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CONCEPTS

Cellular Concept: the cellular concept is a system-level idea which calls for
a single high-power transmitter (large cell) to be replaced by many low-power
transmitters (small cells), each providing coverage to only a small portion of the service
area.

Domain: the highest-level group of physical entities. Reference points are defined
between domains.

Stratum: the grouping of protocols related to one aspect of the services provided by one
or several domains.

Stream Cipher: the stream concept is that Plaintext data are added bit by bit to random-
looking mask data that are generated by the Cipher Key (CK) and a few other
parameters.

Processor: this word is used in this thesis to denote the entire chip with all of the
different functional hardware blocks, including all the cores on the chip.

A Cryptographic Accelerator: is a device that performs processor-intensive
decrypting/encrypting while freeing the host CPU to perform other tasks.

Message authentication code: Is a short piece of information used to authenticate a
message and to provide integrity and authenticity assurance on the message.

LIST OF SYMBOLS

= The assignment operator.

 The bitwise exclusive -OR operation.

|| The concatenation of the two operands.
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ABBREVIATIONS

1G 1st Generation

2G 2nd Generations

3G 3rd Generations

3GPP 3rd Generations Partnership Project

cnMIPS core networks standardized MIPS

AKA Authentication and Key Agreement

AN Access Network

AMPS Advanced Mobile Phone Service

CBC Cipher Block Chaining

CFB Cipher Feedback

CK Cipher Key

CN Core Network

CPU Central Processing Unit

CDMA Code Division Multiple Access

CS Circuit Switched

DES Data Encryption Standard

GPRS General Packet Radio Service

GSM Global System for Mobile Communication

IETF Internet Engineering Task Force

IK Integrity Key

I/O Input and Output

HE Home Environment

HW Hardware

HSPA High Speed Downlink Packet Access
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HSPA+ Evolved High Speed Packet Access

HSUPA High Speed Uplink Packet Access

K Key

KM Key Modifier

OFB Output Feedback

PDA Personal Digital Cellular

PS Packet Switched

PS Padded String

LTE Long-Term Evolution

MAC Message Authentication Code

MIPS Microprocessor without Interlocked Pipeline Stages

MM Mobility Management

MME Mobility Management Entity

NAS Non-Access Stratum

NIST National Institute of Standard and Technology

Node B UMTS Base Station

RAN Radio Access Network

RANAP Radio Access Network Application Protocol

RNC Radio Network Controller

RRC Radio Resource Control

SAGE Security Algorithms Group of Experts

SN Serving Network

SoC System-On-Chip

SW Software

TDMA Time Division Multiple Access



10

TR Technical Report

TS Technical Specification

UE User Equipment

UEA UMTS Encryption Algorithm

UIA UMTS Integrity Algorithm

UMTS Universal Mobile Telecommunication System

USA United State of America

USIM Universal Subscriber Identity Module

UTRAN UMTS Terrestrial Radio Access Network

WCDMA Wideband Code Division Multiple Access
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ABSTRACT

Cryptographic functionality implementation approaches have evolved over time, first,
for running security software on a general-purpose processor, second, employing a
separate security co-processor ,and third, using built-in hardware acceleration for
security that is a part of a multi-core CPU system. The aim of this study is to do
performance tests in order to examine the boost provided by accelerating KASUMI
cryptographic functions on a multi-core Cavium OCTEON processor over the same
non-accelerating cryptographic algorithm implemented in software.

Analysis of the results shows that the KASUMI SW implementation is much slower
than the KASUMI HW-based implementation and this difference increases gradually as
the packet size is doubled. In detailed comparisons between the encryption and
decryption functions, the result indicates that at a lower data rate, neither of the
KASUMI implementations shows much difference between encryption or decryption
processing, regardless of the increase in the number of data packets that are being
processed.

When all the 16 cores of the OCTEAN processor are populated, as the number of core
increases, the number of processing cycles decreases accordingly. Another observation
was that when the number of cores in use exceeds 5 cores, it doesn’t make much
difference to the number of decrease of processing cycles.

This work illustrates the potential that up to sixteen cnMIPS cores integrated into a
single-chip OCTEON processor provides for HW- and SW-based KASUMI
implementations.
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TIIVISTELMÄ

Salaustekniikoiden toteutustavat ovat kehittyneet ajan myötä, kun ensiksi
yleiskäyttöisillä suorittimilla ajettavista tietoturvaohjelmista on siirrytty käyttämään
erillistä apusuoritinta ja kolmanneksi on siirrytty käyttämään sisäänrakennettua
laitteistokiihdytystä, joka on osana keskusyksikön moniydinsuoritinta tietoturvan
takaamiseksi. Tämän tutkimuksen tavoitteena on tehdä suorituskykytestejä, joilla
tutkitaan suorituskyvyn parannusta, joka saavutetaan KASUMI-salausalgoritmin
kiihdytyksellä moniytimisellä Cavium OCTEON suorittimella suhteessa
ohjelmistopohjaiseen, kiihdyttämättömään salausalgoritmiin.

Tulosten analyysi osoittaa, että KASUMI-algoritmin ohjelmistopohjainen toteutus on
paljon hitaampi kuin laitteistopohjainen toteutus, ja että tämä ero kasvaa asteittain, kun
paketin koko kaksinkertaistuu. Yksityiskohtaisissa vertailuissa salauksen koodauksen ja
koodauksen purkamisen välillä osoittavat, ettei alemmalla datanopeudella
kummassakaan KASUMI- toteutuksessa salauksen tai sen purkamisen käsittelyssä ole
suuria eroja riippumatta lisääntyvän käsiteltävien datapakettien koosta.

Kun kaikki kuusitoista OCTEON-suorittimen ydintä on otettu käyttöön, ja kun ydinten
määrä kasvaa, suoritusvaiheiden määrä vähenee vastaavasti. Toinen havainto oli, että
kun käytössä olevien ytimien määrä ylittää viisi ydintä, ei sillä ole vaikutusta
suoritusvaiheiden vähenemiseen.

Tämä tutkimus osoittaa ne mahdollisuudet, jotka jopa 16 cnMIPS ydintä integroituna
yhden piirin OCTEON-suorittimeen tarjoaa ohjelmisto- ja laitteistopohjaisissa
toteutuksissa.
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1. INTRODUCTION

This chapter introduces the motivation for comparing KASUMI hardware accelerated
cryptography with the software-based KASUMI cryptography implementation, which
has become the most used option in a system-in-chip embedded system like the
OCTEON processor that is studied in this thesis. Afterwards, an overview of the
organization of the thesis will be given.

The Universal Mobile Telecommunication System (UMTS) is a so-called third-
generation (3G) mobile radio system and it is a successor to second-generation (2G)
systems such as the Global System for Mobile Communications (GSM) and General
Packet Radio Service (GPRS). The current UMTS system is in Release 8 and is called
Long-Term Evolution (LTE), which represents a flat architecture solution.

According to the 3GPP security specification (3GPP TS 33.102, 2006), the security
architecture is made up of a set of security features and security mechanisms that meets
one or several security requirements. The requirements for UMTS confidentiality and
integrity algorithms are specified by 3GPP in the technical specification document
(3GPP TS 33.105, 2007). Within the security architecture of the 3GPP system, there are
two mandatory security algorithms, namely, ƒ8 and ƒ9 or the UMTS Encryption
Algorithm (UEA1) and UMTS Integrity Algorithm (UIA1), respectively. The core
functionalities of these algorithms are based on the KASUMI stream cipher.

For the confidentiality algorithm, the UMTS Encryption Algorithm (UEA1) is a stream
cipher and it is used to encrypt and decrypt blocks of data under a confidentiality key
(CK).  The algorithm uses KASUMI in the form of Output Feedback (OFB) mode as a
key stream generator. For the integrity algorithm, the UMTS Integrity Algorithm
(UIA1) computes the Message Authentication Code (MAC) of a given input message
under an integrity key (IK) and imposes no limitation on the length of the input
message. The approach that has been adopted uses KASUMI as it is also used by the
confidentiality algorithm (UEA1) in the form of Cipher Block Chaining (CBC-MAC)
mode.

Cryptography is the art and science of encrypting and decrypting data in order to make
it impossible for outside parties to access the data. Cryptographic functionality
implementation approaches have evolved over time, first, with software running on
general-purpose processors, second, employing a separate custom security co-processor,
and third, using built-in hardware acceleration for security that is a part of a multi-core
CPU system.
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This thesis examines the use of built-in hardware acceleration for cryptographic
functions in silicon, or, to give it another name, cryptographic functions in SoC. The
SoC system consists of both a hardware component and a software component, which
paves the way for the boundary between hardware and software being shrunk. Security
algorithms are generally dependent on intensive computation and they require many bit-
manipulating operations in order to transform back and forth between plaintext and
ciphertext.

Software running on a general-purpose processor is often inefficient in performing such
operations since the many instructions needed to implement cryptographic operations
consume valuable CPU resources and thus affect the performance of the system.
Hardware acceleration provides a better system performance implementation than the
software.

This thesis work focuses on verifying the cryptographic performance boost that is
provided by a Cavium OCTEON processor as an accelerator of KASUMI encryptions
and decryptions via the software-based KASUMI implementation. KASUMI encryption
and decryption are applied in the UMTS Non-Access Stratum (NAS) layer for ciphering
radio link access which is specified in the 3GPP release 7 specifications.

The structure of this thesis is as follows. Chapter 2 presents the existing literature work
in the field under study. Chapter 3 discusses the basics of performance analysis and how
it is applied in this thesis. Chapter 4 develops the relevant test scenarios and test
environment setups. Chapter 5 discusses the test execution and presents the test results.
Results and analysis of the measurements can be found in Chapter 6, followed by
overall conclusions in Chapter 7.
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2. UMTS

2.1 Introduction

This chapter will first provide an insight into the history of mobile telephony systems,
from the first generation of mobile systems to the third generation. After taking a closer
look at the evolution of mobile systems, the second subchapter will highlight the basic
principle of mobile security used in the third-generation system. At the end, a detailed
description of the KASUMI cipher and its operations will be given.

2.2 The Evolution of Mobile Telephony Systems

The history of mobile telephony goes back to experiments with radio telephony in the
USA in the 1920s (Agar 2005). There are three different generations as far as mobile
telephony is concerned. The first mobile radio systems, the so-called first generation
(1G) networks, were based on an analogue radio path but used digital switching
technology. These mobile systems offered basic services for their users and the
emphasis was on speech and service-related matter. The other characteristics of these
early mobile systems were that networks were mainly national efforts and very often
they were specified after the networks were established. For this reason, the 1G
networks were incompatible with each other.

Later, the first real cellular systems were implemented, such as the analogue Advanced
Mobile Phone Service (AMPS) system in the USA. For the first time, frequencies were
reused, resulting in the interference inherent to cellular networks. Old analogue systems
have a common limitation in terms of wide area coverage and frequency spectrum reuse
in the systems as a result of the use of only one single radio transmitter (Walke,
Seidenberg &Althoff 2003).

In May 1972 Bell Labs introduced and patented a cellular concept that laid the
foundations for the second- and third-generation mobile radio systems. The cellular
concept is simple: instead of a single base station providing coverage of as large an area
as possible, each base station should only cover a small area. Further elaboration of the
cellular concept is provided in (Macdonald 1979) and (Rappaport 2002).

As the need for mobile communication increased, the need for a more global mobile
communication system also increased. The international specification bodies started to
specify the 2G; the so-called Second Generation (2G) network uses digital channels,
resulting in more efficient use of the spectrum.  Two main systems that established
themselves in the USA – the Time Division Multiple Access (TDMA) systems IS-54
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and IS-136 – are based on a time slot structure and are  similar to the Global System for
Mobile Communications (GSM) (Althoff 2003) .

Japan also developed its own standard: Personal Digital Cellular (PDC), which also uses
the TDMA technology (3 time slots, 25-MHz channel bandwidth) and operates at 800
MHz and 1500 MHz.

The best-known Second Generation system is one that originated in Europe; the Global
System for Mobile (GSM) Communications was designed in the late ’80s by the state-
owned national telecommunication companies and harmonised for use throughout
Europe. GSM also employs the TDMA technology and uses 8 time slots on a 200-kHz
wide carrier frequency. GSM900 has a total of 124 frequency channels and GSM1800
has as many as 374.

The so-called Third-Generation (3G) mobile radio systems are based on the open
interfaces of its successor, GSM. The third generation, 3G, is expected to complete the
globalisation process of mobile communication. UMTS (Universal Mobile
Telecommunication System) is one 3G implementation. The current UMTS network
has been upgraded to High-Speed Downlink Packet Access (HSPA) in order to increase
the data rate and capacity for downlink packets and has been introduced as a 3GPP
release 5 features, and High-Speed Uplink Packet Access (HSUPA) is introduced in
3GPP release 6 in order to boost uplink performance in a UMTS network.

The combination of HSDPA and HSUPA is often referred to as HSPA. However, even
with these improvements and the introduction of HSPA, the evolution of UMTS has not
reached its end. In a 3GPP release 7, HSPA+ has been introduced, with a significant
enhancement and improvement to the performance of HSPA-based radio networks in
terms of spectrum efficiency, peak data rate, and latency.

