it, see figure 6¢). Also some light lines disappear (see figs. 6u and <) either totally or parily.
In some test runs the surviving lines also seemed strengthened. this might be because when the background is not repeated
the lines get more dols than they should and they scem darker and thinner in the halfloned image and its low pass [illered
version.

As a conclusion the best test image [or this method seems (e be an image, where & is so small, that it just and just vanishes
when hallloned {no minority dois present}. and where some lines cither disappear or strengthen.

b
d
Figure 7: GA penerated 1est image for a GA optimized threshold mateix method,
(2} Optnnzed imape, & =203, {b} Low pass [ilicred image a.
{c) Dithered image a. (d) Low pass liltered image <.

LE-TH. For this method images having the buckground gray tone & €[201, 206] were found to be hard. Other repealing
hard features was not recognized. Mosl likely the thresheld matrix gencrates the most uneven spread of minority pixels with

that background color. When we change the matrix, also & changed, remaining quile consistent when using the given matrix,
however.

As 2 conclosion it seems that GA is able to also reveal weak points of the threshold matrix methods. Remember that thesc
malrices were originally optimized with GA'™-*. Oplimization seems 1o (avor round shapes and the results locked fine when
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dithering the Famous Lena image (Fig. 1¢) or a grayscale”. When dithering GA generated test images, the uncven spread ol
thresheld values gets painfully visible, however. With a uniform background 1one the periadicity of the threshold matrix
method is clearly visible. These threshold matrices also have difficulties repeaing lines and small objects (sce Nig. 7c). The
main dilferenee between images sceins o be caused by a grained background {compare (ig. 7b and 7d}.

3.4.2, Compuring dilferences between sequential pixels (Method LS).

L8-F8. This leads 10 images, for which b €[65, 67]. Other [eatures in common were net recognized. excepl that quite a
few ohjects were present. The best 1ost image seems 1o be the one, where all (the objects disappear (tom the image leaving
only the backpground one & = 63 resulling a regular, web-like dot placement {loak iig. 8d). By low pass flicring this
halfione image we got an image with theee lones & e {58, 63, 69). While the original image does not have any dilerence
between sequential pixels, the resulling image always have a small difference, Summing these small differences resulls in
the longest distance between images,_Note in fig. 8d that the objects break the perfect web-like siructure caused by b = 63
and develep extra ghest lines. These lines can also be detected by edge dewection {sce Tigure 81},

L5-JJN resulls in images. which do not seem 1o have any [catures in common belween separate lest runs. with the
exceplion of the background tone, which scttles to # = 82 or b e[178, 189). The low pass filiering of the hallione image
produces an image with a misty background. where gray tones vary in interval b6,

For LS-TH.we got lest images thal did not seem 1o have any recognizable [cawres in common. The GA optimized threshold
matrix was the same as with comparison method 1P,

Figure 8 (a) GA generated test image for LS-F§. (b) Low pass filiered a, {¢) Image a afer edge detection,
(d} Floyd-Steinberg dithered a, (e} Law pass Altered d. (N ITmage of d aler edge detection.
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3.4.3. Comparing sum of tones within mxa windows (Methal SW)

The comparisen of images was done by calculating the sum ol pixel wones inside the corresponding ¥ windows. The
window pairs were moved over the images with step #/2, and in the next round window size has increased by #/2 (see Code
extract ). The tolal sum ol all observation window dilTerences is the (inal difference figure.

Sw-F5. This time the background color & e[44, 47] or b = 209. All the test runs with method 2 and B resulled in images
wilh quile a few objccts. other than lines. For SH-FS§ a large rectungle was placed in cach five images. 3 out of 4 times it
had tonc 209 (sec fig. ab). In one case the backpround/reciangle lones were exactly switched (fig. 9¢). Floyd-Sicinberg
dithering may resull in most uneven dot placement in the border of those Lwo tones, which would explain this behavior.

di1Ef=0; //variable for difference sum
forin=2;n<15;n+=n/2) //n = s1ze of observation window
For{i=0;i<(i helght-n);i+=1/2) //go cthrough the image
for{j=0;3j«<(i.widcth-n};j+=n/2)
{ // ™ Moves window half of it's width and height
xx=0;yy=0; //tone sum variables
for(ii=0;ii<n;ii++) //move inside n*n window
for{jj=0;jj<n;jj++)
{

xx+=pixoriginal [{i+ii}*i.widcth+3+33];
vy+=pixdithercd[ (i+ii)"i.wideh+9+33]:

diff+=Makthn.abs (xx-yy}; //difference sum
}

Code extragt 1: Java ¢ode that calculates wone disiribulion dilference between images using mxn windows,

a h c

Fipure 9: GA gencrated 1est images aptimized using SW-FS,

For SW-JJN. we did not {ind any uniformity between (est runs, there were larger and smaller ellipses and reclangles
present, bul they did nol seem 1o follow any pattern, b €]46, 212], This unilormily might be doe 1o the fact thal there are not
many prominent fealures in the Si9-JIN pair that GA could adapt 1o. This might be further because the dithering method
has been developed 10 spread dots as evenly as possible.

With SW-TH lesl images penerated with all runs were quile similar, & €[152, 156]. no other objects than lines and some
small leters. This background range is probably the most unevenly repeated with that particular GA optimized threshold
malrix when comparing the lones within observation windows.
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4.3.4. Comparing images by using edge detection (Method DE)

In this parl we generaled lest images by the difference between found edges as the (iiness [unction. The Sobel edge delector
was uscd 1o [ilter cdges lrom the original and dithered images. The Prewiu and Roberts edge detectors were also
implemented and tested, but the resulis arc nat reported here.

DE-FS peneraled images wilth & [152, 158]. there were not many objects present, only lines and some small letters. With
these tones edge detector do not Nind any real edges. bul only noise, which looks like that inside the ball in fig. 81

DE-JJN generates images with &= 112 or & €[137, 140). wilh especially Tew small ebjects, shont lnes, In them. The cdge
detection from hallione image is also noise.

DE-TH generale images with & e[113, 123], and alse especially [ew small objects like DE-JJIN. The background coler
seemed 1o cause several false edges with that particular threshald matrix.

These observations suggest that the Sobel edpe detector might not be good as a fitness function when immediately applicd
o the original and halftoned image. Edge detectors, that are particularly developed for hallloned images might be more
suitable,

4.3.5. Edge detection with low pass filtered images (Mecthod DL)

-3

Figure 10: Edge delector as Diness lunction,
(i} Test image generaled by GA. (b} Low pass filiered image a, {c) Edge detection applicd to b.
{d) Floyd-Sizinberg dithered image a. () Low pass lilered image d. {1} Edpe detector applied to ¢.
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[n this chapler we apply the Sebel edge detection 10 low pass liltered images, These test runs resulied in fairly similar
images when comparing ow pass fillered images directly pixel-wise, with the exceplion ol Jarvis-Judge-Ninke dithering.

DL-FS rcsulls in images [or which & = 8 or & e[241.246], il is similar 10 LP-F5, but this lime there were also some
rectangles, cllipses and lacge letters present. Low pass lilering the dithered image results again in a lfogpy background that
gels even more prominent with edge detection (see fig. 10),

DBL-JJN resulls images for which b = 27 or & €[232, 236]. some conlaining rectangles and ellipses. These backpround
values & produce halllone images the background of which consists ol rure minority pixels. Low pass [iltering results in the
sume kind of fogginess as with DL-FS . In addition some light lines are net repeated.,

With DL-TH the resulls were quile similar as in LP-TH. The background tone is & €[201, 207, no other objects than lines
were present. No other recognizable similarities between separate test runs were detecled.

4. CONCLUSIONS AND DISCUSSION

The results conlirm that GA is capable of generaling test images [or testing different halfloning metheds. Either some
leatures of the original image disappear or some artifacts appear. The changes were pereeived cither by comparing the
original and the dithered image, comparing low pass [iliered versions of the images or applying edge detection after low
pass lillering. The preliminary results ol this work showed that the backpground tone is by [ur the most signilicant faclor
when testing the dithering methods.

The background color of the generaled test images clearly depends on the dithering methed used. This leads o the
conclusion that problematic images for a given dithering methods have some leatures in common that GA 15 able 1o adapl.
Alse the fitness [unclion has some influence. This leads to the conclusion that we must certainly do more research on which
GA Miness Tunction is most proper in this context. Best fitness function miglt be some kind ol hybrid of the dilfferent
comparisen methods. 1deal fitness lunction would model human vision as precisely as possible.

Soflware testing is an important part of sofware development, Testing is lime demanding, and even the partial aulomation
can produce savings. [t s net reconumended that the sollware developer does the testing, Aulomalic tesl lools may cover
some favlis that the iester is blind 10. In this work (he objeet software was not (that complicated, it mainly consisted of well-
known image opcrations, and yot feeding a large number ol imagces did cover faulis that only manual testing with a couple
ol common images did not uncover when we implemented it

4.1 Fulure

Image comparison could be enhanced by applving some leaure extraction method, like MRDEFY, Also the possibilities of
applying [uzzy logic 1o image comparison is under rescarch. Siatistical analysis of (he gencrated image parameters should
be done in order to fully determine possible correlaling parameters. So [ar the observations have been made by observing
the images and analyzing only a couple of variables. After a satisfving (ness function has been found, the obvious
application of the above (esting method is automatic dithering method design. One GA generates halflone filters while the
ather GA trics to create the hardest iest image for cach [lter. The best fiter being the one where the hardest test image is
closcst to the original afier dithering. In gencral this kind of approach cauld be vsed in the design and testing of demanding
sofiwarc.
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ABSTRACT

In this study we use penetic algorithms 1o generate test surfaces for a proposed structured light 3-D vision system in
order (o estimale the worsl case behavior of emor lolerances, The object soliware evaluales surlace proliles for
measuring volumes of small objeeis anached on surfaces that are highly constrained while somewhat arbitrarily shaped.
The 1est system (rics o [ind, by using genciic algorithm scarch, the shape that results the highest relutive error of
volume. The puarameters of the object system w be optimized include laser angle, image size, object slep size, and the
number of scan directions. The preliminary results gol seem lo indicale thal a genelic algorithm based approach is a
benelicial aid in optical system design.

Keywerds: Genelic algorithms, image processing, 3-D imaging. 3-D metrology. machine vision. simulation, structured
light vision,

1. INTRODUCTION

Automatic tesl surface generation by genctic ulgorithms' (GA) is introduced in this work. Tn general. the proposed
method has potential in functional soliware testing. The goal was o find out, il genetic algorithm is able 10 penerale
surlaces that are difficult for the object soltware (o measure. in other words 1o find out the accuracy or crror lolerances
of the object software, Sofiware westing is an important part of sofiwarc development. It is Lime consuming, and even a
partial automation can produce considerable savings. The benelits of automaltic test tools also include that they can be
much more objective. than a human testers. In this work the objecl sofiware consisted ol some ray tracing” and related
trigonomerry procedures.

The measuring ol small objcets lixed on o surluce is a difficult problem. Knowing the surface profiles we can
interpolate its volume. There arc scveral methods that are developed for imaging based surface metrology, like stereo
photography. structured light vision, and shading, rellection, and focus based methods. [n this paper. we concenirae on
structured light vision™ *. This work was dong in one of our research projects, developing a high speed 3-D
measurcment system for small objects, First we want to confirm that the proposed system mieets the accuracy demands.
Therelore, we decided (o first simulate the system.

Genetic algorithms are optimization methods that arc known 1o be solving quite well many dillicult eptimizalion
problems; herefore, we decided to use the OA 10 generate simulated 3-I2 test surfaces 1o be measurcd. We simulated
the imaging process by cvaluating how light planes would lie on 1the simulated surlaces (ray tracing) and [lurther
generating simulated images [rom these height curves. The simulated surface/image may not cxactly correspond Lo the
real machine vision sysiem. the former being more ideal and exact than the later.

" email: tmanterefabo. 11 ™ jal@uwasa. ti

466 [ntelligent Robots and Computer Vision XX: Algorithms, Technigues, and Active Vision,

Pavid P. Casasenl. Ernest L. Hall. Editors. Proceedings of SPIE Vol. 4572 (2001)
2001 SPIE « 0277-786X/01/815.00
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I.I. Genetic algorithms

Genetic algorithms are optimization metheds that mimic evelution in nawre®, They are simplificd computational models
ol cvolutionary biology. The GA Torms u kind of electronic population, the members of which fight lor survival,
adapting as well as possible w0 the environment, which is acwally an optimization problem. The GAs usc genelic
operations, such as selection, crossover, and mutation in order 16 penerate solutions (hat micel the given optimization
constraing bener and better. Survival and crosshreeding probabilities depend on how well individuals [Ullill the target
funciion. The set of the best sclutions is usually kept in an array called population. The GAs do not require the
optimized Tunction 10 be continuous or derivable. or cven be expressed as a mathematical formula, and that is why they
gain more and more popularity in praciical technical optimization. Today the GA metheds form a broad spectrum of
hcuristic optimization methods.

1.2, Structurcd light

Structured light vision® is 2 method wherg the object, the surface height of which is measured. is lighted in such a way
that the sharp light and shadow lines on the sorface can be imaged. The sharp light planc on the surlace lollows the
surlace prolile and forms height curves that can be imaged. In order 10 measure the whole surface we must scan the
whole surtace by moving either the light plane or the object using small sweps and recording a new image after cach
sicp. The heighil information {rom 1hese images must be evaluated for the Turther estimation ol volume. For this we need
1o know several parameters including the height curves, the zero level, camera distance (fom the zero level. scan
directions a,, laser angle «,. and the focal length, the acwal size that the pixel corresponds 1o the surface (fig. 1).
Usually the measurciment sysiem consists of a CCD camera and compuler.

Laser Camcra

L_ N
- Camera height A,

Light plune
LLaser transition ¢
angle ; from zero

level i
A
L %

-] Mcasured
N surlace
. . A
Surface x\\ g
height .,

P
Swep size s

Zero level

Fig. 1. The structure of the siuctured light vision measurement sysiem.

The prablem with this kind of measurement is that the camera distorts the image lowards borders, causing the surflace
profile and pixel sizes vary spatially. Another problem is that the light plane is not ideally thin, and it may cover several
pixels with diflerent wones, when the exact borderline of the light curve is difficult or impossible to define. 10 the light
plang is less than one pixel thick. the max crror is equal o the pixel size; the plane is within a pixel. The location cannol
be evaluated more accuratcly.

L.3. Related work

Genetic algorithm has previously been adapted 1o the surface simulation problem in rell 6. There are also several sdies
of shapc optimizalion”® using genelic algorithms, For shape representation using Bezier curves'' and GAs. see refs. 10,

Proc. SPILE Vol. 4572 467
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and 12-13, and referenees therein. The use of GAs for shape modeling [rom images is represented in refl 14, and
examples of GAs in optical system design’ ', In addition. the GAs has been largely applied 1o image processing; see
bibliography 17. GAs has previously been applied 1o automatic data generation for soltware testing in scveral studics,
sce rels. 18-20, und references therein,

2, THE PROFOSED METHOD

The proposed method consists of a GA that oplimizes parameter vectors, which are used by u surfuce generator
procedure Sur ECreate 1o create 3-D surlaces, from which they are further transformed inte surface height curves by
procedure EvalCurve, The simulated surlace heipht images are then sent Lo the structured light vision soltware SLV
that evitluates the height information and generates the 3-D model of the surface (fig. 2). The subprogram Fitness
evaluates the fiiness Munction. It gets as its input the original § and the reconstructed surfaces R, from which il evaluates
the difference, ic. Miness. = R - §. GA generates new parameler vectors by using crossover and mutation. {avoring
those parcnt chromosomes thal previously have gotlen high filness values.

GA parameters used in these Lests were: population size 30, elilism 50%, crossover rate 50%, und mulation probability
3%. New individuals were gencrated by applying both one poinl und uniform crossovers between chromosomes with
50/50 ratio; in addition, arithmetic crossover belween genes was applied at the rate ol 10%. Test runs consisted
gencrations in the range [100, 1000].

Test surluces can be created in several difTerent ways (sce ref. 21). The most natural way may he using surlace
cquation, bul when we have many constraints, this approach is less tempting. Other possibilities include splines and
Bezier surfuce representation, Perhaps the simplest allernative would be using a height matrix. this unfortunaicly
cnubles only ver small surfaces in practice. Yeu another incthod is 10 generate Iwo arrays, horizontal and ventical, the
height matrix being product of them. which cnables a much larger surluce matrix. The obvious drawback is that the line
and column valuces are not independent in this case.

Parmmeter vector

Generaled surface

Surface velumi

vstimauty Sinulated imapes

Fig. 2: The struciure of the proposed test sysiem,

We run some preliminary tests with the height matrix, bul due 1o slow pracessing found it to be less praciical lor the GA
oplimization, The representation cventually resorted here consisted of two arrays, horizental and vertical, that are
actually cantrol points of Bezier curves, the preduct of which is the surlace. This approach enables continuous surlaces.

2.1 Preliminary tesis

In order 1o see roughly how accurate the measurement svsiem could be, we made preliminary wests with three test
surfaces: 2 cube, hemisphere and pyramid (slope 45% (Nig. 3a-c). The cube was aclually hall cube, because we wanted
the width, length, and height measures o be the same as with the hemisphere and pyramid. These three shapes were
selected mainly because of their simplicity, The drawback ol this lesl set is that it consisis of only symmetric and
convex shapes.

468 Proc. SPIE Vol. 4372
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Figure 3d illustrales bow light planes are incident on the hemisphere surface (fig. 3b}. The corresponding reconstrucied
hemispherical surface is represented in figure 3e. The measurement error profile is shown in figure 31 We can see that
the measuremient error is conecnirated in the back area ol the surface (or the one scan model, This area behind the image
is not secn, when scanned {rom onc direction. because its angle is higher than the laser angle, and therefore this
invisible mass appears in the crror figure. This problem is at least parily avoided when using more than one scan
direction,

Fig. 3: o} A 1est cube.