2.3 UMTS Network Architecture

There are different ways to visualise a UMTS network, depending on which angle you
look from. One angle to look from is the functions of the network in terms of how the
traffic is handled. Another approach is to study the functions of the network elements.
In this thesis work, the network will be looked at from the point of view of both the
physical and functional viewpoints.

The physical aspects are modeled using the domain concept and the functional aspects
are modeled using the strata concept (3GPP TS 23.110, 2007). Figure 1 (below)
illustrates the basic domains in a UMTS system.
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Figure 1. UMTS System

Cu Reference point between USIM and UE
Iu Reference point between Access and Serving Network domains
Uu Reference point between User Equipment and Infrastructure domains,

UMTS radio interface
[Yu] Reference point between Serving and Transit Network domains
[Zu] Reference point between Serving and Home Network domains

According to (3GPP TS 23.101, 2007), the basic UMTS architectural is split into a User
Equipment domain and an Infrastructure domain. The main interest of this thesis work
lies in the Infrastructure domain, which could be further split into an Access Network
domain and a Core Network domain. From functionality point of view, UMTS network
infrastructure is logically divided into Core Network (CN) and Access Network (AN)
subsystems as specified in (3GPP TS 23.101, 2007) and (3GPP TS 23.110, 2007)
respectively.

Each subsystem can be further divided into separate technologies. For example, the
RAN (Radio Access Network) is compromised of different air interface technologies,
such as GERAN (GSM, EDGE, and Radio Access Network), UTRAN (UMTS
Terrestrial Radio Access Network), and future solutions such as WLAN and 4G.

The core network is today clearly divided into two domains:
 the Circuit-Switched (CS) domain and
 the Packet-Switched (PS) domain.

A more detailed description of the UMTS architecture is provided in the 3GPP Network
Architecture document (3GPP TS 23.002, 2007). The interest of this thesis work lies
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mainly in two interfaces, namely Iu and Iur. More information on UMTS interfaces can
be found in specifications (3GPP TR 23.930, 1999) and (3GPP TS 25.420, 2007).

2.4 UMTS Radio Network

The UMTS Terrestrial Radio Access Network (UTRAN) consists of a set of Radio
Network Subsystems (RNS) connected to the Core Network (CN) through the Iu
interface. A RNS consists of a Radio Network Controller and or more Node Bs. A Node
B is connected to the RNC through the Iub interface (3GPP TS 25.401, 2002).

The main task of the UTRAN is to create and maintain Radio Access Bearers (RAB) for
communication between the UMTS User Equipment (UE) and core network (CN).
With RAB the CN elements are given an illusion about a fixed communication path to
the UE, thus releasing them from the need to take care of radio communication aspects.
There is two open interfaces: Uu and Iu, which are used by UTRAN to talk with the UE
and CN. Since there are packet switched and circuit switched domains for different
services, Iu-interface was separated into the Iu-CS and Iu-PS interfaces. Detail
description of UTRAN protocol architecture is specified in (3GPP TS 25.401, 2002)
document.

The UTRAN architecture is shown following figure.

Figure 2. UTRAN, its networks and interfaces

The focus of this thesis work is on security parts of Non-Access Stratum (NAS)
signaling between UE and CN which passes through UTRAN network. The overall
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protocol architecture of radio interface is layered into three protocol layers, namely, the
physical layer (L1), the data link layer (L2) and network layer (L3) as described in
(3GPP TS 25.301, 2007) .  L3 provides Uu Stratum services and functions as whole and
detail description of L3 protocol, Radio Resource Control (RRC) is given in (3GPP TS
25.331 2006).

2.4.1 Security Architecture UMTS

UMTS security builds on the security of GSM, inheriting the proven GSM security
features. This maximizes the backward compatibility between GSM /UMTS and
UMTS/LTE. UMTS also provides a solution to the weaknesses of GSM security and
adds security features for new 3G radio access networks and services.

According to specifications, the security architecture is made up of a set of security
features and security mechanisms (3GPP TS 33.102, 2006). A security feature is a
service capability that meets one or several security requirements that are defined in
(3GPP TS 21.133, 2002) and implement the security objectives and principles described
in (3GPP TS 33.120, 2001).

A Security mechanism is an element that is used to realize a security feature and all the
security features and security mechanism taken together to forms the security
architecture (3GPP TS 33.102, 2006).

UMTS consists of five security feature groups:

I) Network Access Security provides users with secure access to UMTS services and
protect against attacks on the radio access link.
II) Network Domain Security protects against attacks on the wireline network and
allows nodes in the provider domain to exchange signaling data securely.
III) User Domain Security provides secure access to mobile stations.
IV) Application Domain Security allows the secure exchange of messages between
applications in the user and in the provider domain.
V) Visibility and configurability of security allows the user to observe whether a
security feature is currently in operation and if certain services depend on this security
feature

Figure 3 shows the way security features are grouped together into five different sets of
features, each one facing a specific threat and accomplishing certain security objectives.
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Figure 3. Overview of security architecture

The focus of this thesis work is on network access security (group I) and other UMTS
security area are outside the scope of this thesis work.

2.4.2 Network Access Security to UMTS

Network Access Security features enables users to securely access services provided by
the UMTS network. It consist a set of security features that provide users with secure
access to UMTS services in which particular protect against on the radio access link.
Network access security features can be further classified into the following categories,
namely, user identity confidentiality, entity authentication and confidentiality, data
integrity and mobile equipment identification as specified in (3GPP TS 33.102, 2006).

2.4.2.1 User Identity Confidentiality

The main objectives of the user identity confidentiality features are to provide
mechanisms which prevent intruders from eavesdropping on the radio access link. It
also makes sure that the user location confidentiality is secured, so the presence or the
arrival of the user in a certain area cannot be determined by eavesdropping on the radio
access. It also provides user un-traceability mechanism, so that an intruder cannot
deduce whether different services are delivered to the same user by eavesdropping on
the radio access link.

To achieve these objectives, the user is normally identified by a temporary identity by
which he is known by the visited serving network, or by an encrypted permanently
identity. To avoid user traceability, which may lead to the compromise of the user
identity confidentiality, the user should not be identified for a long period by means of
the same temporary or encrypted identity. To achieve these security features, in addition
it is required that any signaling or user data that might reveal the user’s identity is
ciphered on the radio access link.
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2.4.2.2 Mutual Entity Authentication

There are three entities involved in the authentication mechanism of the UMTS system,
Home Environment (HE), Serving Network (SN) and the User Entity (UE), more
specifically Universal Subscriber Identity Module (USIM). Authentication and Key
Agreement (AKA) mechanism accomplishes this mutual authentication of the user and
the network using a symmetric key (K) and derives the new cipher and integrity keys.
Detail description of Authentication and Key Agreement (AKA) mechanisms are
discussed in (Arkko &  Haverinen 2006), (Kambourakis, Rouskas & Gritzalis 2004) and
(Grecas, Maniatis & Vernieris 2003).

Once the user and the network have authenticated each other, they may begin secure
communication. Encryption and decryption take place in the UE and in RNC on the
network side, which means that Cipher Key (CK) has been transferred from the core
network (CN) to the Radio Access Network (RAN). This is done in a specific Radio
Access Network Application Protocol (RANAP) message, called the security mode
command. After the RNC has obtained the CK, it can switch encryption on the sending
a Radio Resource Control (RRC) security code command to the UE. The UMTS
encryption mechanism is based on a steam cipher concept [see chapter concepts]. The
core of encryption mechanism is the mask generation algorithm, which is denoted as
function f8. The specification is available (3GPP TS 35.201, 2007) and it is based on a
novel block cipher called KASUMI in Universal Mobile Telecommunication System
(UMTS) and uses SNOW 3G in Long-Term Evolution (LTE).

2.4.2.3 Data Integrity

The purpose of integrity data protection is to provide a mechanism that the User
Equipment (UE) and Serving Network (SN) can securely negotiate the integrity
algorithm that they shall use subsequently in order to authenticate individual control
messages.  It also provides a mechanism that the User Equipment (UE) and Serving
Network (SN) agree on an integrity key that they may use subsequently. Lastly, data
integrity feature provide a mechanism that receiving entity (UE or SN) is able to verify
that signaling data has not been modified in an authorized way since it was sent by the
sending entity (UE or SN) and that data origin of the signaling data received is indeed
the one claimed.

According to (Niemi & Nyberg 2006), this mechanism is important, since separate
authentication procedures only give assurance of the identities of the communicating
parties at the time of the authentication. A Message Authentication Code (MAC)
function is applied to each individual signaling message at the RRC layer of UMTS
Terrestrial Radio Access Network (UTRAN) protocol stack (3GPP TS 25.331 2006).

The integrity protection of signaling messages, between UE and RNC starts during the
security mode set-up as soon as the integrity key and integrity protection algorithm is
known.  Integrity protection is based on a message authentication code concept [see in
concept chapter] which is a one-way function controlled by the secret Integrity Key
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(IK). The function is devoted by f9 and its output is MAC-I a 32 bit, random-looking bit
string. The algorithm for integrity protection is based on the same core function as
encryption.

This thesis work focus mainly on mechanisms used for confidentiality and data integrity
security features, so mobile equipment identification and entity authentication related
mechanisms are outside the scope of this thesis work.

2.4.3 Cryptographic Algorithms for UMTS

This section will highlight the cryptographic algorithms used in UMTS and explain
their functionalities in detail. Further, this section presents the 3GPP UMTS security
algorithm specifications and further descriptions of UMTS security functionalities
provided by security experts, namely Valtteri Niemi and Kaisa Nyberg in their book:
UMTS Security.

In cryptography, a block cipher is a symmetric key cipher which operates on fixed-
length group of bits. The block cipher transforms a plaintext block of fixed lengths into
a sequence of ciphertext blocks of equal length under the control of a secret key K. The
operation of transforming a plaintext block into a ciphertext block is called encryption,
and the operation of transforming a ciphertext block back to plaintext block is called
decryption. A block cipher applies the encryption algorithms and key to an entire block
of plaintext to obtain the ciphertext.

To encrypt messages longer than the block size or in another word in order to provide
confidentiality for messages of arbitrary length, then a mode of operation is used. The
four most widely known modes of operation were originally standardized by National
Institute of Standard and Technology (NIST) for use with the Data Encryption Standard
(DES) algorithm (NIST 1981).

A stream cipher is a cryptographic algorithm for encrypting plaintext similarly as to
block ciphers but the plaintext is partitioned to sequence of blocks. The main difference
between them is that in the block cipher, the current plaintext block is not taken as data
input for cryptographic transformation. Instead, a string of bits, often called a
“keystram” block, is generated independently of the current plaintext block and then
combined with the plaintext using a simple operation, most commonly the XOR
operation. Due to this functional difference, stream ciphers typically operate on
plaintext blocks of shorten length, which can be just 1 bit or 1 byte.
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The requirement for UMTS confidentiality and integrity algorithms are specified by
3GPP in the technical specification document (3GPP TS 33.105, 2007). Within the
security architecture of the 3GPP system, there are standardized algorithms versions for
UMTS confidentiality algorithm UEA1 and integrity algorithm UIA1 There are two
versions for UMTS security algorithms: 1.0 and 1.1. Version 1.1 must be used.

In following sub-sections confidentiality and Integrity algorithms will be elaborated
more as well as their structure and functionalities.

2.4.3.1 Confidentiality Algorithm

For data confidentiality of user data and signaling data, UMTS uses a cryptographic
function called (ƒ8). Confidentiality algorithm (UEA1) is a stream cipher is used to
encrypt and decrypt blocks of data under a confidentiality key (CK). The block of data
may be between 1 and 20, 000 bits long. The algorithm use KASUMI in a form of
Output Feedback (OFB) mode as a key stream generator in UMTS and uses. The detail
description of f8 algorithm is specified in (3GPP TS 35.201, 2007).

The 3GPP ƒ8 stream cipher mode is not a standard stream cipher mode of operation of a
block cipher. Examples of such standard modes are counter mode and OFB mode
(NIST 1981). A counter mode keystream generator makes us of the generator that is
updated for each new block and is taken as part of the input to the generator function.
The ƒ8 stream cipher mode can be seen as a combination of these two standard modes
and makes use of prewhitening of feedback data (Niemi & Nyberg 2006).

In UMTS, The ƒ8 algorithm makes use of the KASUMI key-dependent function, which
operates on 64-bit data blocks and produces 64-bit blocks under control of a 128-bit key
K. In LTE, ƒ8 uses SNOW 3G as a keystream generator, which generates a sequence of
32-bit words under the control of a 128-bit key and a 128-bit initialization variable. The
input parameters to ƒ8 are the Cipher Key (CK), the time-dependent input (COUNT-C),
the bearer identity (BEARER), the direction of the transmission (DIRECTION) and the
length (LENGTH) of the plaintext.