©

Fig. 3: d) Projection of light Fig. 3: ¢) Reconstructed hemisphere from 3d. Fig. 3: [ The estimation ¢rror, 3¢-3h,
planes on hemisphere 3b.

o = &=
A5 @aw@

Figurc 4 shows some sclected examples ol the preliminary measurements. which were used lo determine the paramelers
lor the GA bascd simulations. Figures Ja-c show how the measurcment accuracy behaves with different objects and
image sizes 10x10, 50x50 and 100x100 pixels. withoul any estimation ol the hidden surlaces. Figure 4d shows
uccuracy. when estimating the hidden area to continue with slope o, but as it can be seen, it does not perforin 0o well,
and we abandoned it. When looking Ogures 4u-c it scems that the best aceuracy is achieved, when o, = 63° Figure de
shows accuracy as a function of image sizc in pixels axa, when o, = 63" From ligures du-¢ we cun see that image sive
10x 10 pixels is excessively inaceurate, 50x50 is much better and 180=100 still better. From ligurc de, we can sce thal
the measurcment accuracy is betler. when using more pixcls. However, the measurcment lime increases as a square of
the number of pixels {Mp. 40). Pixel size 100x 100 was selecied for GA simulalions, since it gave reasonable accuracy
and the simulation runs were sull reasonably Fast: 3000 surfaces with two scans were evaluated in Lh 20min by a 667
MHz, Pemtium ™ computer,

Figure 4g shows how accuracy depends on the light plane siep size 5. [1 seems that Lthe shortest possible 5 corresponds 1o
the pixel size projected on the measured abject. However, figure dg implics that there may be some preblems in the
sollware, because the measurement should be more aceurale even with litile longer step sizes, when we are using, these
symmetric lest surfaces. Figure 4h shows the measurement accuracy. when scanning over the surface from 1wo
dircctions with &,=90°. When compared w0 lipure e, the 1wo directional scan is more accurate. especially when using
low laser angle. Increasing the scan directions. however. did not scem to increasc the accuracy much,

Proc. SPIE Vol, 4572 469
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The basic parameters for the GA-based simulations were sclected (o be: wy= 63°. 5 corresponds 1o one pixel, image size
100x100 pixels. Scanning was done using 1-4 directions: with two directional seans with both 90° and 180° angles
hetween scan directions,

3. EXPERIMENTAL RESULTS

3-1) free form surfuces were generated as products ol 3" degree Bezier curves. The implementation is a simplilicd
version of the traditional Bezier surlaces and resoried, because we wanted o restrict the number of paramaters that GA
optimizes, 10 less than one hundred. In our [ree form surface model four control poinls form one curve segiment, 1!
segments are further attached together 1o form a composile Bezier curve. in such way that the last control point ol each
curve segment was also the first control peint of the next curve segment. The first and last control points ol the
composite curve were equal 1o zero, so thal ihe surface would starl and {inish wt the zero level. Therelore. we needed
aliogether 32 vertical and 32 herizontal control points, The surface information was implemented as a chromosome
consisting of 64 floaling point numbers in the range [0.0, 50.0]. We used DeCastaljan™ algorithm 1o define x, = C\()
and v, = Coff) values of the current point (4, /). i.c. x, was calculated ffom the lirst composite curve, and v, from the
second, and the value o surface height =z = Jx, o x oy ;-

The object of the firs test runs was (o {ind the largest relative eeror. Unlorlunately. the GA then generated almost zero
values lor the whole surface, and the vision sollware could not see much difference compared 10 zero level causing the
relative crror to be almost 100%. Anyway. this conlirms that our GA was capable of finding oul some sysiem
weaknesses. The tests represented thercon were done in such a way that the volume was normalized 10 be a constant.
Therelore, the absolute and relative errors were proportional,

3.1. Results

Table 1 shows the results of the accurucy measurements. The first column shows thul with our st set (cube,
hemisphere. pyramid) the worsl aceuracy was always sueh that the object was measured 1oo small {negative error), The
more scan directions the beller the accuracy,

The first GA s just tried to oplimize the absolute relative error withoul giving any signilicance to the sign of the
error, which lead the oplimizuion always find the largest negative error. However, when we Lhen made new lest runs 1o
see whal the maximizing of relative error would <o, we lound out that with almost all cases we can find cases where the
proportional error was aclually relatively higher on the positive error side, Therefore we decided 1o run 1ests, where we
minimize and maximize the relative error concurrently. The highest and lowesl 23% of GA populalion survived lor the
next generation and the middle 50% were replaced by new individuals. This way the population also stays more diverse,
We did some comparison runs by only minimizing or maximizing the upper or lower error limils, and it scems that the
concurrent optimization finds the limits approximately as efTectively.

The accuracy rets also beter with the GA generated Iree form surfaces with more scan dircetions. in the case of
negalive error. However. for some reason there seems o be a larger ercor with 3 and 4 scan directions, in the case ol
positive error. This implies that the measurement sofiware docs notl combine the three or lour directional height
intormation corrcctly. This is a point for further soliware development.

The results imply that the two dircciional sean is the best overall, and o, = 90" is better than «, = [80°, TFor some reason
the a, = 90° 1wo directional scan error limils are strongly skewed towards negative crror implying some sort ol some
syslematic ercor in sysiem. If we could climinate the error. the system might be quite aceurate, since the GA was unable
1o generale objects thal were measured more than [-14.35, ... 2.65)% crror. llowever, for the free form surface model,
the accuracy is much lower: {ree surface marix with the GA. gave crror in the range [-15.6, ..., 65.0]%.

Figure 5 shows two examples of GA generated surlaces, the corresponding reconstrucled surfaces, and measurement
errors. The first three Tigures (3a-¢) show @ surface, for which the error is negative, Figure Sc shows the measurement
erro; Lhe negative areas on the figure are the ones that 1he measurement sysiem does nol sec in the original surface.
From these Mgures. it 15 difMicult wo el the difference, bul aceording to the error figure Se, the crror is quite substuamial
in some parts of the surface; the problem arce steep hillsides (hat arc in the shadows.
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Fig. 5: a) An example of a GA generated 3-D test
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The last three ligures (3d-e) show the resulis ol a surface, for which error is positive, The error profile figure (31) shows
as positive those arcas thal were measured too high and negative those areas that were measured wo low. In this series,
it is casicr o 1cll the diflerences between the original and the reconstrucied profiles; peaks have been smoothed and
correspondingly valleys have been somewhat filled or even disappeared. The error profile discovers also a part ol the
original surface that the measurement misses, a hill that has been shadowed by larger hills around ii.

Table 1: The measurement error lolerances of test objects of Tigure 3 and GA generated frec form surfaces

if scan direclions Worsl accuracy wilh test Worst accuracy with GA | Worst accuracy witlh GA

object set (fig. Ju-c) [%6) generated surlaces, when | generated surlaces, when
error < 0 [%] error = 0 [%6]

] -5.98 -16.88 34.30

2, o =90° -4.82 -14.35 2.65

2, ¢, = 180° -4.82 -18.58 21.83

3 115 -6.31 26.08

4 .13 -5.78 29.85

The gencraled test surlaces were probably more complicated than the ones we were Lrying lo meisure with the device.
However, especially surfuce in Nigure 3u shares many similarities with the real surfaces we were rying o simuolale,
Taking into consideration that the imaging part of the simulition has been idealized, the more complex surfuces may
have properties that balance things. However. reflections and other real world optical problems werc not considered.
therefore the measurement error limits achieved must be considered as the maximum accuracy limits, rather than
minimum or average.

Figure 6 shows un example of how the fitness of the best individuals in the population develops during the west run, and
how the diversity ol the population fitness behaves, These curves are [rom optimization run with two scans with o,=90°,
The fitness curves {lell vertical axis) show the logarithmic development that is typical for GA. The development
virtually ends alter 100 generations, The diversity (right vertical axis) ol the population is quite well muintained perhaps
due o minimizing and maximizing concurrently. A separate maximization and minimization tends lo cause the
diversity 10 drop near to zero in 100 generations.  Longer test runs up to 1000 generations. were performed, bul no
signilicanl improvement was delecled.
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Fig. 6: The development of [itness and population diversily when maximizing the measurement error.

The speed of the object structured light software wrilten in Java and executed in 667 MHz Pentium™ compuler was
such that analyzing one sct of 100x 100 pixcl surface images ook approx. 174 5.
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4. CONCLUSIONS AND DISCUSSION

The resolts got in this sludy confirm thal the GAs seem 1 be capable ol generating Lest surfaces for esting struciured
light 3-D vision sollware. This leads 1o the conclusion that problematic surlaces have some features in commen that the
GA is able to adapt to. The testing was able 1o pive us some estimalion of the software accuracy lolerinces.
Unfortunately our resulls are nol exactly comparable to any represented in literalure. because we wanted to simulate
surfaces that somewhat correspond 1o the ones we try 10 measure, These test tuns also revealed that 1he tested soliware
did not combine several scans well, because two scan directions lead more accurate results than three ot four,

4.1. Future

The implementation was not necessarily the best, and fnure implementation may use real Bezier surfaces, although it
requires more control points and leads lower processing. In [uture, we might adapt co-cvolution™ (o achicve measuring
paramelers Lhal geaerales more accurale measurement result, ‘The GA population could comain several species, the
height prolile species, and species thal define laser angle and other possible measurement oplions. the {itness values lor
individuals ol one species may be delined by the help of other species. The same method could be applicd for further
soltware developmeni: there could be species in the GA population that delines rules how the three or four directional

height information should be combined, In general, this kind of appreach could be used in the design and testing of
demanding sofllware,
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Abstract

In this paper we propose an approaeh 1o auwomatically develop
and test software by co-evolutionary optimizalion using genelic
algorithms, The idea is o penerate hoth rule based methods lor
combining scan image datw and corresponding simulaled est
surfaces for a structured light valume measurement system, The
poal is o minimize the worst case behavier of error bounds of
the volume mcasurcment. One genetic algorithm is used 1o
wenerile rules 1 combine sean data that give minimom relative
grror on the wsl suriace population, which is gencrated by
another genetic algorithm irving to create surfaces giving high
measurement crror. Thus the surface populalion delines 1he
fitness of the method population and vice versa. Based on
abservations of evolution in nature it is believed that il is this
kind of co-cvolution that leads in the long run w excellent
solutions. that would be difticuly o lind by more aditional
genctic algorithm approaches. Indeed, the preliminary resulis got
seem lo indicale that ¢o-evolulion is benelicial in sollware
developnient and Lesting.

Keywords

Co-cvolution, genctic  algorithms, inage  processing, -1
imaging, machine vision, simulation, soflware engincering,
soflnare wsting, structured light vision.

1. Imtroduction

A co-cvolutionary oplimization based appreach for soliware
development and Lesting is proposed in this work An example
ol thc approach applied to ithe developmenl and twsting of
struclored Hght vision system is given, The goal was 1o lind test
surlaces that are most difficult for 1the object soltware 1o
mensure, in other words o find out the crror bounds of the
volume measurement. Simulianeously the measurement routing
wits developed by optimizing il paramelers o give the
minimum error when applicd an the st surfaces.

The problem was to measure the velume of small objects Gixed
on a planar surface. Knowing the praliles al the objects we can
interpolate their volume within cenain error bounds, There are
several methods that are developed for imaging based surface
metrology, like sterco photography. structured hghl vision. and
shading, reflection, and focus based methods. In this paper, we
concentrate on structured light vision [9, 25]. This work was
done in ane of our researeh prajects, developing a high-speed 3-
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> measurement sysiem lor small objects To confirm that the
proposed system meets the accuracy demands we deeided o
simulale the systent (st

Genetic algorithms (GA) [12] are optimization methods that are
known 1o find quite good solwions lo many dilficull
oplimization problems; therefore, we decided to use the GA 1o
gencrate 3-D test surfaces. The imaging process was simulaned
by evaluating how light planes would lie on the simulaied
surfaces (ray tracing) [!1] and further generating simulated
images from these height curves. Though the simulated
surface/imape does not exaclly correspond (o the weal vision
system, it was lelt that ivis at least n good stirting poml (or
lesting,

Soliware testing is an important part ol sofbware development [c
is lime consuming, and cven a partial autoemation can produce
considerable savings [21]. The benefits of automatic test teols
alsn include that that they are much more objective than humin
Lesiers,

2. Genetic Algorithms and Co-evolution
Genelic algorithms are optimization meihods that mimic models
ol evalution in nawre {7] They are simplified computatienal
models of evolutionary biolopy. The GA lorms a kind of
clectronic population. the members ol which fight for survival,
adapling as well as possible to 1he environment, which is
aciually an oplimization problem. The GAs use penelic
operations, such as selection, crossover, and mulation in order to
generate selutions that meet the given oplimization censirainls
cver beter and beter. Survival and crosshreeding probabilitics
depend on hisw well individuals fulfill the warget function. The
set ol the best solutions is usually kept moan array called
population. The GAs daes not require the optimized funcrion to
he continuous or derivable, or even be expressed as a
mathematical formuli, and that is why tliey gain more and more
popularity in practical technical optimization. Today the GA
metheds form a broad spectrum of heuristic optimization
methods.

Co-cvolutionary computation [6, 14-15] (CEC) generally means
that an evolutionary algorithm is composed ol several specics
wilh difterem types of individuals, while standard evoluionary
algorithm has only single population of individuals, Tn CEC the
genctic operations, crossover and mutations are applied 1o only
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on single species, while selection ¢an be performed amonp
individuals of onc or more species. When we deal with an
optimization prablem, the environmental conditions of which are
slochastic or immeasurable, we can ity 1o develop the
environmenlal conditions concurtently with the problem. Tl
solutions implied by one species are evaluated in the
environment imphied by another specics. The goal is 1o
accomplish an upward spiral, an arms race, where both species
would achieve ever belier nesulls,

3. Structured Light Vision

Structured light vision is 2 method where the object, the surface
height of which is mensured. is lighted in such a way that sham
lings of light and shadew on the surface can be imaged. In
practice, tilted taser illominatien is used. The intersection of the
light plang and the objecl ferms partial height corves that are
recorded by camera and further used 1o reconstruct the 3-D
geomelry of the abject o order to measuce the whole surface
we must use multiple light planes orfand move either 1he light
plang or the ebject using small steps and recording a new image
aller cach step. The height information [rom these inizes must
be evaluated for estimation of velume. For this we need 1o know
several parameters including the height curves, the zero level,
camera distance fromy the zero level, scan directions a,. laser
illumination angle e, and the focal length, and the actual size
thiat the pixel comesponds 10 the surface (fig. 1) Usually 1he
nweasurement system consists on a CCD camern, scanning
imechanics and computer.
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Figure 1. The structure of the slructured light vision
measurcment system, gy, = illumination angle, @, = scan
direction, /iy dircctional heipht of the surface point.

The problem with this kind of measurement is that the camera
distorts the image lowards borders, causing the surface profile
and pixel sizes vary spatially. Another problem is tiat the hght
plane is not ideally thin, and it may cover several pixels with
diflerent 1ones, 50 that the exact borderline of the Light curve s
difTicult or even impossible 1o define. 11 the light planc is less
than one pixel thick, the maximum error is ¢qual w the pixel

size; the plane is within one pixel and the location cannot be
evaluated more accuralely within one frame.

4. Related Work

Genetie algorithm has previously been adapied to the surlace
simulation problem in rell [18]. There are also several studies of
shape aptimization [2, 19, 23-24] using genetic algorithins. For
shape representation using Dezier curves [3] and GAs, see el
|2, 16-17], and references therein. The use of GAs for shape
modeling from images is represented in rell [13], and examples
ol GAs in aptical system design [10, 22]. In addivion, the GAs
has been largely applied w image processimp: sce hibliography
[3]. GAs has previously been applied w0 amomatic data
generation for soliware lesting in several studies, see rels, {3-1],
and relerences therein,

5. The Proposed Method

The proposed method consists of a co-evoluionary GA that
consists af lwo specigs: one represenling contrel point vectors,
and e other representing measurement rules, The later
includes e (or ench scan direction and the rules how 1o combine
dircetional  heipht  information,  when  reconstructing  the
measured surface, The [ist speeies are used by a surlce
gencrator procedure Sur fCreate (o create 3-1 surfaces, from
which they are Turther transformed into surface height conves by
pracedure EvalCurve, by using the & (rom the sccond
species. The simulated surfuce height images are then sent o the
structured light vision software SLV that evaluates the height
information and reconstructs the 3-D madel of the surface. by
using the information how 1o combine directional height
information from the second species,

Surfzce parameier

Generainl wlace

Co-evolulienany

Surface velume

ulinale B Simulated imape

Figure 2. The structure of the proposed test sysient.

The rules are given in form

Z (w,f1,)

H=T ()

wiere /f is the computed heighl of some surface point, Ars are
directional heights scanned Iram cach direction, and weighls w,
for the heiphts Weights are used so that the heights scanned
from dilferent directions are {irst sonied, and then the first
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weipht of the array s always multiplied with highest ;.. and the
other ones correspondingly in the decreasing order. Index §
represents the running number of items in the weight array, and
frz:s sorted to the decreasing arder. This way we can define rules
like [1.0, O, 0. 0] or [0, 1.0, 1.0, O] that respective mean “the
height is the highest directionad hewght ™ and “the height is the
mean af the mididiz values of directional heights™.

‘The rules are Noating point numbers, so that we ¢an gel any
misture of directional values. The nule base also includes some
special rules that cannot dircetly be expressed as Noating point
veetors, like “the height 15 the fowest directional height thar is
agreater than zero™, “the heipght is the vafue closest to the
average', or “the height is the most frequent value". These
special rules are forced when extim parameter value is within
some predefined interval. The rule base may also contain &y =
[457 ... 85"] for ¢ach scan direction.

The [litness function s evalvaled by a subprogram called
Fitness. Il gels as its input the original and reconsiructed
surfaces § and A, from which it evaluates the dilferenees f, = R,
- Sy where 7 s the index for surfaces, and /s the index for the
rules. The fitness of an item belonging 1o the suriace species is

F)= m?x(f,‘, 0 - mjin(fu 0) {2)

and the fitness ol an individual item of the method specics 15
Jr() = max(J,|

Fitness functions define that the finess value for f5 s the error
interval, and for the /p the Otness value is the absolule value of
naximum error, These fitness funclion definilions were selecled,
because they seemed to be the most stable and best working of
the balf a dozen different fitness definitions experimented with.
The co-cvolutionary method trics 10 maximize fc and minimize

S

GA parameciers used in co-gveolulionary rule luning were:
population size 30 in both specics, elitism 50%, crossover rale
50%. both onc point and uniform crossovers between
chromosomes with 50450 ratip, in addition, arithinetic ¢rassover
between genes was applied at the rae of 10%, and mutation
probability was 2%, Tesl runs consisted ol 60 generations,

(3)

GA parameters used in the verification Iests were: population
stee 100, ehism 30%, crossover mle 50%, and mutalion
probability 2% New individuals were gencrated by applying
bolli one point and uniform crossovers between clhiromosones
with 30/50 ratio: in addition, arithmetic crossover belween genes
wils applied at 1he rate of 10%. We decided [20] 1o run tests,
where the emmor bounds were mosimized. The highest and lowest
filness quaniles of GA populmion survived for the next
pencration and new individuals replaced the middle quartiles,
This way the population also siays more diverse. We did somie
comparisaen runs by only minimizing or maximizing the upper or
lower crror bounds, and it scemis that the concurrent
aptimisution finds the bounds approximately as effectively. Test
runs reported here consisied of” 100 gencrations.