The Cipher Key (CK) is renewed at every authentication process. COUNT-C, BEREAR
and DIRECTION can be considered as initialization parameters as they are renewed for
each keystream block. The time-dependent input COUNT-C also sent in cleartext and
used as a synchronization parameter for the synchronous stream cipher. The input
parameter LENGTH only affects the length of the keystream, not the actual bits in it.
The exact structure of these parameters and further description of ƒ8 algorithm
operation it is specified in (3GPP TS 33.102, 2006) and in (3GPP TS 35.201, 2007).
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Following figure illustrate the use of ƒ8 function to encrypt plaintext by applying a
keystream using a bitwise XOR operation. The plaintext may be recovered by
generating the same keysteam using the same input parameters and applying it to the
ciphertext using a bitwise XOR operation.

Figure 4. Ciphering user and signaling data transmitted over the radio access link.

The ƒ8 algorithm makes use of two 64-bit registers as described in (Niemi & Nyberg
2006): the static register A and the counter BLKCNT. Register A is initialized using the
64 bit initialization value:

IV = COUNT ||BEARER||DIRECTION||0…0 obtained as the concatenation of the 32-
bit COUNT, 5-bit BEARER, 1-bit DIRECTION value and a string of 26 zero bits. The
counter BLKCNT is set to 0.

Figure 5. The ƒ8 stream cipher mode
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The ƒ8 algorithm makes use of a Key Modifier (KM) constant that is equal to the octet
0 x 55 = 01010101 repeated 16 times. First, a single operation of KASUMI is applied to
register A, using a modified version of the CK to compute the prewhiteninig value:

W = KASUMICK  KM(IV) (2.1)

which is stored in register A. Once the keystream generator has been initialized in this
manner, it is ready to be used to generate keystream bits. The plaintext/ciphertext to be
encrypted/decrypted consists of LENGTH bits, where LENGTH varies between 1 to
20,000 with granularity of 1 bit, while the keystream generator produces keystream bits
in multiples of 64 bits. Between 0 and 63 of the least significant bits are discarded from
the last block depending of the total number of bits required by LENGTH.

The number of required keystream bits is denoted by BLOCKS, whose value is
determined by the value of the LENGTH parameter as follows: the value of LENGTH is
divided by 64 and the result is rounded up to the nearest integer. The keystream blocks
are denoted as KSB1, KSB2 ,…,KSBblocks. Set KSBo=0 and let n be an integer with 1
≤ n ≤ BLOCKS, such that n = BLKCNT +1, and set:

KSBn = KASUMICK( W  (n-1) KSB n-1) (2.2)

Individual bits KS[0],KS[1],…….KS[LENGTH-1] of the keystream are extracted in
turn from KSB1 to KSBblocks, with the most significant bit extracted first, by applying
the following operation. For n = 1, …., BLOCKS and for each integer i, with 0 ≤ i ≤ 63,
set :

KS[((n-1) * 64) - i] = KSBn[i] (2.3)

Encryption/decryption operations are identical and are carried out by the bitwise XOR
of the input data using the generated keystream.

The main task with the design of ƒ8 was to make a steam cipher out of the block cipher
KASUMI and there are several standard ways for this task, namely, cipher feedback
(CFB), courter mode or output feedback (OFB) mode. For the function ƒ8 a
combination of () and counter mode used for protection for KASUMI against chosen
plaintext attack and protection against collision attacks (Günther, Howard & Niemi
2002).

To prevent chosen plaintext attacks the initialization vector (IV) is encrypted with
different key CK´ = CK+KM, where KM is a key modifier. This initial encryption is
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also protection against collision attacks collision attacks as an attacker cannot freely
choose the value which is XOR-ed with the block counter (Günther, Howard & Niemi
2002).

2.4.3.2 Integrity Algorithm

As specified in (3GPP TS 33.102, 2006), some Radio Resource Control (RRC),
Mobility Management (MM) and Call Control (MM) signaling information elements
are considered sensitive and must be integrity protected. Cryptographic integrity
function (ƒ9) shall be applied on certain signaling information elements transmitted
between User Equipment (UE) and Serving Network (SN). For this task, UMTS
Integrity Algorithm (UIA) has been specified and should be implemented in UE and in
the RNC.

The UMTS Integrity Algorithm (UIA) shall be used with an Integrity Key (IK) to
compute a message authentication code for a given message. At least the following
signaling elements sent by the UE to the RNC should be protected:

 The UE capabilities, including authentication mechanism,
ciphering algorithm and message authentication function
capabilities.

 The security mode accept/reject message.

 The called party number in mobile originated call.

 Periodic message authentication messages.

 Various location updates, e.g. cell updates and URA updates

As for RNC concerned, at least following signaling message sent by RNC to the UE
should be protected:

 The security mode command, including whether ciphering is
enabled or not and the ciphering and integrity algorithm to be used.

 Periodic message authentication message
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A cryptographic function (ƒ9) is used to protect data integrity and authenticate the data
origin of signaling data at the RRC layer. A cryptographic message authentication
algorithm generates a fixed length message authentication code (MAC) from a message
of arbitrary length, under the control of the secret parameter key and a set of
initialization values. The sender and receiver generate the MAC using same function.

3GPP integrity algorithm ƒ9 computes 32-bit Message Authentication Code (MAC) of a
given input message under integrity key (IK) and imposes no limitation on the input
message length. The approach adopted uses KASUMI as used by the confidentiality
algorithm ƒ8 in form of Cipher Block Chaining (CBC-MAC) mode.

The input parameter to the integrity algorithm are the Integrity Key (IK), a time- and
frame-dependent input (COUNT-I), a random value generated by the network side
(FRESH), the direction bit (DIRECTION) and the signaling message (MESSAGE). The
IK is cryptographic key that is newly generated at each authentication process. The
COUNT-I, FRESH, and DIRECTION parameters can be considered as a set of
initialization parameters that are renewed for each message to be authenticated. Based
on these inputs parameters the user computes message authentication code for data
integrity (MAC-I) using the UMTS Integrity Algorithm (UIA) ƒ9.

MAC-I is then appended to the message when sent over the radio access link. The
receiver computes XMAC-I on the message received in the same way as the sender
computed MAC-I on the message sent and verifies the data integrity of the message by
comparing it the received MAC-I. The input parameter COUNT protects against replay
during a connection. It is a value incremented at both sides of the radio access link
every 10ms layer 1 frame. Its initial value is sent by the user to the network at
connection set-up. The user stores the last used COUNT value from the previous
connection and increments it by one. In this way the user is assured that no COUNT
value is re-used (by the network) with the same integrity key.

The input parameter FRESH protects against replay of signaling message by the user.
At connection set-up the network generates a random value FRESH and sent it to the
user. The value FRESH is subsequently used by both the network and user throughout
the during of a single connection. This mechanism assures the network that the user is
not replaying and old MAC-Is.

Following figure is depicted derivation of MAC-I and/or XMAC-I on a signaling
message:
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Figure 6. Derivation of MAC-I and/or XMAC-I o

The 3GPP standard ƒ9 function (Niemi & Nyberg 2006) makes use of two 64-bit
registers A and B. The initial value for both registers is set equal to 0: A=0 and B = 0.
The function also makes use of a constant value for a 128-bit Key Modifier (KM) that is
equal to 16 repetitions of the octet 0xAA = 10101010. The inputs of the ƒ9 function are
as described above paragraphs, the value of all inputs are concatenated and then a single
“1” bit is appended to this string, followed by between 0 and 63 “0” bits, so that the
total length of the resulting string is an integer multiple of 64 bits. This string is called
Padded String (PS) then:

PS = PSo||PS1||PS2|| . .|| PS BLOCKS -1 (2.4)

This Padded String (PS) is the data input to the Message Authentication Code (MAC)
algorithm. It would also be possible to interpret the first block PS0 of PS as the initial
value, since PSo = COUNT || FRESH, and this initial value would be different for each
message. For each integer n with 0 ≤ n ≤ BLOCKS-1 the following operations are
performed:

A = KASUMIIK(A PSn) (2.5

B = B  A (2.6)

Finally a further application of KASUMI is performed using a modified form of the
Integrity Key (IK), as follows:

B = KASUMIIK  KM(B) (2.7)
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The output form KASUMI has 64 bits: MAC-I comprises the leftmost 32 bits of the
result and the rightmost 32 bits are discarded.

Following figure show ƒ9 integrity function

Figure 7. The ƒ9 integrity function

UIA negotiations, Integrity key lifetime, integrity protection procedures and local
authentications are described in (3GPP TS 33.102, 2006) document.

2.5 KASUMI

This subchapter gives detail description of the KASUMI cipher. Most text of this
subchapter is extracted from 3GPP specifications (3GPP TS 35.201, 2007) and (3GPP
TS 35.202) handling of KASUMI and (Niemi & Nyberg 2006).

The KASUMI block cipher is used by the confidentiality algorithm (ƒ8), and the
integrity algorithm (ƒ9) developed by Security Algorithms Group of Experts (SAGE)
Technical Forum (TF)  of 3GPP. As mentioned in subchapter 2.4, these algorithms were
designed for specific use in the context of UMTS. They were designed for specific
block cipher algorithm in mind, which was chosen as a starting point for what was
going to be the kernel algorithm, a modified version of MISTY (Mitsure Matsui, 1997).
In Parallel with the development of the ƒ8 and ƒ9 modes of operation, adjustments were
also made to block cipher algorithm MISTY1 (Mitsure Matsui, 1997) and the final
version of the block cipher algorithm is known as KASUMI—kasumi is Japanese for
“hazy, dim blurred” (Niemi & Nyberg 2006).
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2.5.1 Description of KASUMI

KASUMI (3GPP TS 33.102, 2006), is a 64-bit block cipher that has a key size of
128bits. KASUMI was designed as modification of MISTY1 (Mitsuru Matsui, 1997),
optimized for implementation in hardware. Therefore, the most of the components of
KASUMI are similar to the respective components of MISTY1 (Mitsuru Matsui, 1997).

KASUMI is a Feistel (3GPP TS 35.202, 2007) cipher with eight rounds. It operates on a
64-bit data block and uses a 128-bit key. The round function (or ƒi() f-function) used  in
the ith  round of the Feistel cipher is denoted by ƒi. The f-function has a 32-bit input and
a 32-bit output. Each f-function of KASUMI is composed of two functions an FL-
function and an FO-function. An FO-function is defined as a network that makes use of
three applications of an FI-function.

An FI-function has a 16-bit input and a 16-bit output. Each FI-function comprises a
network that makes use of two applications of a function S9 and two applications of a
function S7. The functions S7 and S9 are also called “S-boxes of KASUMI”.  In this
manner KASUMI has similar three- layer nested structured of MISTY1 (Mitsuru
Matsui, 1997) . In this manner KASUMI decomposes into a number of subfuntions
(FL, FO and FI) that are used in conjunction with associated subkeys (KL, KO and KI).
The outmost Feistel network comprises eight rounds, which are called in the
specification outer rounds and numbered using index i, i = 1,2, ...., 8.

Figure 8. (a) KASUMI; (b) FOi function; (c) FIi,j function; and (d) FLi funtion



33

The FL-functions and FO-functions used at each round of the Feistel network are
numbered accordingly (i.e FLi, and FOi are functions used at the ith round of the outer
network). Function FLi is used in conjunction with subkey KLi, and function FOi is
used conjunction with two subkeys: KOi and Ki.

The network formed by the eight FO-functions are called the inner networks and each
one has three rounds indexed by j, j=1, 2, 3. Each round of an inner network makes use
of a KO-key and an FI-function, the latter is used in conjunction with a KI-key.
Consider the ith inner network FOi. The KO-key, FI-function and the KI-key used at the
jth round of FOi are denoted as KOi,j FIi,j KIi,j respectively. In addition, the KI-key KIi,j
splits into two halves KIi,j 1 and KIi,j 2 .

2.5.2 KASUMI Components and Encryption Function

In ƒ8 and ƒ9 mode operation, the kernel function is only computed in one direction
(Niemi & Nyberg, 2006). So even if the kernel function is a block cipher, the
decryption transformation is never used. The purpose of the 3GPP is only the
encryption function of KASUMI and that only has been defined. KASUMI operates on
a 64-bit input (INPUT) using a 128-key (K) to produce 64-bit output (OUTPUT) as
follows. INPUT is divided into two 32-bit strings L0 and R0, where:

INPUT = L0 || R0 (2.8)

Then for each integer i with 1 ≤ i  ≤ 8 the  operation on the ith round of KASUMI is
defined as :

Ri = Li-1,  Li = Ri-1  ƒi(Li-1, RKi ) (2.9)

This constitute the ith round function of KASAUMI, where Li-1 || Ri-1 is the input data
block, Li || Ri is the output data bock and RKi is the ith round key, defined as a triplet of
subkeys (KLi, KOi, KIi). Subkeys are derived from the key K using the key-scheduling
algorithm.

The output data block (OUTPUT) is defined as:

OUTPUT = L8 || R8 (2.10)

which is the data block offered at the end of the eighth round. In the specification of ƒ8
and ƒ9 this transformation is also denoted as

OUTPUT = KASUMIK [INPUT] (2.11)
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Components of KASUMI and their functionalities have been defined in (3GPP TS
35.202, 2007) and it is highlighted here shortly.