3-D freeform surlaces were penerated as products of third
depree Bezier curves. The implememation is a simplilied
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version of the vaditional Rezier surfaces and resorted, because
we wanted to restrict the number ol parameters thar GA
optimizes, 1o less than one hondred.  [n our free fonn surface
model Jour control points {orm one curve segment, 11 segments
are further atlached together 1w form a composite Dezier curve,
in such way that the last control point of each curve segment
was also the first control poal of the nest curve segment. The
first and Iast control points ol the composite curve were equal 1o
zero, so bl the sucface would start and end ot the vero level.
Therefore, we needed altogedier 32 venical and 32 horizontal
controi points. The surfzee infbrmation was implemented as a
chromosome consisting ol 64 (loating-point numbers i the
range |0.0, 50.0]. We used DeCastaljou [8] algenithm 1o deline x,
= and 3y = C(f) values of the current point {r, #). i c. x, was
calculated from the first composite curve, and 3, from the
second, and the value ol surface height

The tests represented hereon were done in such a way that e
volume was normalized 10 be a consiant. Therelore, the absolute
amd relalive ercors were proporlional.

When the object is imaged (rom one direction, the rear hillside is
hidden 0 the shadows, and not measured propedy, the same
happens to the snmall peaks behind a high peak. These blind areas
can be seen By scanning Lhe object fram several direclions,
However, scanning {rom different directions preduce dillerent
height matrices, where in some areas the height values might
difer substantially due 1o the (act thal the comesponding area is
in the blind zone when viewed rom sume other direelion, We
have 10 apply some rules for defining the height, if scans rom
dilterent direetions lead o different values. The rule could be
using the highest, niedian, mean, etc. value or some combination
ol them,

This rule base could also be oplimized c.g. by genetic algorithm.
However, 17 we oplimize e rule base with some slalie lesy
ohject sel. we cannat be sure that the same rule base producces
the best accuracy with other objecls 1o be measured. This is
wliere co-cvolution comes in to the piclure. We oplimize the mle
Base with GA and at the same lime as we are westing e syslem
hy trying 1o find the most difTicult object o be measured by GA
The aim is that GA optimizes the worst shape for current rule
base and al the same tme the best rule base for the current Lest
shapes 11 this kind of co-development is achieved, we could
assume 1hal the eventual rule base is satisfactory will any objeet
shapes of e same type.

6. Experimental Results

This work is 4 continuation ta that given in rel [20]. The results
in that study showed thal the structueed light vision soflware had
somie problems wihen combining daa from  several scan
direetions.

Figure 3 shows an example of (iness development during the
co-evolutionary test run, The fitness values shown are the values
ol best individual, i.e. for /i the maximal value and for fi the
minimal value. At e beginning the method population rapidly
cvalves lowards small error bounds. This causes the surface
population 10 evolve slowly towards more difTicull Lest cascs,
whieh Turiher causes the litness of the methed pepulation lollow
quite closely the litness of the surface population. Cbviously the
speed of evolution is determined by the speed of the 1est surface
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population, Tn thus case il seems W be much more dificult w
create challenging test cases than robust sollware. The obvious
reason s that the surface has mueh more parameters than the
method under development.
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Figure 3. The co-evolutionary development of surface and
paramcter population fitness functions with four directional
scins (4ad+p, see fg. 8).
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Figure 4. error bounds in the validation test run with same
casc as in fg. 3 (4ad+p).

Table 1. The relative measurement error. A} and B) are
upper and lower error (olerances from the refl. |2§], and C})
and I}y are corresponding cerror lolerances alier co-
evolutivnary suftware tuning in this atudy.

# scan A |%a) B |%] C [%] D | %] |
directions :
l -16.88 | 3430 -5.65 | 22.60
2, = 1807 -18.58 | 21.83 -4.06 | 24.07
2, 0, = 90° -14.33 2.65 -1.47 11.39
3 -6.31 26.08 -1.60 12.51
1 -5.78 19.85 -5.27 9.51

Figure 4 shows how the upper and lower acenracy eror bounds
develop in the validation test run, where the GA only Iries to
find the largest accuracy error by geueraling test surfaces The
rule base purameters are loched 1o these found by the co-
cvolulionany 1cs1 rui.
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Fizure 7. Profile of the measurement error between surlfaces
shown in [igs. 4 and 5,

Table 1 shows the results of the tesis in rell {20]. In the case of
negative error (A) the accuracy gol beiter when more scan
directions were used. In the case of positive error {(B). however,
three and four scan direclions seem lo cause fuereasing error.
This was a point for further soflware development.

The co-evolutionary method was applied in this swudy 10 see il
the GA could improve nicasuremenl accuracy by optimizing,
concurrently with the test surlaces, the tule base of how 1o
cambine height daia from several directions.

Table 1 shows also the results aller tuning the system with the
co-evolutionary GA. The accuracy in all cases got betier with
the negative error (C). In the case of positive ermar (D), the
accuricy get better in all other cases, exeepl in the casc of vo
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scans with 907 angle berween the sean direcuons, In that case the
negalive cmor bound has gatlen better, but the positive crror
bound worse, unlortunagely, the error bounds interval has widen,
but the error bounds were now more cenlered around the zero
level (sec fip. 6}

The results imply that now the precision increases with
increasing scan directions, This implies that the measurement
soflware has evolved o combine scan data better than the earlicr
version of our sofiware [20]

In all cases, the error bounds are skewed wowards positive error.
implyine some son of systematic crror [Mwe could climinate the
errar, he system might gel even more accurate.

Figures 5-7 shows an example of GA gencrated surfuce afler co-

evolutionary tuning, lhe comesponding reconstructed surfaces,
and the profile ol measurenient crror.

Errer Inlorval

N N & MeRAS MR a8
'1?.-‘_'3 ?"&" Toet caze

Tigure 8. The developments of measurement error (nlerance
bounds with co-cvolwtionary tmning for cach pumber of
acan direetions {1, ..., 4) . Markiugs ol the x-axis iu the
order: the number of scan dircetions; what is optimized: p=
parameters how to cumpile directional height information,
a=camera angle, a+p = both ol the previous with using the
same camera angle for cach scan directinns, an+p as a+p but
using different camera angle for each scan dircetion; the
angle belween sean directions shewn iy {a),

Figure & shows how the error tolerance bounds ol different
number ol scan directions have developed wilh co-evolutionary
wning. For one scan direction, for which only the iNumination
angle could be optimized, the development of bounds were
surprisingly high (44.7%), lhe optimal a@; seems W be aboul
716"

When we are using more scan directions. we did three wining
tesls, In the first west {marked dark gray in fig. 8) we une only
the rule base used 1o combine the directional informiation, the
overall system {camera angles) were nol ¢hanged. In the seeond
test {light gray in lig. 8}, we wne the camera angle wgether with
the rule base; the same angle was used [or cach direction. In the
third test series (white in fig. 8}, we tune the camera angle for

vach scan direction together with the rule base. The original
crror bounds taken (rom rell [20] are marked witl black.

Frgure 8 illustrales how the syslem gets nearly always when the
number of system parameters 1o be wined is increasing. The only
exceplions are the case of lwo directional scans, with ay, = 90°,
the licst Lest is worse than the original but increases gradually,
and wilh @y = 180" the best accuracy was found with the same
;. [or vach scan direction,

With scans [rom two directions the co-cvolutionary wning did
not gain much more accuracy. while with ay = 180° the accuracy
improved by 27.4%, while with &y = 90° the improvement was
6.7%. With three and four scan directions the aecurzcy improved
7% and 38.5% respectively. Not surprisingly after e tuning
process Lhe case when scanning from four directions is (he most
accurale.

The optimal parameter set found case of scanning [rom four
directions were approx. w = [044, 0013, 054, 0.69] and & -
{76.0.79.5,72.9, 68 9} deprees

7. Fitness landscape

In order 1o cvaluate il owr co-cvolutionary approach was
benelicinl in this cose, we decided lo analyze the fitness
landseape as follows, Siartine fom the optimized test surfice
population random mutalions were applied © random ilems of
the population while reearding the correspending finess ol the
volume measurement method.

K 0 I

Fipure 9. Two random swalks in the fitness landscape before
co-evolution.

.;or 1%

A — -

Figure 10. Two random walks in the fitness indycane alter
co-cvolutinn.
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Random walks created by this method are shown in figures 9
and 10. In bath figures, the random walk was started from the
negative optimum. There are 1wo runs in both figures, just o
illustrate thal the major patterns af the walks are simidar. AT Arst
the fitness value roughly exponentially approaches the zero ercor
level starting then mndomly vary around il Befere co-evalulion
the rundom surfices couse higher reliative error than alier co-
cvolution. Hence co-evolution has made the system more stable,
When we run longer random walks the original system causes
aboul twice as high total error, sum of absolute value of relative
error, than the co-evolutionarily optimized sysiem.

Figures 9 and 10 also show that the number of random sieps
nceded 1o escape the difTicult wst case is higher for the original
than Tor the co-gvalutionanly opiimized methad. This can be
explained so that the most difficult 1est surface is quile
exceplional, A short mndom walk hardly reveals a similar case.
However, in the original system it nceds mere sieps o reach
optimum fram random landscape The optimized systemy is so
well wned that nomal random surfaces causes less error, and
the optimal arca is closcr o the randon landscape,

8. Conclusions and Discussion

In this paper we have developed and 1esied a structural light
visinn soflware applying a co-gvolutionary methed in order 1o
simulancously develop the measurement sysiem parameters and
the ¢orresponding tesl dala.

The resulls got in this study confirm thal the co-gvalulionary
applicition of GA seemis to be capable of generating test
surfaces for westing struclured light 3-D vision sofware, and
concurrently  finding  system mles that  lead o betler
measurement accuraey, This leads 1o the conclusion thm
problematic surfaces have some features in common that the GA
is able to adapl, and respectively that GA learns how 1o amange
mcasurchicnt geometry and process the corresponding scan data.

A preliminary analysis seems o confirm thit the uned system is
more capable of handling random surfaces, and there are less
space for exireme cases.

The surface model was not necessarily the besl, and [uture
implementation may use real Bezier surfaccs, although i
requizes more control points and leads 1o slower processing.

In general, this kind of co-cvolutionary approach eauld be used
in the design and  westing  of  denanding  sollware and
measurement Sy slems,

In the future, we intend to do more extensive [iness landscape
analysis how the co-cvolutionary method cllects (ilness
landscape. We should evaluate i the improvements really are
due 1he using oi" co-cvolution. However, compulationally the co-
evolutionary luning is exactly as costly as optimizing the system
against some slatic tesl surface sel. So, it is hard 1@ see wha
disadvantage it could cause, since static set can not cover all
possible cases, and co-evolutionary GA can ind the pathological
case [or bad system parameters during the wning, which sialic
tesl set would not be able o do.
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Testing Digital Halftoning Software by Generating Test Images and Filters
Co-Evolutionarily

TIMO MANTERE! and JARMO T. ALANDER

Department of Electrical Engineering and Industrial Management,
University af Vaasa, P.O. Box 700, FIN-63101 Vaasa, Firdand

In this paper we evaluaic the potential of using the co-evolutionary optimizalion method to
automatically and concurrently generate halftoning filters and their Lest images. One genetic algorithm
generates halftone filters for an image processing software used for digital halflioning, while another
genelic algorithm tries to create the hardest 1est image for cach filter. The best filter being the one for
which the hardest test image, when dithered, differs least from the original. An image population
defines the fitness of halfioning filters and vice versa.

Keywords: Co-cvolution, digital halfioning, genetic algorithms, software lesting, test image
generation.

1 Introduction

There does not seem to be much systematic research in the field of test image evaluation. What
are the essential characteristics of a good test image? How does one determine what is a good
lest image for testing the properties of chosen image processing algorithm. How does one
determine that a chosen lest image is good for testing the quality of your specilic image
processing software? What is the benchmark test image set you should use? Much more often
than not researchers rely on the most commonly used' and unfortunately very limited test image
sets. Some areas of research like pattern recognition and computer vision may use some image
set’ that is more carefully chosen. However, in research databases® there seem to be no
references to research papers about good test images or their desirable properties.

This work was not primarily done in order to answer the above questions about test images.
The main purpose was to do experiments with computer generated test images, and sce whether
or not they reveal some weaknesses in the image processing software that standard test images
do not necessarily do. This work is also a continuation of our software testing research®”, where
we previously’ applied co-evolution to optimize software parameters simultaneously with the
testing. The analogy to this study is that here we develop the image filters used in the halftoning
software simultaneously, when we simultaneously test its quality with the generated test images.

The reason for choosing this approach was that we previously studied the halfione filter
design with genelic algorithms® (GA) and in a later study” the test image gencration with GAs
for testing these halftoning filters. A natural extension is to study the optimization of these two
contradictory elements together. Our preliminary results’” showed that genctic algorithms are
indeed able to find images that are considerably distorted when halftoned, and thus reveal
potential problematic image features that the halfioning sofiware is not able to reproduce
satisfactorily.

' E-mail: timo.mamere@uwasa.fi, phone: +358 40 520 3022, [ax: +358 5 621 2899
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1.1 Genetic algorithms and co-evolution

Genetic algorithms'® are optimization methods that mimic evolution in nature. They are
simplified computational models of evolutionary biology. A GA forms a kind of simulated
population, the members of which fight for survival, adapting as well as possible to the
envircnment, which is actually an optimization problem. GAs use genetic operations, such as
selection, crossover, and mutation in order to generate solution trials that meet the given
optimization constraints ever better and belter. Surviving and crossbreeding possibilitics depend
on how well individuals [ulfill the target function. The set of the best trials is usually kept in an
array called population. GAs do not require the oplimized function to be continuous or derivable,
or even be expressed as a mathematical formula, and that is perhaps the most important factor
why they are gaining more popularity in practical technical optimization. Today GA methods
form a broad spectrum of heuristic optimization methods under intense study''.

Co-evolutionary cm‘nputatimﬁ'2'|3 (CEC) gencrally means that an evolutionary algorithm is
composed of several species with different types of individuals, while a standard evoiutionary
algorithm has only one single population of individuals. In CEC the genctic opcrations,
crossover and mutations arc applicd to only a single specics, while selection can be perforimed
among individuals of one or more species. When we deal with an optimization problem, we can
try to develop the cnvironmental conditions concurrently with the problem.  These
environmental conditions may be stochastic or immeasurable. Trial solutions implied by one
species are evaluated in the environment implied by another species. The goal is to accomplish
an upward spiral, an arms race, where both species would achieve ever better results.

1.2 Dithering

Digital halftoning", or dithering, is a method used to converl continuous tone images into
images with a limited number of tones. usually only two: black and white. The main problem is
to halftone so that the bi-level output image does not contain prominent features, such as alias,
moiré, lines or clusters, caused by dot placement'®. The average density of the halftoned dot
pattern should interpolate as precisely as possible to the criginal tones. Dithering methods
contain frequency modulated versions, where the pixel size is static and the distances between
these pixels vary, and amplitude modulated, where the distance between dots are static, but the
size of these dots varies. This study concentrales on [requency modulated halftoning methads
only. The halftoning methods used here were error diffusion and threshold with 16x16 element
threshold matrices.

1.3 Comparing the images

To compare a dithered image with the original one is obviously a challenging problem. If the
images are nol compared properly, the evaluated difference between the images may be greatly
biased by the comparison method used. One cannot simply usc pixel-by-pixel comparison, since
dithered images usually have only two tones. The minimum difference by that measure would be
achieved if every gray tone were rounded to the nearest tonc (black or white), which
unfortunately usually results in poor images. Better image comparison methods have been
developed' '*'¥ including a set of methods called inverse halftoning'!. From these the most

2
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common is perhaps low pass filtering, in which images are first low pass filtered and then the
resulting images arc compared pixel by pixel. The problem with low pass filtering is that the
high frequencies will disappear and the images get a somewhat blurred overall appearance.
IHowever, this method is easy to implement and it enables pixel-by-pixel comparison. The low
pass filter model based on the human cye modulation transform function (MTF) was considered
the best methed for finding optimum halftone patterns by its authors'.

Several fitness functions i.e. image comparison methods were tested’. In this study we only
used the low pass filtering with MTF' and the co-evolutionary approach 1o define proportional
fitness values for each individual. Tmage comparison after low pass filtering was done by the
quality metrics'™**?'; PAE, MAE, MSE, RMS, NRMSE. and PSNR (Peak Absolute Error, Mean
Absolute Error, Mean Squared Error, Root Mean Squared Error, Normalized Root Mean Squared
Error, Peak Signal to Noise Ratio), that are commonly used in timage compression research. The
goal is that with the help of co-evolution we would eventually be able to automatically generate
an appropriate image comparison method, too.

1.4 Related work

Co-evolution is mostly applicd in game playing research, but it is now being applied more in
technical research as well. However, from the research indexes®™ we did not find any studies
where image filters and test images would have been developed together. Only one™ image
processing study by Goulermas and Liatsis that applics co-evolution was found, it uses co-
cvolution for feature-based matching of edges in stereo imaginary. It applies parallel GA, where
gach individual GA aims local optimum, while information exchange between neighboring GAs
are applied 1o achieve symbiotic co-evolution towards a global optimum. They suggest that
scarching global and local level optimums concurrently has advantages compared 1o other
approaches.

Miyojim and Cheng® propose that test images with characteristics close enough to reality
should be generated with a computer and applied to testing pattern recognition algerithms. We
agree with their statement “rescarchers often reusc the same few available test images, which
may compromise the thoroughness of the investigation™. They also conclude thal the proposed
approach can be very uscful for the development of computer vision, image processing and
pattern recognition algorithms.

Forbes and Draper® have used synthetic images for evaluating edge-detection algorithins.
Their motivation was that “most of the evaluation techniques use only a few test images, leaving
open the question of how broadly their results can be interpreted™. Their results show that the
rank of the goodness of edge detectors depends on the images used. They think that the average
best edge detector can be found if large number of images, representing each possible property
of the scene, is tested. This can be best achieved by using synthetic imagery.

Koesis er al.” use computer generated test images for assessing image quality changes in the
compression-decompression process of lossy JPEG images. They used simulated images with
characleristics similar 1o radiographic images. Their motivation seems to be based on the
assessment that it is easy to produce synthetic images with large quantities and no expert
obscrvers arc nceded. However, none of those studies™ ™ used evolutionary methods to create
test images.
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Sims™ have applied evolutionary algorithms for generaling impressive computer gencrated art,
but has not really applied them for any testing purposes. Genetic algorithms have previously
been adapled to generating halfroning fitters' “**, (he usual conclusion has been that GA
generated thresheld matrices produce more rounded dot patterns than the usvally used ordered
threshold matrix.

For further references of GAs in image processing, sce bibliography 29 or book 30. There is
a relatively large number of studies where GAs have been applied to generation of automatic
software test data for assessing soltware correctness or quality, sec®” and references therein, but
we have not seen other studies than ours’ that have tried to develop software parameters
simultancously with the testing by the help co-evolutionary optimization.

2  The proposed method

Halftoning was selected to be the test problem for our co-evolutionary testing of image filters
and test images. This selection was done based on our previous experiences with them®”.
However, there is no a priori reason why this testing method could not be applied to other similar
problems in iimage processing research.