2.5.2.1 ƒ Functions

According to (Niemi & Nyberg 2006) each f-function ƒi takes a 32-bit input I and
returns a 32-bit output O under the control of round key RKi , where the round key
comprises the triplet ((KLi, KOi, KIi). The f-function ƒi itself is constructed from two
subfunctions: an FL-function FLi and an FO-function FOi with associated subkeys KLi

(used with FLi) and subkeys KOi, and KIi (used with FOi).

The f-function ƒi has two different forms depending on whether it is an even round or an
odd round. For odd rounds I = 1, 3, 5 and 7.The f-function ƒi is defined as:

ƒi( I, RKi) = FOi (FLi (I, KLi,), KOi, KLi ) (2.12)

And for even rounds i = 2,4,6 and 8, The f-function ƒi is defined as:

ƒi(I, RKi) = FLi (FOi (I, KOi, KIi),  KLi (2.13)

i.e for odd rounds first the FL-function and then the FO-function is applied to the round
data, while for even rounds the order of the functions is changed.

2.5.2.2 Function FL

The input function of FLi comprises a 32-bit data input I and a 32-bit subkey KLi. The
subkey is split into two 16-bit subkeys, KLi,1 and KLi,2 , where :

KLi = KLi,1  || KLi,2 (2.14)

The input data I is split into two 16-bit halves, L and R, where I = L ||R. The FL-
funtions make use of the following simple operations:

ROL (D) the left circular rotations of a data block D by one bit

D1 D2 the bitwise OR operation of two data blocks D1 and D2

D1 D2 the bitwise AND operation of two data blocks D1 and D2

Then the 32-bit output value of the FL-function is defined as L || R || where:

L= L  ROL(R´ KLi,2 ) (2.15)

R= R  ROL( L KLi,1) (2.16)
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2.5.2.3 Function FO

The input to function FOi comprises a 32-bit data input I and two sets of subkeys: a 48-
bit, KOi and 48-bit KIi.The 32-bit data input is split into two halves, L0 and R0.where I
= L0 || R0, while the 48-bit are subdivided into three 16-bit subkeys, where:

KOi = KOi,1 || KOi,2 || KOi,3 and KIi. = KIi,1|| KIi,2 || KIi,3 (2.17)

For each integer j with 1 ≤ j ≤ 3 the operation of the jth round of the function FOi is
defined as:

Rj = FIi, j(Lj-1 KOi j, KIi j )Rj-1 (2.18)

L j = Rj-1 (2.19)

Output from the FOi function is defined as the 32-bit data block L3 || R3.

2.5.2.4 Function FI

The FI-function is depicted in Figure 8. The thick and thin lines in this diagram are
used to emphasize the difference between the 9-bit and 7-bit data paths, respectively.

An FI-function FIi, j takes a 16-bit data input I and 16-bit subkey KIi j. The input I is
split into two unequal components, a 9-bit left half L0 and a 7-bit right half R0, where I
= L0 || R0, . Similarly, the key KIi, j is split into a 7-bit component KIi,j,1 and  a 9-bit
component KIi j,2, where and KIi,j = KIi, j,1|| KIi, j, 2 . Each FI-function FIi, j uses two S-
boxes: S7 which maps a 7-bit input to a 7-bit output and S9 which maps a 9-bit input to
a 9-bit output. The FI-funcions also uses two additional functions, which are designated
by ZE and TR. These simple functions are defined as following:

ZE (D) takes a 7-bit data string D and converts it to a 9-bit data string by appending two
zero bits to the most significant end of D. TR (D) takes a 9-bit data string D and
converts it to a 7-bit value by discarding the two most significant bits of D.

The function FIi, j is defined by the following series of operations:

L1 = R0 R1 = S9[L0] ZE (R0)

L2 = R1 KIi, j, 2 R2 = S7[L1] TR (R1) KIi,j,1

L3 = R2 R3 = S9[L2]  ZE (R2)

L4 = S7 [L3]  TR(R3) R4 = R3 (2.20)

The output of the FIi, function is the 16-bit data block L4 || R4,
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2.5.2.5 S-boxes
The two S-boxes (S7 and S9) have been designed so that they may be easily
implemented in combinational logic or by a look-up table. Both forms are given for
each S-box. The input x comprises either seven or nine bits with a corresponding
number of bits in the output y. Therefore:

x = x8 || x7 || x6 || x5 || x4 || x3 || x2 || x1 || x0 || and (2.21)

y = y8 || y7 || y6 || y5 || y4 || y3 || y2 || y1 || y0 || (2.22)

Where the x8, y8 and x7, y7 bits only apply to S9 and the x0, y0 bits are the least
significant bits. Gate logical operations of S7 and S9 are described in detail (3GPP TS
35.202, 2007).

2.5.3 Key Schedule

KASUMI has a 128-bit key K. Each round of KASUMI uses 128 bits of key that are
derived from K. Before the round keys can be calculated two arrays of 16-bit values Kj

and K΄j( j = 1, …,8) are derived in following manner. The first array K1, K2, ….K8 is
derived by subdivision of K into eight 16-bit sub-blocks such that:

K = K1 || K2 || K3 || K4 || K5 || K6 || K7 || K8 (2.23)

The second array K`1, K`2, …,K`8 is derived from the first array by adding an array of
16-bit constants Cj as follows:

K`j  =K`j  Cj (2.24)Where the constants Cj are given in following table 1:
Table 1. Constants Cj

Then the subkeys (KL, KO and KI) are derived as defined by the following Table 2.

Table 2. Subkeys (KL, KO, and KI)
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2.5.4 KASUMI Operations

Since KASUMI is a Feistel cipher with eight rounds, it operates in recursive structure
manner in three round functions, namely, FO(), FI() and FL().Both functions of FO()
and FI() has a subcomponents which are also have a Feistel-like structure. KASUMI
encrypt 64 bits blocks by using a Feistel network of eight rounds. In each round, it
alternate between the left and right halves of the state. In first level, one half enters the
out round function FO() for processing. In second level the FO() function´s output is
then XOR’ed to the opposite half of the state and then operation continues with next
round. As explained earlier, FO() function itself consists of three round of inner round
function FI() and it happens in similar Feister network recursive manner with half the
block size. In third level of recursion FI() itself consists of four rounds of nonlinear S-
Box transformations arranged in a Feiste structure. Following figure illustrate the
KASUMI operations detail structures.

Figure 9. KASUMI operations
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3. THEORETICAL ANALYSIS OF CRYPTOGRAPHIC PERFORMANCE

In this chapter, thesis will highlight the benchmarking process of analyzing
cryptographic performance in order to understand the characteristics of the multi-core
processor being measured. This chapter also provides a short description of the analysis
of the potential variables that affect the cryptographic performance of a multi-core
processor when measurements are made on the driver level and explains how these
variables manifest themselves in the measured performances of the processor that is
used. This chapter also introduces a theoretical hypothesis about the implementations of
the KASUMI algorithm in both software and hardware. In this way, the predicted can
be compared against measured results.

Cryptographic algorithms are used in modern communication systems and have
become very important components for ensuring data security. Traditionally,
cryptographic algorithms were implemented either by software on a general-purpose
processor or incorporated dedicated security hardware in the form of a specialized
processor with cryptographic features. In this latter option, the cryptographic functions
took place in an off-chip accelerator approach, which means adding another chip or
daughter chip and writing low-level code for accessing data between the CPU and this
external dedicated chip.

Since cryptographic algorithms are computationally demanding, software-based
implementations are very slow or their power consumptions are high, and thus,
hardware-based implementations have been preferred, but even this hardware-based
cryptographic implementations option also had its drawbacks; for instance, in order to
have access to CPU functionalities, low-level code has to be written for transferring the
data forth and back between the CPUs, system bus, memory, and other subsystems,
which could have a huge effect on the overall performance of the systems.

The present embedded system development is moving on to the next step of
cryptographic algorithm implementations. Hardware-based implementations are moved
on-chip or System-on-Chip (SoC), which means that mainstream CPUs incorporate
cryptographic function hardware acceleration. These hardware accelerations were
developed to offload the heavy processing load from the core CPU.

These new SoC systems consist of an embedded CPU and an on-chip bus, a DMA
controller, memories, and other subsystem modules, such as dedicated crypto
coprocessors used for the accelerations of the cryptographic algorithms. The
performance measurements are made for cryptographic algorithms on different levels,
on the driver level, the application level, or the protocol stack level. This thesis makes
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the performance measurements on the driver level. According to (Freescale
Semiconductor 2008), there are variables which may influence the results of the
measurements.

As the demand for faster processing has increased over the years, the idea of multi-core
has been born; in this two or more cores are combined into a single Integrated Circuit
(IC) package and in this way, the multi-core technology takes advantage of parallel
processing rather than increasing the frequency of the clock rate to achieve higher
performance.

Verifying the cryptographic performance claims of multi-core vendors can be a difficult
task since there can be a difference between the theoretical cryptographic performance
of the processor and its performance in a given application. Some of the results of the
performance are inherited from its architecture, while others are due to the performance
of the application itself, the protocol stacks of the software, or the underlying OS.

According to (Waters & Stammberg 2009), there are many cryptographic acceleration
implementations but there are two common cryptographic acceleration implementation
architectures, namely flow-through and look-aside, which most accelerator
implementations are based on. The following variables that have been identified in
above mentioned reference have an influence on the performance measurements of the
cryptographic implementations and would explain shortly as following.

3.1 Influential Variables for Cryptographic Performance Measurements

In this subchapter, 4 variables that could affect the performance measurements of
different cryptographic-based implementations are discussed. Although a detailed
description of how each parameter affects the results lies outside the scope of this thesis
work, they are defined here to raise awareness of their presence in the measurements.

3.1.1 Application or Protocol Stack Software Overheads

Application and protocol stack overheads are the instructions a processor must execute
in order to determine what sort of crypto processing is required. Application/protocol
stack overheads are typically the greatest source of performance degradation and often
the most shocking to users as they transition from a non-secure version of a given
protocol to the secured versions.

The reason for this degradation is that security protocols are stateful, so as the
cryptographic keys that are used to encrypt and/or decrypt or authenticate the data have
lifetimes, which can be measured in terms of the number of bytes encrypted,the number
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of seconds since the key was first used, the number of seconds since the key was last
used, or all of the above. Security protocols also add a header field to packets, allowing
the packet to be forwarded to the other end of the security tunnel without revealing
information about the parties to the communication.

3.1.2 Software Overheads

Crypto API, application stacks, and driver overhead affect the interface between crypto
hardware and application software stacks.  Efficient interaction between OS and crypto
accelerators is crucial in order to minimize their effects. With small packet sizes,
software overheads are more evident with a large number of packets processed, but as
the packet size increases, all software overheads become less important and the row
performance of the look-aside accelerator becomes more critical.

3.1.3 Bus Bandwidth

The amount of memory bandwidth consumed during look-aside crypto processing is
significantly greater than what is consumed during a plaintext operation. Whether the
data to be cryptographically processed are a large file or a small packet, the data must
originally be moved from the network or peripheral interface to the system memory,
moved from the system memory to the accelerator and back, and then moved from the
system memory to a network or peripheral interfaces.

In addition to this data movement, the security context, such as the crypto key, must
also be fetched. There is also additional memory bandwidth consumption associated
with additional look-ups, instruction fetches, or architecturally specific reads or writes.
Crypto performance can be constrained if there is not enough bus bandwidth to keep the
look-aside accelerator fully utilized. The bus bottleneck could be between the SOC and
its system memory.

3.1.4 Data Size

Is the test encrypting of a small or large chunk of data matter? The smaller the size of
the chunk of data, the more the results will be influenced by the memory latency of the
accelerator, the descriptor size, and other "non-data" context it must fetch to perform the
operation, and the accuracy of the timer.

3.1.5 Iteration
A good way to include accelerator DMA overheads and memory latency in a small
amount of data while reducing timer resolution as a variable is to construct the test in
such a way that the timer starts before iteration 1 and stops after the nth iteration, where
n is a fairly large number.
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4. EXPERIMENTAL SET-UP AND TOOLS

This chapter will describe both the OCTEON HW and SW architectures, the setting up
of the test environment, and the tools used; the software under test is also described
briefly in this chapter.  The experimental tests that are studied in this thesis were
performed at the Nokia Siemens Networks laboratory in Espoo, in Finland.

KASUMI cipher implementations have been tested in several other studies
(Jääskeläinen 2003; Tomás Balderas-Contretras 2004; Tomás, Balderas-Contretras, and
René, Cumplido 2005 and H.Kim, Choi, M.Kim and H.Ryu 2002). But none of those
involved Cavium OCTEON Multicore processors. The OCTEON Multicore processors
family contains a wide range of different product options in which some of the chips
will contain a hardware accelerator for security algorithms like KASUMI.  According to
(Cavium Networks, 2009), a Cavium HW-based security accelerator should provide a
substantial performance boost compared to a purely SW-based KASUMI
implementation. The intention of the experimental KASUMI tests in this thesis is to
verify those claims by comparing SW- and HW-based KASUMI implementations to
each other.

4.1 OCTEON Hardware Architecture

This section describes the hardware architecture that was used for running the
experimental tests. The first subchapter first gives a high-level overview of the
OCTEON processor, while the next subchapter describes its architecture in greater
detail. This thesis does not intend to describe each and every fact about the OCTEON
but just cover it on a high level and touch only on those issues that are germane to this
study. For in-depth descriptions of the OCTEON hardware, refer to the OCTEON
User’s Manual (Cavium Networks, 2009f).

Many embedded applications require a higher performance response time for real-time
systems. This demand makes it difficult for a single CPU to satisfy this ever-increasing
hunger for high-performance applications, so the use of multiple CPUs has become very
popular among embedded system manufacturers.

A multi-CPU system is not the same as a multi-core system; the multi-core processor is
a processing system that comprises two or more cores (CPUs) which are integrated in a
single chip. Historically, more processing power was achieved by increasing the speed
of the processor, but current multi-core processors could deliver better performance by
forming multiple logical units into a core one single chip.
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4.1.1 Cavium Networks MIPS (cnMIPS)

MIPS (Microprocessor without Inter locked Pipeline Stages) is a RISC (Reduced
Instruction Set Computer) processor architecture developed by MIPS Computer System
Inc. The early MIPS architecture was 32-bit implementation and the latest MIPS64 is
based on 64-bit wide registers and data path implementation.

The Cavium Networks OCTEON product family architecture is based on officially
licensed MIPS Inc. (MIPS Technology 2001:7-15) technology and uses the multi-core
MIPS64 v2 processor instruction set supporting both 32-bit and 64-bit processing.
Cavium Networks has added some custom instructions to accelerate common
networking operations, such as a bit test branch instructions, security and packet
processing instructions or bit-field insert/extract forming the cnMIPS core.

These processors are software-compatible processors, with one to sixteen cnMIPS cores
on a single chip and OCTEON II Internet application Processor (IAP) scale from 1 to 32
cores according to (Cavium Networks, 2009).The cnMIPS cores is Cavium Networks´s
custom implementation of the MIPS64 release 2 instruction set.

4.1.1.1 OCTEON Product Overview

The OCTEON product family includes OCTEON, OCTEON Plus and OCTEON II
multi-core MIPS64 processors. All OCTEON processors are software compatible and
supported by industry-standard software tool-chains and operating systems. All
OCTEON products share the same architecture and more detail description of OCTEON
products are shown in Cavium Networks Product Table (Cavium Networks, 2009c).

In this thesis work, OCTEON Plus CN58XX   product family is used for running on the
experimental tests that are used for performance tests on KASUMI cipher
implementations. This processor has a sixteen cnMIPS cores at up to 750MHz speed on
a single chip. The CN58XX processor is provides security hardware acceleration which
implements the latest set of algorithms including KASUMI cipher algorithms.

4.1.1.2 OCTEON Architecture Overview

According to (Cavium Networks, 2009d) All OCTEON products share the same
OCTEON architecture. Individual OCTEON products vary and scale based on the
number of integrated cnMIPS cores, the frequency that the cores and the internal
interconnects run at, the type and the number of I/O interfaces integrated, and the type
and the number of application acceleration hardware units integrated.
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According to (Cavium Networks, 2009e) key OCTEON features which most OCTEON
models provide are:

 Up to 32 cores, up to 1.5 GHz: The OCTEON family of multicore processors
supports up to 32 cnMIPS with a speed from 300MHz to 1.5GHz.

 Hardware Acceleration Units: Multiple hardware acceleration units are
integrated into each processor. These acceleration units include; Packet-
managment accelerators, Security acceleratiors, Application accelerators and
specialized accelerators.

 Dedicated DMA Engines: Dedicated DMA Engines are provided for each
hardware unit which accesses memory.

 High-Speed Interconnects: The hardware units and the cores ae connected by
high-speed interconnects. These interconnects run at the same frequency as the
cores. Each interconnect is a collection of multiple buses with extensive
pipelining and sophisticated hardware arbitration logic.

 Industry-Standard Tools chains and Operating Systems: Industry-standard tool
chains (GCC, GDB) and operating systems (including SMP Linux) has been
modified to utilize the OCTEON processor´s multiple cores, hardware
accelerators and Cavium Networks –specific instructions.

 Packet Management Acceleration: Packet receive/transmit is automated by
software-configurable packet management accelerators.

 TCP/UDP acceleration

 Per-Core Security Hardware Acceleration. Common security algorithms
including KASUMI are accelerated by optional per-core Security Engines.

The architectural definition of the CN58XX product line provides a good perspective
for illustrating the OCTEON architecture. Following figure is OCTEON Plus CN58XX
block diagram.
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Figure 10. Cavium Networks MIPS Architecture (cnMIPS)

Although every units of OCTEON hardware is essential to work of this thesis work, in
this subchapter, will be highlighted only some of the hardware –acceleration units that
their functionalities are very essential to this thesis work.

As described earlier, Hardware-Acceleration units consists of packet-management
accelerators, security accelerators, application accelerators and specialized accelerators.
Packet management accelerators and security accelerators has huge effect on work and
the experimental test results analysis of this thesis work, so their functionalities would
be described them in detail following paragraphs.

Packet Management Accelerators in its part consists of Schedule/Synchronization and
Order (SSO) unit that manages packet scheduling and ordering, Free Pool Allocator
(FPA) unit that handles pools of free buffers including Packet Data buffers, and Input
Packet Data (IPD) unit which manages packet input. Packet Input Processor (PIP) unit
which works closely with IPD a handles with input packets, Packet Output Unit (PKO)
manages packet output.

PIP (Packet Input Packet) and IPD (Input Packet Data) units work together to receive
the packet and perform early processing on it. Each packet is represented as “work” for
the cores to do and is represented by a Work Queue Entry (WQE) data structure which
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contains the tag type, tag value QoS value, group and pointer to Packet Data Buffer.
These units are responsible for many layer-2 through layer-7 processing requirements
such as exception checking and TCP/UDP checksum verification.

Schedule/Synchronization and Oder (SSO) is responsible for scheduling the work to
cores and also maintaining the packet ingress order. Cores may request work from SSO
either asynchronously (the core continue to do other work while the instruction
completes) or synchronously (the core waits for instruction to complete). In another
word, SSO unit provides Scheduling, Synchronization and Ordering services.

Packet Output (PKO) in its turn is responsible for packet transmission. When the packet
processing is complete, the core notifies the PKO that the packet is ready for
transmission and PKO manages the transmission priority.

Security accelerators consists Random Number Generator (RNC) unit, Key Unit which
provides and manages secure on chip memory which can be used to store a hardware
key and can be reset using an external pin. Per-Core Security or Security Engine, this is
special coprocessor used for accelerating security applications and hash generation and
there is one Security-Coprocessor per core.

Once the core issue an instruction to the coprocessor, the core can continue to do other
work while the coprocessor complete the instruction, or the core can wait for the
coprocessor to complete the task. Following figure illustrate the communication
between core and its co-processor.

Figure 11. Communication between core and its co-processor

More detail descriptions of these units and how they functions is handled in (Cavium
Networks, 2009e).



46

4.1.1.3 Other Units and Functionalities

According to (Cavium Networks 2009c, 2009d) there are also other import units beside
those been described in above paragraphs, such as On-Chip Interconnects which joins
the different integrated units together. The OCTEON on-chip interconnect architecture
involves a network of Coherent Memory Buses (CMB), and another network of
interconnects connecting the I/O sub-system (IOB) together. Both of these networks are
implemented based on multiple split-transaction and highly pipelined buses. These two
networks, CMB, and IOB, are connected together through a high performance I/O
bridge.

The CMB network connects all the cnMIPS cores, L2 cache controller, memory
controller, and I/O bridge together while the I/O sub-system (IOB) includes the
controllers for the various I/O interfaces, all the application specific offload and
acceleration engines, and the I/O bridge. The OCTEON architecture offers as well a
cache hierarchy which includes split instruction and data L1 caches on each cnMIPS
core, and a large L2 cache, up to 2MB, that is shared by all cnMIPS cores and the I/O
subsystem.

The OCTEON architecture includes also, a large variety of application specific offload
and acceleration engines. Some of these acceleration features are implemented as
individual functional units that are shared among all the cnMIPS cores, while some of
these acceleration features are integrated into each of the cnMIPS cores. The decision of
stand-alone functional units against integration into cnMIPS core is optimized for each
of the application specific acceleration features in the OCTEON architecture.

4.2. OCTEON Software

This subchapter highlights the OCTEON processor´s software overview specially
software architecture and other software utilities that is used to access the hardware
services. The OCTEON Software is a Software Development Kit parts that is intended
to provide the tool, drivers Application Protocol Interface (APIs), Libraries and other
utilities that is needed to access the underlying HW chipset solution.

It also plays crucial role for providing services to higher level applications that run on
the OCTEON processors. Following figure shows high level overview of software suits
that this test system uses.
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Figure 12. High level test system architecture

The KASUMI Crypto software that is to be tested runs on OCTEON Simple Executive
to leverage OCTEON per-core security acceleration to achieve maximum performance
possible.

4.2.1 Simple Executive API

In this thesis work KASUMI test are performed by using Octeon Simple Executive
architecture instead of Linux based application.  The reason for this choice is the
services that normal Operating Systems  provide to applications such as interrupts,
context switches, kernel address space copy in/copy out with system calls causes some
overhead to pay. The Simple Executive provides a Hardware Abstraction Layer (HAL)
in the form of an Application Programming Interface (API) to the underlying hardware
units. This API is a very thin layer of simple functions which access the Central Process
Unit (CPU) registers. It also provides some convenience routines for block
initialization. The API can be used from both kernel and user mode.

In another word, Cavium OCTEON Simple Executive (SE) means that the executable
SW will run directly on top of OCTEON HW without Operating System (OS) e.g
Linux.

Following figure is show the role of the Simple Executive API:
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Figure 12. Simple Executive API

The Simple Executive API is used to access the hardware units:

 Basic units; FPA, IPD, PIP, SSO and PKO

 Intermediate units: FAU and TIM

 Advanced units: LLM, ZIP, RNG, DFA, KEY, CIU, etc.

Simple Executive API also includes functions and macros for:

 System memory allocation (bootmem)

 Synchronization between cores

 spinlocks

 Reader-Writer locks

 Atomic set, add, compare and store operations

 Barrier functions

Simple Executive functions and macros may be used either to create stand-alone Simple
Executive application, or may be called from drivers or applications running on an
operating system kernel such as Linux. For instance, after the Linux kernel is booted, a
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Cavium Networks Ethernet driver may be started. This driver uses the Simple Executive
API to configure the OCTEON hardware. Simple Executive User-Mode applications
may also be started from Linux. Both 32-bit and 64-bit modes are supported, although
64-bit mode should be used whenever possible due to better overall performance.

Following figure shows using Simple Executive API from different Runtime
Environment:

Figure 13. Simple Executive API runtime environments

4.2.2 Runtime Environment Choices for cnMIPS Cores

There are several choices for runtime environment. The tree supplied by Cavium
Networks is Simple Executive stand-alone mode, Linux and the hardware simulator:

1. When running Simple Executive on multiple cores, the same FLF file is usually
run on all of the cores. These cores are all started from one load command.

2. When running Linux on multiple cores (SMP), there is one kernel running, not
one kernel per core. Linux applications are schedule to run on different cores.

3. The third runtime environment supplied by Cavium Networks is the Hardware
Simulator. The simulator is useful when actual hardware is not available and it
also very useful for performance tuning. Performance tuning is most easily done
using the tool Viewzilla. This tool analyzes the output of the simulator, so
making sure the code will run on the simulator as well as on actual hardware is
recommended for performance critical application.
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In addition to the three runtime environments supplied by Cavium Networks that is
described above, several open-source and proprietary operating systems are available. In
this thesis work, the Simple Executive running as Linux Stand-alone (SE-S) application
is used, so thesis considerate to explain in detail how it works.

4.2.2.1 Simple Executive

Simple Executive provides an API to the hardware units. Simple Executive may run
Stand-alone (SE-S) application, or as user-mode (SE-U) application on an operating
system such as Linux, in another word, Linux kernel and applications may both make
Simple Executive API calls. When Simple Executive calls are made from Linux user
space, the process is referred to as a Simple Executive User-Mode application (SE-UM).

For instance, when run as a user-mode application, different application start code (
main() ) is called and there other minor porting items to consider. The following figure
shows a representation of a core running Simple Executive in Stand-alone (SE-S) mode.
One core runs a Simple Executive Stand Alone (SE-S) Application.

Figure 14. Simple Executive Stand-alone Application (SE-S)

Simple Executive calls may be made from kernel mode. For example, the Cavium
Networks Ethernet driver, which runs on Linux, makes Simple Executive calls:

Figure 15. Simple Executive calls from kernel Mode

The following figure shows a representation of a core running Simple Executive as a
User-mode application.

Figure 16. Simple Executive User-Mode (SE-UM) application

SE-S

Linux

Driver

SE-UM
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To use all available memory, SE-UM applications should be compiled for 64-bit mode.
32-bit mode is sometimes used, but can only access a limited amount of physical
memory. SE-S is very fast compared to SE-UM. There no context switches, and all the
memory is mapped for fast access. To get maximum performance from OCTEON:
Whenever possible, design the application to use a 64-bit Simple Executive application.