The GA population contains wo species: a parameter vector, which is used by an image
generalor to create test images and a halftone filter vector, which can [urther be transformed
either into a threshold matrix or error diffusion coefticients. The whole population of one spccics
is used to determine the fitness of the individual of the other species.

The fitness, f; for a test image / < [1, n] is given by (1} and the fitness, g; for a halftone filter
J e {1, m] is given by (2), where p € [1, /oav] is the index for image pixels, 1 = image height, w
= image width, /; is (he low pass filtered original test image /, and /; , is the corresponding
halftoned image 7, filtered by the j:th filter.

m By

7, =§F,,; (1) g, =§Fu ) F, =2

Pl

[,(P)_ju(f)) (3)

The best test image 7 is the one that is “hardest” (o halltone by the population of halltone filters,
thus we try to maximize the values gotten by equation (1), while the best halftone filter j is the
onc that has the lowesl value for equation (2}. Both these formulae use (3) to deline the
difference with one image / or filter .

Fig. 1. a} Backaround segments. b) Chaolic data to be added.

Genetic algorithm generates new test images and halftone filters by using crossover and
mulation, [avoring those parent chromosomes that previously have gotten the best fitness values.

4
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Test images were combined [rom such parameters, as position, size and color of elementary
graphical objects, which include lines, rectangles, circles, ASCII characters, and background, all
their data was cncoded to a GA chromosome consisting of 79 integers.

The first seven parameters were for background, three of them (x;, x2, and y; are shown in
Figure 1a) break the background into four segments and the rest (b;, b, £3, and b;) determine the
tone of these segments. The next 70 parameters were further divided into 10 groups of 7
parameters, each group defining one elementary image pattern as follows:

I, Pattern type (line, rectangle, oval, ASCII character), [or characters also the font  style.

2. Tone.

3-4. xand y coordinates of the refercnce point.

5-6. Length in x and y coordinate directions or character font size and type.

7. Character value or void (only printable ASCII characters were uscd).
All patterns are opaque and may cover patterns created earlier; background is created first and
then the other patterns on top of it. The resulting images mostly lack fine details i.e. have low
gradient value. Real images tend to have more variation between neighboring pixels. This in
mind we added noise to the images (see fig. 1b} with the Verhulst®! logistic equation:

X 1= X Xy % (1-x,, (4)

This kind of chactic data rather than pure white noise was used in order to generate a potentially
rich set of repeatable patterns. The last two parameters of the chromosome consist of a 16-bit
value x that was further scaled to be a decimal number in the range [2, 4]. The oplimization
process usually favored such parameters that generated streaked patterns rather than white noisc
(fig. 1b). The size of the generated image was 236 x 256 pixels, so that the values of mosl
parameters would fit into eight bits. Some intermediate test runs were run by using 7 x n images,
where 1 & {32, 64, 100}, in order to speed up the testing.

The reason for generating relatively simple test images is that we think that the generated
test images should be easy (o interpret. I{ we use complex images it is hard o analyze the results
or see what characteristics actually cause the perceptible differences. By using simple image
primitives we wanted to make it more likely that we can find the primary cause for the
differences in the operation of filters.

Two different halftoning filter models were used: threshold matrices and error diffusion
coefficients'. Threshold matrices of size 16 x16 elements were used containing all possible
inleger threshold values in the range [0, 253]. When we optimized threshold malrices, we used a
special permutation array in order to be able to utilize genctic operations, such as crossovers and
mutations without losing any of threshold values (see ref. 8). When optimizing error dilfusion
cocfficients we usc the crror diffusion maltrix (fig. 2} where the weight cocfficients w; are
oplimized by a floating point coded GA that can have values in the range [0, 1]. These weights
are further normalized by dividing by the sum of all weights ZHI“" .

The initial population of test images is gencrated randomly, while the initial halfione filter
population is generated either randomly or filled by using given solutions. With the error
diffusion method the given solutions include: Floyd-Steinberg, Jarvis-Judice-Ninke, Stucki, Fan,
Shiau-Fan, Park-Kang-King, Stevenson-Arce, Eschbach, Wong-Allebach, and two weight error
ditfusion coefficients (ref. 14, chapter 16). With the threshold matrix method the given solutions
include: ordered threshold matrix!*, mirror and rotated versions of it, and also the threshold
matrices we previously® generated by GA.
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Fig. 2. Error dilTusion matrix, Dot (#) represents the pixel to be evaluated, and w,:s the pixels, where the
rounding error is spread.

Table 1. The basic GA paramelers used.

GA parameter Tesl image Error diffusion halfiene filter

Populalion sizc 30 30

Elitism 50% 30%

Crossover rate 50% 50%

Crossover type Uniform, single peint, and | Uniform, single point and
arithmetic arithmetic

Mutation rate 2% 2%

Generations 100-500 100-500

Length of chromosome 79 integer numbers 24 fleating point numbers

Table 1 gives the basic GA paramcters used. The length of the test runs ranged from 100 to 500
generations, but those reported here are from 100 generation long test runs. The length of the
parameter array of the error diffusion filler was 24 floating-point numbers in the range (0. 1].
The size of the permutation array of the threshold matrix filters was 256. Single point and
uniform crossovers were used; in addition, arithmetic crossover was applied at a rale of 10%.
The mutation probability was 2%.

Every image is evaluated against all filters; this means that the time demand will increase as
the square of the population size. It also mcans that very dynamic populations may cause
fluctuation, therefore the high tendency to elitism was selected to bring more stability to the
populations. The small population size was resorted to because of the high time demand for
running these tests. However, we still wanted to use a relatively large number of generations,
because of the slow processing that we observed in a previous experience with thireshold matrix

optimizalion®. There we needed a rather high number of generations until any decent results were
attained.

3 Experimental results

The results were generated by running five test runs with two different dithering methods,
threshold matrix and error diffusion, and two different ways to initialize the population, random
and given. The primary goal was not to find the best possible results alter scveral test runs, but
rather to see whether or not the results have some similaritics in common between lest runs, i.e.
10 1est the stability of the proposed method.

The results with the threshold matrix showed that they are difficult to optimize. To exceed
the performance of the well-known ordered threshold matrix is difficult, if not impossible. Good
error diffusion coefficients are easier to gencrate. The results with random initial populations did
not evolve too well; many generations were required in order to reach a reasonable [itness and
the performance of the reference halfione filters of our experiments was nol reached. Therefore,

6
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the following results contain only data generated by the crror diffusion method and using a given
initial population.

The results represented here were generated by using the peak average error™ (PAE) qualily
metric (3} after low pass filtering the images with MTE", with the parameters: size 16x16,

viewing distance 256 mm, and print quality 300 dpi. PAE was chosen because we wanted to find
MAaxinim crrors.

PAE = MAX|J (p)- | (D) (5)
iy t

However the other metrics mentioned in 1.4 were used in other test runs, and the main results

with them were not significantly different.

3.1 Results with error difTusion

An example of a typical fitness curve is shown in Figure 3, for the case when optimizing lesl
images and error diffusion filters are done concurrently, and the initial population is given.
Despite the fact that we are (rying 1o minimize the (ilter {itness values while maximizing the test
image [itness values, both of them tend to increase during optimization. The initial fiiter
populaticn contains some random filters that cause the image fitness to be high at the beginning,
until these bad filters are eliminated from the population.

The fitness of test images show large [uctuations; extremely unfit image filter(s) born in the
filter population was the reason for them. Most of the filters in the population are relatively well
behaving alter a few generations. [f the genetic operations create some totally unfit filters in that
state, it causcs the fitness values in the image population grow rapidly. These bad filters and their
possible offspring are killed relatively soon and replaced by new better individuals, and the
fitness values in the test image population decrease back to the longer time span trend level. The
diversity (right axis in fig. 3) of the population seems to decrease quite rapidly, and both species
therefore become nearly, but not Lotally, uniform.
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Fig. 3. The development of the best image and filter fitness values as a function of generatiens. The
initial population consists of given error diffusion matrices. The unit of X-axis is the average PAE
value; the unit of Y-axis is the sum of divergence between the individuals in the population.
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For comparison, if test image or filter generation is done without co-evolution, we usually see
graphs shown in Figure 4. Test image optimnization (4a) shows logarithmic growth that is typical
for the GA optimization. However, the filter fitncss somewhat changes 100, because its [itness is
linked to the static image sel in the same way as in our co-evolutionary optimization. The filter
optimization fitness curve (4b) shows a slow downward logarithmic tendency. However, Lhe
original given filter population is so good, that there seems to be relatively limited possibilities
for any improvement.

The image set is now static, however, the fitness values of the images still show large
fluctuations. The large pcaks in the Figure 4b are caused by the same phenomena as in fig. 3. A
bad filter created in the filter population causes a high fitness value for some test images. This
happens because the image fitness’s in this experiment depend on filter fitness’s in the same way
as in the co-evolutionary experiment. Computationally the co-evolutionary optimization is about
as expensive as oplimizing test images against a static filter set, since it requires an equal number
of fitness evaluations.
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Fig. 4a. The development of the best test image Fig. 4b. The development ol the best filter fitness
fitness as a function of generations, withoul co- as a function of gencrations, without co-evolution.
evolution.
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Fig. 5. The outline of the contents of the generailed error diffusion matrices., #=high value, /=low value,
v=varying value.

The results indicate that after each test run, some coefficients of the error diffusion filter always
have proportionally higher values (see [ig. 5), whereas some others always have lower values,
while still some others vary from small to high. The resulting filters usually have non-zero
cocfficients only in the immediate surroundings (shown O in fig. 3) of the pixel to be processed,
or less frequently further away (shown 1 fig. 5) from it. However, the resulting best coefficients
were never exactly equal to any of the initial error diftusion matrices. Thus the system is able to
generate coeflicients that il regards better for halfioning the generated tesl images than those
initial filters taken from book 14.