4.2.2.2 Application Configurations

There are number of possible way to do the multi-core configuration, but one of the
easiest configurations to implement is Simple Executive Stand-alone application
configurations. Following figure shows example of 8-core simple system running a
Simple Executive Stand-alone application uses 1 ELF file, 8 instance of SE-S.

Figure 17. 8-core simple system running a SE-S application

4.2.3 Other Software Issue

In this subchapter, thesis will go through some other steps and issue that are related to
complying and running the software under the test.

4.2.3.1 Application Entry Point and Start up Code

An application may be compiled as either SE-S or SE-UM application without
modification. The code executed when application is started is not the same: when SE-S
is the built target. The makefile $OCTEON_ROOT/executive/cvmx.mk is responsible for
making this change.

4.2.3.2 Booting SE-S Application

When the application is executed and SE-S object is compiled, then to boot Simple
Executive application bootoct bootloader command is used. This command is used to
boot application on one or more cores. Following figure shows cores running Simple
Executive Stand-alone in a Load Set.
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Figure 18. Simple Executive Stand-alone Mode (SE-S) application

Following figure is shown in detail how booting SE-S applications with Bootoct
command works:

Figure 19. Downloading and Booting SE-S Applications

4.2.4 Software Architecture

In most software design paradigm that intended to run embedded systems follows the
separation of control and data planes in order to simplify the software architecture
design. In cnMIPS software helps too to separate two basic types of processing: normal
packet processing (fast path), and exception processing (slow path). Depending on the
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number of cores available, different configuration of cores devoted to either fast path or
slow path processing can be used to optimize throughput.

4.2.4.1 Control-plane versus Data-plane applications

Typical telecom networking SE-S application functions are dived into two categories:
control-plane (slow path), and data-path (fast path). In OCTEON processor the control-
plane usually handles exceptions while the data-plane handles normal packet
processing. Software application used in this thesis work falls into fast path category.

According to (MIPS Technology 2001) SE-S applications may be used for both control-
plane and data-plane. SE-S applications provide the lowest overhead and highest
potential for scaling. Next best solution (a typical solution) is SE-UM for control plane
and SE-S for data-plane.

Following figure illustrate SE-S application divisions and only one core does the
initialization routine.

Figure 20. SE-S used both Control plane and Data plane

4.2.4.2 Event-driven Loop (polling) versus Interrupt-driven loop

There are two different models for receiving packet to process: an even-driven loop
(polling) or an interrupt-driven loop.

An even-driven loop looks like:

while ( there is work to do )
{

do the work
}
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The event-driven loop is a higher performance processing architecture than the
interrupt-driven loop. In an event-driven loop, when the core is ready for work and work
is available, it gets the work; when there is no work, the core loops looking for work to
do. When using an interrupt-driven loop, there may be a delay between work available
and the process being notified. The SSO interrupts are configured based either on a time
counter or the quantity of work available for a particular group. Instead of looping
looking for work, the interrupt-handler thread exits, then is called again when the
interrupt occurs. This not only can result in work being processed less quickly, but also
results in more context switches, costing unnecessary system overhead.

4.2.4.3 Packet Processing Steps in OCTEON

Performance analysis of KASUMI cipher implementations is handled in chapter 6, in
order to do that performance analysis, thesis considers that it is very essential to
understand how packet data is processed inside the processor. Packet processing
functionalities could be grouped into three different block parts that participates packet
processing, namely, Packet Input, SSO and Core Processing and Packet Output.

Packet Input block part consists of two blocks: Packet Input Processor (PIP) and Input
Packet Data (IPD) which work closely together. This block parts receives and processes
data from the Simplified Packet Interface (SPI) which is a generic representation of the
receive (RX) and the Transit (TX) functions of any of the several interfaces that
OCTEON processor  can be used to receive the data.

Packet is processes inside Packet Input Block as following:

1. After the interface RX port receives the packet and checks it for error, it passes
the packet to the Input Packet Data (IPD) unit. The IPD shares the data with the
Packet Input Processor (PIP).

2. After Packet Input Processor (PIP) performs the packet parsing, including any
check configured by software,  it computes the data needed by the Input Packet
Data (IPD) for the Work Queue Entry (WQE) fields (work flow and QoS). Work
Queue Entry (WQE) is a data structure which contains the tag value, QoS value,
group and pointer tot eh Packet Data Buffer.

3. If Input Packet Data (IPD) does not drop the packet, it allocates a WQE Buffer
and Packet Data buffer from the Free Pool Allocator (FPA) unit. The FPA
manages the free buffers.
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4. The Input Packet Data (IPD) write the WQE fields to the WQE Buffer and
writes the packet data to the Packet Data Buffer in L2/DRAM.

5. The IPD performs the add_work operation to add the WQE Pointer to the
appropriate QoS queue in the Schedule Synchronization Order (SSO) unit

Packet processing inside the SSO and Core Processing blocks in its turn happens as
following:

1. The core performs the get_work operation to get a new WQE pointer from the
SSO. The WQE contains the Packet Data Buffer pointer.

2. The core processes the packet data, reading and writing the packet data in
L2/DRAM

3. After processing the packet data, the core sends the Packet Data Buffer pointer
and the data offset to the appropriate Packet Output Queue in the Packet Output
(PKO) unit. The queue´s configuration specifies the output port and packet
priority.

4. The core frees the WQE Buffer back to the Free Pool Allocator (FPA).

Packet is processes inside Packet Output block as following:

1. The Packet Output (PKO) DMA read data from Packet Data Buffer in
L2(DRAM) into its internal memory.

2. The Packet Output (PKO) unit optionally adds the TCP or UDP Checksum, then
sends the packet data from its internal memory to the Output port. The interface
TX port will then transmit the packet. The PKO optionally notifies the core that
the packet was sent.

3. The Packet Output (PKO) free the Packet Data Buffer back to the Free Pool
Allocator (FPA) unit.

4.2.4.4 Using Work Groups in Packet Processing

Software applications manipulate or configures the packet processing services provided
underlying OCTEON HW. In order to understand that, following paragraphs describes
in detail how data packets are processed inside the packet processing blocks of
OCTEON.
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The Work Queue Entry (WQE) data structure contains a field “Grp” which stands for
Group or Work Group. This group number is set by the PIP/IPD unit based on the
setting of its configuration register when packet is received.

When a core performs get_work operation, the request goes to SSO scheduler which
maintains per-core group mask. This group mask has one bit set for each group the core
will accept work from.  For stance, when the scheduler receives the get_work request, it
will schedule the highest priority WQE which is based on its group that schedulable to
the core. Cores may also be configured such that it may accept work from a limit set of
input queues. Following figure illustrate cores and group works

Figure 21. Core may accept work from any and all groups

The SSO scheduler maintains a per-core group mask and this group mask has one bit set
for each group the core will accept work from. By using the Simple Executive functions
it is set this group mask which then modifies the per-core SSO registers.Once the core
performs the get_work operation, it works only with a group number corresponding to a
bit set in the core’s group mask.

4.2.4.5 Passing Work from one Core to another Core

According to (Cavium Networks, 2009i) document the SSO scheduling functions is
specific to Cavium Networks and divides packet processing into different phases. This
thesis work interested in only for stance packet data processing from one core to another
core.

First, ones the packet is received in Packet Input (PKI) block, it performs basic
checking like header checks and flow classification and stores the data packet into
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L2/DRAM. Then Packet Input (PKI) block creates data structure which contains the
information needed by the SSO to manage the scheduling, synchronization and ordering
the packet. After that PKI submits the packet information to the SSO.

The SSO will put the packet information into the selected QoS Input Queue. There is a
Packet Data Buffer which contains the received packet data. The Input Packet Data
(IPD) allocates the buffer from the Free Pool Allocator (FPA) which manages the free
buffers.  The IPD then copies the packet data into the buffer.

The Quality of Service (QoS) is a number (0-7) which represent the priority of the
packet. When packet is received, the PIP/IPD computes the QoS number for the packet
and save the value in the Work Queue Entry (WQE). The PIP/IPD fill the WQE fields
and then sends the WQE pointer to the SSO using the add_work operations.

The SSO has 8 QoS Input Queues (0-7) one per QoS value. When a new WQE is added
to the SSO, the WQE goes onto the Input Queue which matches its QoS value. When
the WQEs are added to the SSO´s Input Queue, the Next Pointer is used to link them
into list.

The SSO contains internal memory. Part of the internal memory has been used to create
a limit number of Work Descriptors (WD). Each Work Descriptor contains the key
information needed by the SSO to schedule the work on a core and to keep the packet in
the correct order. The key fields in the Work Descriptors are WQE pointer, Tag value,
Tag Type (TT), QoS and group (Grp). Tag Type (TT) could be either one of :
ORDERED, ATOMIC or NULL.

Multiple packet form the same flow (collection of packet that shares the same tag types
and tag value) with an ORDERED tag type can be processed in parallel by multiple
cores. The SSO caches the head of each QoS queue in internal memory, one Work
Desciptor per WQE. The portion of the QoS queue which is in internal memory is
referred to as the Cached Input Queue.

Inside the SSO, there is one Core State Descriptor data structure for each core. The
states of Core states are either Scheduled or Unscheduled.  A Work Descriptor that has
been assigned to a core is considered to be scheduled. The core may perform an
operation to deschedule the Work Descriptor, so that the Work Descriptor is no longer
assigned to the core.

When core performs a successful get_work operation, a Work Descriptor is removed
from the Cached Input Queue and assigned to the core. A pointer to the assigned Work
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Descriptor is stored in the Core State Descriptor. The Work Descriptor contains a
pointer to the WQE. The get_work operation returns the WQE pointer to the core.

Once a Work Descriptor has been scheduled on a core, it is considered to be in-flight
until it is discarded or switched to NULL. Descheduled Work Descriptors are also
considered to be in-flight since processing on the associated WQE has started but has
not completed.

In-Flight Queues are internal to the SSO and maintained by the SSO. This queue is very
important for stance to maintaining packet order. When Work Descriptor is scheduled
on core, it put onto the In-flight Queue which corresponds to its tag tuple, so there is one
In-flight Queue per unique tag tuple.

Allowing multiple cores to work on packets from the same flow allows scaling where
more cores working on packets in the same flow results in faster packet throughput

The following steps are used to pass work from one core to another core:

1. The swtag_deschead() operation descheduled the work from the core. The work
remains the In-Flight Queue so that ordering properties are maintained.

2. The corresponding Work Descriptor (WD) is unscheduled from the core and its
state is set to Descheduled.

3. Once the WD is the dead of its In-Flight Queue, a pointer to it is stored in the
Descheduled Now-Ready List (DS-Now_Ready_list). The WD can now be
scheduled to a new core. (There is one DS-Now-Ready List per group. These
lists contain only pointers to WDs which are ready to be rescheduled because
each is the head of its In-Flight Queue).

4. A new core will receive the now-ready WD when the core perform the
get_work() operation and the SSO schedules now-ready WD to the core.

The DS-Now-Ready List has a higher priority than the QoS queue, which allows now-
ready in-flight work to complete prior to new work.

4.2.4.6 Pipelined versus Run-to-Completing Software Architecture

OCTEON supports traditional pipeline, run-to-completion, and modified pipeline
architectures.

Software Architecture supported includes:
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1. Run-to-completion: In run-to-completion architecture

2. Architure, each core performs all the functions, and the packet stays on the same
core as it moves through the series of functions. This option implements a static
hard-coded core allocation.

3. Traditional pipeline: In Traditional pipeline architecture, each core handles one
function and the packet moves through the pipeline, changing cores as needed to
pass through the series of functions. The stages of the pipeline are bound to
specific cores. On OCTEON, when each core completes its part of the
processing, it changes the packet’s work group to a new value, and performs the
swtag_desched() operation to send the packet to the next core in the piple. The
next core receives the packet when it performs the get_work () operation.

4. Modified pipeline: On OCTEON, because there is no limitation on code size, a
modification on the traditional pipeline architecture can be used. A modified
pipeline is one when any core can process any stage of the pipeline: the stages
are not bound to specific cores. This modified architecture provides better load-
balancing and scaling capabilities than traditional pipelining.

In this thesis work, run to complete option is used for running the experimental test
since one core or number of cores does all the work and there is no other instructions or
tasks that are needed to be done outside the original core (s) that are handling the test.

4.3 Software under the Test

This subchapter describes the software under the test. The software that is under the
experimental test in this thesis work is 3GPP KASUMI software implementation in C
programming. The source code (C code) of the KASUMI implementation is shown in
the annex 2 part of (3GPP TS 35.202, 2007).  First, the code could not directly be ported
to OCTEON environment, so some adaption fixes has be done to the original code in
order to run on OCTEON processor. Secondly, original code is not optimized, so
Cavium Networks done some optimizations for OCTEON platform.

Software consists of function calls that implements FI(), FO() and FL() functionalities
as well as  function that implements the main KASUMI algorithm  including building
the key schedules. In order to see where needs yet more optimizations, it is outside the
scope of this thesis work.
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5. TEST EXECUTION AND RESULT COLLECTION

This chapter provides a detailed description of the experimental test cases that are used
to evaluate the performance of the KASUMI cipher implementations. In the first phase,
the evaluation of the performance is based on a set of data messages that are sent
between two cores but the actual processing is performed in one core. In the second
phase of the evaluation, the processing of the data packets is shared between more than
one cores.