Figure 6 shows a typical test image generated and the corresponding halfloned image. The
test images had usually more objects and borders between them when compared to the results

8
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given in ref. 4. The rcason for this difference is likely the fact that the error diffusion method
usually responds to gray tone changes afier a short delay, and therefore the largest differences
belween images are caused by high conlrast changes.

a)

Fig. 6. An cxample of a test image created when the initial filter population is filled with given error
diffusion coefMicients. a) A generated test image. b) Image a dithered with a generaled error diffusion matrix.

3.2 Discussion

[f we optimize the filler against some stalic tesl immage set, there is no guarantee that the
optimized filter is good for filtering other images. The (est set could be somewhat limited, and
problematic images for the resulted filter might have features that were not present in the test
image set. The corresponding phenomena might occur, if we optimize test images against some
static filter set. Usually the benchmark test sct is planned so that all possibilitics are taken into
account. However, it seems that there is no benchmark test image set for image processing. At
least not anything that is a result of comprehensive study inslead of commaon practice.

The possible advantage of using co-evolution is considered to be achieved by optimizing
image filters and lest images against each other, i.e. against dynamic and evolving benchmark
set. This way both test sets can evolve and discover weaknesses in the other. However, it seems
that during the optimization these two populations reach some balanced situation. The question
is, are both sets in opuimal state in this balanced situation, or is this balanced situation some
compromise where both sets are far from optimum.

We performed experiments without co-evelution, and came to the conclusion that the
optimal filter is different for different image types. When we optimized filters against the
standard test image set it works well with them, but poorly with our GA generated test images,
and vice versa. The same cobservation was done considering test images: the generated test
images got higher fitness values against the well-known error diffusion coeflicient than standard
test images.

These findings seem to suggest thal the balanced situation alter co-evolution is some kind of
compromise, where cither sct cannot improve much. The optimizalion starts to circle around, the
changes in one species are forced back by the other species. FHowever, if we freeze the one

9
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species in this balanced set and only optimize the other, the species that is still able to evolve
changes a little bit, but not much. Thus, a little bit better filters for that frozen population of test
images, or yice versa can be gencrated starting from that balanced situation. The conclusion is
that the balanced situation does not represent the best filters for the subset of natural images, nor
the subset of GA generated images. Neither does it hold the subset of best filters for either image
subset.

However, the balanced situation represents the compromise between the hardest test image
and the best image filter in the subsets that our coding of test images and filters enables from all
the possible images or filters. Therefore these results are mainly important for developing filters
and test images to be used with some predefined type of images. If we know the image types our
image processing sofiware is o be used with, and the filter Lypes we can implement, and are able
to code these image and filter subsets as GA chromosomes, then this method is applicable to
evolve filters and their (esl images inside these subsets.

3.3 Error seeding

The main goal of this research was to apply the proposed method to find weaknesses in image
processing soflware by generaling test images. Error seeding is a well-known methed in software
lesting. It means that some specific crrors are sceded deliberately into the software belore tesls.
The goal is to find these seeded errors with the applied testing method. The other goal of this
approach is to statistically estimate the amounts of real errors in the software by measuring how
many of the sceded errors were found. In order to be able to do that the seeded errors should be
realistic and similar to those expected to be present in the tested software.

In order to see if our co-evolutionary methed applied to this kind of software testing is able
to reveal faults, we inserted several faults to our halfloning softwarc. These seeded errors were
such that they caused distortions during the image processing, if some GA gencrated image or
filter parameter was within some predefined range. The only feedback that GA gets from the
halftone processing is the image similarity value. These crrors were not observed [rom any of the
parameter values, but only from the image similarity values.

In total 30 different crrors were inserted, 10 of them were causcd by image parameters, 10
by filter parameters, and 10 by a combination of image and filter parameters present
concurrently, when halftoning one test image against one halltoning filter. These errors include
c.g. using slightly different low pass filter for images to be compared. The amount of difference
(e.g. difference in n and dp valucs of the low pass filter model'™ **) was dependent on other
parameters than the one that causes this error situation. Other errors include shifting image pixels
to a given direction or changing gray tones in part of the image. The size ol the shift or area and
the amount of tone difference was dependent on other image or filter parameters than the one
that triggered the error.

The frequency of randomly encountering inserted erroneous parameter values was relatively
high, from 2 up to 100 times in one test run of the GA. The reason to use errors that had a high
probability of being found was that GA is not capable of finding any single error with any higher
probability than random scarch. The power of GA is to combine the problematic parameter
combinations and amplify the severity of detected error. Therefore the probability of finding
error was high, but the severity of random error was not so high. The severity of error was
scalable by discovering and changing the other affecting parameters.

10
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The errors were designed so that just [inding them does not cause maximal distortion. [However,
the amount of error is dependent on several parameters, so the GA can Icarn those paramecters
and amplify the amount and scope of these dislortions as much as possible.

According to our original expectations distortion in the halftoned image is the error type that
the co-evolution method should reveal. If some image characleristics noticeably change in the
halftoning process, it suggests that the tested image-processing algorithm has weak points.

The results get with the error secding tesls were encouraging; all the seeded errors were
found at least in some of the test series. The most frequently found error was the eventually the
worst casc over half of the test runs. Usually, (he severily of the error was optimized by the GA
to be nearly maximally high. The fact that so many test runs catch and grip the error cases
underlined the power of the proposed approach. After these error-seeding tests we could be more
convinced about the proposed method and its capability to find the weaknesses of the tested real
image processing system.

3.4 Fitness landscape

It is obvious that the fitness landscapes have a profound effect on the optimization efficiency. In
order to cvaluate if our co-cvolutionary approach is beneficial with this respect, we did some
analysis of the fitness landscape. Random walks were performed by starting from the optimized
lest image, keeping the optimized error diffusion filter static, and doing small random mutations
to the test image by changing one of the 79 image parameters either to totally random value, or
max. 10% from the current value. Correspondingly random walks were perforimed starting from
the optimized crror diffusion filter, by kceping the optimized test image static, and then
performing similar random mutations to the image filter. The purpose of these random walks was
to reveal the amount of steps needed 10 move from the optimal hill down to a more normal
fitness landscape.
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Fig. 7a. Random walks in the fitness landscape, Fig. 7b. Longer random walks in the fitness
either test image or error diffusion filler is landscape.
changed.

The random walks revealed that only a couple of random mutations were needed to move the
optimized test itmage out of the optimal area. Also the filter fitness rapidly changes to worse, but
it still requires more steps in order to reach the totally random landscape.
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Figure 7 represents random walks in the fitness landscape. The image titness starts to decrease
rapidly when moving out from optimum, however, a longer random walk shows that cvery now
and then there appears test images of which fitness is alimost as high as that of the optimized one.
The filter fitness value scems to increase quite far [rom the optimum, when walked further. A
strange phenomenon is that both image and filter values seemed to get better filness than
optimized at the begimning of the shorter random walk. This implies thal neither test image nor
filter has reached the optimum in the co-evolutionary search, because the random mutation was
able to improve both afier a couple of random mutations, belore the random walk departed from
the optimal area. This further shows that the balanced situation reached in the co-evolutionary
optimization is not a global optimum for both species.

4 Conclusions

The experiments done seem to indicate that the co-evolutionary method is able on the one hand
1o deteet polential crrors in the tested sysiem and on the other hand it can evolve a better
methods accordingly. However, in this study the steady-state situation afier co-evolution was not
a global optimum for the subset of images or filters. The steady state represents a comproinise
between the subsets of representable test images and filters. Thus, this method can be applied by
defining accurately the image and filter type used and generating compromise filters for that
image subset. More experiments with redefined image representation model are needed.

In this case the potentially erroneous or at least low quality filters are replaced by better
ones while co-evolution creates more challenging test images for (hese ncw filters. The
eventually the best filter is better than any of the well-known error diffusion filters at least for
the 1est images generated. This can be statcd since the optimal filter was never any of the good
filters given in the initial population. It seems that co-evolution gencrates hard test images for
error diffusion and then coefficients that halftone them better than those represented in the
litcrature. If one of the known error diffusion filters would be the best possible for the subsel,
that image model representation allows, it would have been the final solution for some or all of
the optimization runs.

4.] Discussion

The degeneration, i.e. the premature convergence, of the population may be a problem in this
kind of co-cvolving system. If the test image population degenerales, the filters may turn out to
be good only for that type ol image and vice versa, if the filter population is too degenerated the
lest images may bc challenging for only that filter type. [t is thus ol primary importance to take
note the diversity of the co-evolving populations. This also applies to ordinary GAs: diversity
loss is a sign of a potential premature convergence. Some problems that we had with population
size and elitisim in our GA implementation might be less restricting when using steady-state GA.
The tests whether steady-state CEC would be a better approach for this problem will be done.

This work is not necessarily made in order to put Lena and other standard test images inio
retirement, but in order 10 [ind methods to test image-processing systems with more challenging
casc sensitive test images. These images may reveal some pitfalls in the systems under test that
usual test images do not. This kind of co-evolution could be applied for developing also other
image processing features.
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One possibility is that in the future we apply parallel computing in order to enable a larger
population size. We have considered evaluaiion against some subset, but that is also left for
future work. We are also considering the usc of genctic programming to generate test images,
and using more realistic image primitives in the image generation process. Multiobjective Pareto
optimization by GA might be applicd to this problem in the future.
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