First, the configuration files that are used for configuring the test cases are defined, then
the execution of the test cases follows, and last, the test results are collected.

5.1 Test Scenarios Selection

KASUMI cipher is used to encrypt and decrypt the sensitive messages between the user
and the network and it is implemented in the NAS layer of the User Equipment (UE)
and Radio Network Centre (RNC). The lengths of 3G NAS messages are specified in
(3GPP TS 23.930, 2010) and the transaction speed depends on the capacity of the
product. In this thesis, several different test cases are conducted because of the
theoretical verification of the processor and not the KASUMI algorithm itself.

Test case traffic rates were selected to verify the expectations about the 3GPP reference
results. Each test case has subcases. The number of samples that are tested will be from
2 to 4 samples in order to collect enough data for the analysis. In order to verify how
KASUMI implementation behaves with small amount of data, this thesis work opted to
use 40-byte and 88-byte message lengths. For a long message length, this thesis work
opted to use 500 bytes and 1000 bytes.

To test the transmission data block sizes and how they affect the KASUMI
implementations, this thesis opts to start with traffic formed of small data blocks, such
as 100 and 500 IPv4 packets. For traffic formed of larger blocks from 1000 up to 8000
IP are used. Following table is shown number of cases selected for one core
implementation testing.

Table 3. Test cases for one core
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TEST CASES KASUMI
HW

KASUMI
SW

Short
Bits

Long Bits

Ciphering and
Deciphering

X X x x

Only Ciphering X X x x

Only
Deciphering

X X x x

Key Generation
Effects

- - - -

KASUMI cipher
mode effects

- - - -

Multicore
Ciphering and
Deciphering

X X x x

5.2 Running the Test Cases
In order to run the test cases, the following steps must be followed.

1. The application will be downloaded from the development host computer to the
development target computer via Ethernet, using the ssh utility.

ssh yasinara@10.144.19.19

then the compiled SE-S application will be loaded:

scp yasinara@10.144.19.19:~

2. After it is downloaded, the application is booted by typing the bootoct command
in the target console

$yasinara@10.144.19.19: oct58sdk

$yasinara@oct58sdk: oct-pci-reset

3. Connect to the target console

Minicom will provide a connection to the target console and after you are connected,
you should see the bootloader prompt.
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4. Set the object file name in the bootloader in order to select a correct object
instance name from the load set of the core.

5. Run the test application that you have already built by using the Boot script:

$yasinara@oct58adk: ./BOOT

5.3 Hardware-based KASUMI Acceleration Case Simulation

In this test case, the data under test are sent in plain text form from one core to another
core, which accelerates the HW (Hardware) encryption and decryption functionalities.
In order to capture the actual processing time for acceleration, the transfer time from
one core to another core is subtracted from the processing time. The acceleration time is
measured in terms of the clock ticks of the OCTEON processor.

5.3.1 Case A: KASUMI HW Encryption and Decryption of packets of 40 bytes
Data packets with a length of 40 bytes are sent from one core to another core, which
accelerates the data received by performing encryption and decryption. In order to see
how different data blocks affect this acceleration, about 8 different data blocks are used
in this test case, starting from 1000 and going up to 8000.

The table below shows the test results when data packets with a length of 40 bytes are
sent from one core to another core.

Table 4. KASUMI HW Enc and Dec on 40 byte packets

Number
of
Packets

Data
length
(byte)

Data
size
(bits)

Kasumi
HW
(ticks)
Tics for
data
transfer

Kasumi
HW (ticks)
Tics for
processing
packets

Actual
Kasumi
HW (ticks)
Processing
time –
Transfer
time

1000 40 320000 219635 1438347 1218712
2000 40 640000 439121 2876510 2437389
3000 40 960000 660700 4317096 3656396
4000 40 1280000 870790 5772137 4901347
5000 40 1600000 1031082 7241771 6210689
6000 40 1920000 1193866 8784992 7591126
7000 40 2240000 3126625 10381396 7254771
8000 40 2560000 3286899 11950643 8663744
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5.3.2 Case B: KASUMI HW Encryption and Decryption of packets of 88 bytes

Data packets with a length of 88 bytes are sent from one core to another core, which
accelerates the data received by performing encryption and decryption. 8 different data
blocks are used in this test case, starting from 1000 and going up to 8000, as in the
previous case (a). The following table below shows the results of this test case.

Table 5.KASUMI HW Enc and Dec on 88 byte packets

The figure below shows the test results from both test cases, (a) and (b), depicted side
by side in order to make it possible to see the difference between them clearly.

Figure 22. KASUMI HW Enc and Dec on 40 and 88 bytes packets

Number
of
Packets

Data
length
(byte)

Data
size
(bits)

Kasumi
HW
(ticks)
Tics for
data
transfer

Kasumi HW
(ticks)
Tics for
processing
packets

Actual
Kasumi HW
(ticks)
Processing
time –
Transfer
time

1000 88 704000 219559 2722153 2502594
2000 88 1408000 439080 5444199 5005119
3000 88 2112000 660219 8168705 7508486
4000 88 2816000 849970 10904975 10055005
5000 88 3520000 1010063 13694086 12684023
6000 88 4224000 2941114 16553936 13612822
7000 88 4928000 3101505 19447713 16346208
8000 88 5632000 3260885 22240587 18979702
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5.3.3 Case C: KASUMI HW Encryption and Decryption of packets of 500 bytes

In this test case, the size of the data packet increased to 500 bytes and the data blocks
used in this case are 1000, 5000, and 8000. The table below shows the results of this
experiment.

Table 6. KASIMI HW Enc and Dec on 500 bytes packets

5.3.4 Case D: KASUMI HW Encryption /Decryption of packets of 1000 bytes

In this case, the data size is increased to 1000 bytes and the data blocks that are used in
this case are 1000, 5000, and 8000, as in the previous case (c). The table below shows
the results of this experiment.

Table 7. KASUMI HW Enc and Dec on 1000 byte packets

Following figure shows the results of both the above cases (c and d), which are depicted
graphically side by side in order to make it possible to see the behaviours of the
KASUMI implementations with larger data size.

Number
of
Packets

Data
length
(byte)

Data size
(bits)

Kasumi
HW
(ticks)
Tics for
data
transfer

Kasumi
HW (ticks)
Tics for
processing
packets

Actual
Kasumi
HW (ticks)
Processing
time –
Transfer
time

1000 500 4000000 5068439 13894593 13674397
5000 500 20000000 2790077 71088453 68298376
8000 500 32000000 220196 113788809 108720370

Number
of
Packets

Data
length
(byte)

Data size
(bits)

Kasumi
HW
(ticks)
Tics for
data
transfer

Kasumi
HW (ticks)
Tics for
processing
packets

Actual
Kasumi HW
(ticks)
Processing
time –
Transfer
time

1000 1000 64000000 6892905 27587723 27587722
5000 1000 40000000 4618690 139659480 135040790
8000 1000 8000000 224199 2234777755 216584850
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Figure 23. KASUMI HW Enc and Dec on 500 and 1000 byte packets

5.4 Software-based KASUMI Acceleration Case Simulation

In this subchapter, software-based based KASUMI implementation is executed in order
to see closely, how encryption and decryption functions behave in different data lengths
and data block packets. Similar tests were executed in previous subchapter (5.3) and
thesis study will be carried out for close comparison between them in the analysis
phase.

5.4.1 Case A: KASUMI SW Encryption and Decryption on 40 bytes packets

Data length of 40 byte is sent from one core to another core which accelerates received
data by doing encryption and decryption. 8 different data blocks are used in this test
case starting from 1000 to 8000. Following table shows the results of this experiment.

Table 8. KASUMI SW Enc and Dec on 40 byte packets

Number
of
Packets

Data
length
(byte)

Data
size
(bits)

Kasumi
SW
(ticks)
Tics for
data
transfer

Kasumi SW
(ticks)
Tics for
processing
packets

Actual
Kasumi SW
(ticks)
Processing
time –
Transfer
time

1000 40 320000 219667 69210416 8370019
2000 40 640000 439167 60543156 17181882
3000 40 960000 660012 51835722 25113403
4000 40 1280000 870630 43080866 33513866
5000 40 1600000 1031142 34384496 42049724
6000 40 1920000 1193420 25773415 50642302
7000 40 2240000 3126027 17181882 57417129
8000 40 2560000 3285855 8589686 65924561
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5.4.2 Case B: KASUMI SW Enc and Dec on 88 bytes packets

Data length of 88 bytes is sent from one core to another core which accelerates received
data by doing encryption and decryption. 8 different data blocks are used in this test
case starting from 1000 to 8000. Following table shows the result of KASUMI SW
based implementation execution on 88 bytes data size.

Table 9. KASUMI SW Enc and Dec on 88 byte packets

Following figure shows the result of SW based KASUMI implementation on 40 bytes
and 88 bytes data lengths depicted side by side in order to make it possible to see the
difference between them very clearly.

Figure 24. KASUMI SW Enc and D ec on 40 and 88 bytes packets

Number
of
packets

Data
length
(byte)

Data
size
(bits)

Kasumi
SW
(ticks)
Tics for
data
transfer

Kasumi SW
(ticks)
Tics for
processing
packets

Actual
Kasumi SW
(ticks)
Processing
time –
Transfer
time

1000 88 704000 219539 16964627 16745088
2000 88 1408000 439118 33928772 33489654
3000 88 2112000 660020 50885730 50225710
4000 88 2816000 849864 67883728 67033864
5000 88 3520000 1010042 84962136 83952094
6000 88 4224000 2941342 102100446 99159104
7000 88 4928000 3101304 119189380 116088076
8000 88 5632000 3261291 136237677 132976386
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5.4.3 Case C: KASUMI SW Encryption and Decryption on 500 bytes packets

Data length of 500 bytes is sent from one core to another core which accelerates
received data by doing encryption and decryption.  3 different data blocks are used in
this test case starting from 1000 to 8000. Following table shows the result of KASUMI
SW based implementation execution on 500 byte data length.

Table 10. KASUMI SW based implementation on 500 byte packets

5.4.4 Case D: KASUMI SW Encryption and Decryption on 1000 bytes packets

Data length of 1000 bytes is sent from one core to another core which accelerates
received data by doing encryption and decryption. 3 different data blocks are used in
this test case starting from 1000 to 8000. Following table shows the result of KASUMI
SW based implementation execution on 1000 data lengths.

Table 11. KASUMI SW Enc and Dec on 1000 byte packets

Number
of
packets

Data
length
(byte)

Data size
(bits)

Kasumi
SW Dec
(ticks)
Tics for
data
transfer

Kasumi SW
Dec (ticks)
Tics for
processing
packets

Actual
Kasumi SW
Dec (ticks)
Processing
time –
Transfer
time

1000 500 4000000 219931 89638692 89418761
5000 500 20000000 2788516 449786178 446997662
8000 500 32000000 5068623 719635546 714566923

Number
of
Packets

Data
length
(byte)

Data size
(bits)

Kasumi
SW
(ticks)
Tics for
data
transfer

Kasumi SW
(ticks)
Tics for
processing
packets

Actual
Kasumi SW
(ticks)
Processing
time –
Transfer
time

1000 1000 8000000 224329 1415238530 176330442
5000 1000 40000000 4611966 884500916 879888950
8000 1000 64000000 6889716 1415238530 1408348814
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5.5 Key Generation/Expansion Effects on Test Cases
In this thesis work, KASUMI key setup implication is not tested due to the overall
effects on the different implementations option. Smaller increase of clock cycles for
different key setup doesn’t have much number of cycles per word used for different key
stream generation. For that reason key generation related test cases are left out from this
thesis work.

5.6 Multi-core Test Cases

In this subchapter, test cases are configured differently than cases that have been
handled in previous subchapter (5.4). Instead of using one core, following test cases will
be used more than one core that is processing the data under the test simultaneously. In
these test cases, all 16 cores of the OCTEAN processor are populated for running on
both shorter and higher data sizes.

5.6.1 Shorter Data Size for Multi-core Test Cases

Following test cases that are designed for both HW and SW based KASUMI
implementations; data size of 64 bytes is used for running more than one core for
accelerating data under the test. In this test configuration, maximum data size of 96
bytes is possible due to FPA allocation setting. Since test is using more than one core,
packet data are put into one queue, so different cores could fetch from it. The size of
allocated FPA is to be handled for using more than one core.

5.6.1.1 KASUMI HW Encryption and Decryption

In this test case, all 16 core of OCTEON HW processor is accelerated for KASUMI
encryption and decryption in order to see time used for processing cycles when used
more than on core. Following figure shows the results of this experiment.

Figure 25. Multicore for KASUMI HW Enc and Dec on 64 byte packets
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As shown in above figure, as number of core increases, processing cycles decrease
accordingly. Another observation that this test case could be made from, is that when
number of cores in used exceeds 5, then, it doesn’t make much difference the decrease
of processing cycles. Following figure shows increase of processing time linearly as
number of core in use for HW acceleration increases.

Figure 26. Reference time for KASUMI HW Enc and Dec on 64 byte packets

5.6.1.2 KASUMI SW Encryption and Decryption

The configuration of this test case is similar as in previous case but KASUMI software
implementation is executed  instead of KASUMI HW implementation  for more than
one core using 64 byte data size, following figure is shown processing cycles.

Figure 27. Multicore for KASUMI SW Enc and Dec on 64 byte packets

As shown in above figure, as number of core increases, processing cycles decrease
accordingly.  Another observation that this test case could be made from, is that when
number of cores in used exceeds 5 as in the case KASUMI HW, then, it doesn’t make
much difference the decrease of processing cycles. Following figure shows increase of
processing time linearly as number of core in use for SW implementation increases.
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Figure 28. Reference time for KASUMI SW Enc and Dec on  64 byte packets

5.6.2 Higher Data Size for Multi-core Test Cases

Following test cases are intended to a measurement of the higher data size effects on
both HW and SW based KASUMI implementations; data size of 512 bytes and 16 000
data blocks are used for running more than one core for accelerating data under the test.

5.6.2.1 KASUMI HW Encryption and Decryption

In this test case, all 16 core of OCTEON HW processor is accelerated for KASUMI
encryption and decryption using on 512 byte for 16 000 data blocks in order to see time
used for processing cycles when used more than on core. Following figure shows the
results of this experiment:

Figure 29. Multicore for KASUMI HW Enc and Dec on 512 byte packets

As shown in above figure, as number of core increases, processing cycles decrease.
Another observation that this test case could be made from, is that when number of
cores in used exceeds 5, then, it doesn’t make much difference the decrease of
processing cycles as in the case of smaller data size. Following figure shows increase of
processing time linearly as number of core in use for HW acceleration increases.
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Figure 30. Reference time for KASUMI HW Enc/Dec on 512 byte packets

5.6.2.2 KASUMI SW Encryption and Decryption

The configuration of this test case is similar as in previous case but KASUMI software
implementation is executed instead of KASUMI HW implementation for more than one
core using 512 byte data size of 16 000 data blocks. Following figure is shown
processing cycles.

Figure 31. Multicore for KASUMI SW Enc/Dec on 512 byte packets

As shown in above figure, as number of core increases, processing cycles decrease but
not after the fifth core used. Another observation is that in first three cores, number of
cycles for processing is very high and that number decreases until fifth core is applied.

Following figure shows increase of processing time linearly as number of core in use
for SW implementation increases:

Figure 32. Reference time for KASUMI SW Enc/Dec on 512 byte packets
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6. RESULT COMPARISONS AND DETAIL ANALYSIS

In this chapter, comparisons will be made between the test results. In each comparison,
this thesis will also provide an explanation of why these results are as they are; in short,
this thesis will also, if possible, perform another comparison between these
experimental test results and the 3GPP reference results, as well as the results of other
processor manufacturers, where possible.

6.1 Comparisons between KASUMI HW and KASUMI SW

These comparisons are divided into three main categories, namely, lower data
comparison between two implementations with one core, a higher data rate with multi-
core, and, last, a comparison with other implementations.

6.1.1 Lower Data Rate with One Core

In this subchapter, this thesis will carry out deep comparisons of how different
implementations behave in data blocks of different sizes with smaller amount of data
and applying only one core of the OCTEON processor; for that reason the following
cases are checked closely.

6.1.1.1 KASUMI HW/SW Enc & Dec Comparisons with 40 bytes

In this comparison case, the basic KASUMI HW implementation is measured against
the KASUMI SW implementation; both implementations executed encryption and
decryption activities on the data under test. Different packet numbers are used for
chunks of data with a size of 40 bytes. Performance is measured in terms of the number
of clock scales taken per implementation to encrypt and decrypt the data. The figure
below shows the result of the experiment:

Figure 33. Number of cyles for HW/SW Enc/Dec on 40 byte packets
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As shown in the figure above, the KASUMI SW implementation is much slower than
the KASUMI HW implementation and this difference increases gradually as the packet
block is doubled.

6.1.1.2 KASUMI HW/SW Enc and Dec Comparisons with 40 bytes

In this case, this thesis would like to look very carefully at the efficiency provided by
different KASUMI implementations using a similar lower data rate to the one used in
the previous case. In this case, the study aims to see the number of cycles per bit when
different numbers of packets are used, in between1000 to 8000 data packet blocks, as
shown in the table below.

Table 12. Number of Cycles per bit on 40 byte packets

Number of packets KASUMI_HW KASUMI_SW
Cycles per bit Cycles per bit

1000 3.808475 26.1563094
2000 3.80842031 26.8466906
3000 3.80874583 26.1597948
4000 3.82917734 26.1827078
5000 3.88168063 26.2810775
6000 3.95371146 26.376199
7000 3.23873705 25.6326469
8000 3.384275 25.7517816

The results of the experiment are shown in the figure below, which shows that an
increase in the numbers of packets processed will not make any significant change to
the processing cycles accomplished per bit. Both implementations show the same
behavior in this matter. The KASUMI SW implementation in this test sitting took more
than 7 times longer to process the same numbers of packets than the KASUMI HW
acceleration did.

3,384275 3,238737054 3,953711458 3,881680625 3,829177344 3,808745833 3,808420313 3,808475
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Figure 34. Number of cyles per bit on 40 byte packets
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6.1.1.3 KASUMI SW Enc/Dec vs. only SW Enc/SW Dec for 40 bytes

In this test case, the relative efficiency of the KASUMI SW implementations is
measured carefully in order to see how different functionalities affect the overall
processing of KASUMI SW acceleration. Encryption and Decryption are measured
against only either the encryption or decryption functions. The table below shows the
test case results.

Table 13. KASUMI SW Enc/Dec Vs. Only Enc or Dec on 40 bytes

Number of packets Actual KASUMI_SW  Enc_Dec(40) Actual KASUMI_SW  only Enc(40) Actual KASUMI_SW  only Dec(40)
1000 8370019 4198057 4198070
2000 17181882 8395955 8396028
3000 25113403 12594960 12594962
5000 42049724 21180930 21180592
8000 65924561 32556081 32556190

As the figures below show, there is no significant difference between the encryption and
decryption processing of KASUMI SW implementations with smaller amount of data
size in all the different packet blocks.

Figure 35. Comparison between KASUMI SW implementations

6.1.1.4 KASUMI HW Enc/Dec vs. only HW Enc & HW Dec on 40 bytes

In this test case, the relative efficiency of the HW implementations is measured in order
to see how different functionalities affect the overall processing of KASUMI HW
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acceleration. Encryption and Decryption are measured against only either encryption or
decryption. The table below shows the test case results.

Table 14. KASUMI HW Enc/Dec vs. Enc or Dec on 40 bytes

Number of packets Actual KASUMI_HW  Enc_Dec(40) Actual KASUMI_HW  only Dec(40) Actual KASUMI_HW  only Enc(40)
1000 1218712 624002 624005
2000 2437389 1247957 1248061
3000 3656396 1872193 1872460
5000 6210689 3184285 3184161
8000 8663744 3687658 3691216

As shown in the figure below, there is not much difference in the encryption or
decryption activities of the KASUMI HW implementation with smaller amount of data,
regardless of an increase in the size of the data blocks that are involved in the processes.

Figure 36. Comparison between KASUMI HW implementations

6.1.1.5 KASUMI HW and SW Enc/Dec for 1000 bytes

In this test case, thesis study would like to test theoretically the effect that an increase in
the size of the chunks of data to 1000 bytes has on both implementations and how this
larger amount of data size could affect the data-processing effectiveness of both
KASUMI implementations. The figure below shows the results of the experiment.
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Figure 37. Number of cyles for HW/SW Enc/Dec on 1000 byte packets

As the figure above shows, the KASUMI SW implementation is hugely affected by the
larger data packets compared to the HW implementation case. As the size of the data
block increases, so does the number of cycles needed for encryption and decryption.

6.1.1.6 KASUMI HW Enc/Dec vs. only Enc and Dec for 1000 bytes

In this test case, this thesis will look very closely at where the processor consumes most
when processing the encryption of data and decrypting again while processing the larger
amount of data packets. The KASUMI encryption and decryption processing cycles are
measured against only encryption or decryption processing cycles. The result of the
experiments is shown in the figure below.

Figure 38. Comparison between KASUMI HW implementations
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As the figure above shows, there is no difference between the encryption and decryption
of KASUMI HW acceleration with regard to larger amount of data or even an increase
in the sizes of the data blocks.

6.1.1.7 KASUMI SW Enc/Dec vs. only SW Enc & SW Dec on 1000 bytes

A similar test case to the KASUMI HW implementation is performed for the KASUMI
SW implementation with large amount of data size of 1000 bytes, where the encryption
and decryption activities are measured separately. The figure below shows the result of
the experiment.

Figure 39. Comparison between KASUMI SW implementations

As the figure above shows, decryption with the KASUMI SW implementation took
twice as many processing cycles as encryption processing and this difference increases
as the sizes of the data blocks increase.

6.1.2 Higher Data Rate with Multi-core

In this subchapter, this thesis would like to look deeply at how different
implementations of KASUMI algorithms behave with a higher data rate (512 byte)
when the test of processing is allocated to multi-cores instead of one core, as in the
previous subchapter (6.1.1).

6.1.2.1 Comparison between KASUMI HW/SW Enc/Dec with 16K

In this case, the thesis chose to allocate all the 16 cores of the processor under the test
for executing encryption and decryption activities and the total time taken to perform
Encrypting and Decrypting on 512 byte date rate with data blocks of 16K. The
processing is measured in cycles. The results are depicted in the table below.
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Table 15. KASUMI HW/SW Enc and Dec on 512 bytes with 16K data blocks

Number of Cores KASUMI HW Enc/Dec KASUMI SW Enc/Dec
1 core 226267770 1479950202
2 core 114029706 740598295
3 core 76032894 493725111
4 core 57025474 370315046
5 core 45621119 296256279
6 core 38026777 246920450
7 core 32593830 211648620
8 core 28520206 185178950
9 core 25354455 164615296
10 core 22828187 148147723
11 core 20749230 134715937
12 core 19038818 123520021
13 core 17574271 113980502
14 core 16311631 105836316
15 core 15227210 98799627
16 core 14294010 92594551

The figure below shows a comparison between the two implementations when all the 16
cores are populated with above shown 512 byte long packets.

Figure 40. Number of cyles for HW/SW Enc/Dec on 512 byte packets with 16K

As shown in the figure above, the KASUMI SW implementation is far slower than the
KASUMI HW implementation and this difference decreases gradually as the number of
cores used increases.

6.1.2.2 Comparison between KASUMI HW Enc/Dec with 24K

In this case, the thesis increases the data block size from 16K to 24K, in order to see
how HW acceleration behaves with this load. The table below shows the results of the
experiment.
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Table 16. KASUMI HW Enc/Dec on 512 byte with 24K data blocks

Number of Cores total time (cycles)
1 core 339387964
2 core 170993785
3 core 114001301
4 cores 85508565
5 core 68407334
6 core 57008174
7 core 48868814
8 core 42754498
9 core 38022262
10 core 34214159
11 core 31103754
12 core 28523310
13 core 26342940
14 core 24466989
15 core 22839632
16 core 21418915

The figure below shows the total time for processing data packets of 24K in size with
512 bytes. The capacity of the processor is calculated to be 977.4 MB, or 0.9 Gbits.

Figure 41. KASUMI HW Enc/Dec on 512 byte with data blocks of 24K

6.1.2.3 Comparison between KASUMI HW Enc/Dec with 64K

In this test case, the number of data blocks is increased again from 24K to 64K with
same data packet of 512 byte and memory shortage is noticed in this case. In order to
run this test case successfully, memory size should be increased to 2KB in order to
handle the buffer allocation for the date. The results of the experiment are shown in the
table below.
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Table 17. KASUMI HW Enc/Dec on 512 byte with 64K data blocks

Number of Cores total time (cycles)
1 core 924712655
2 core 462384033
3 core 308261050
4 cores 231196454
5 core 184951438
6 core 154137398
7 core 132114097
8 core 115606133
9 core 102767678
10 core 92500483
11 core 84087311
12 core 77098218
13 core 71163047
14 core 66081000
15 core 61674809
16 core 57831752

As shown in the figure below, with data block sizes of 64K to be handled, the memory
should be sufficient for that reason; the memory was increased to 2KB for this test case.

Figure 42. KASUMI HW Enc/Dec on 512 byte data packet of 64K
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7. CONCLUSIONS AND FUTURE WORK

In this thesis work, a 3G security architecture is outlined, and especially the 3G
KASUMI algorithm is defined. Chapter 3 is studied in order to see KASUMI HW-based
acceleration performance in comparison with the KASUMI Software implementation.
After a brief discussion of the main principle of the OCTEON processor and its
architecture, Thesis work has been concentrated on experimental test cases that are used
to evaluate the performance of the implementations of the KASUMI cipher.

Thesis investigation is mainly of comparisons of the performance of the two
implementations and what the other parameters is that may affect the performance. The
experimental work performed in this thesis enabled the following conclusions to be
drawn that demonstrate the superiority of the KASUMI HW-based implementation to
the SW-based implementation:

1- The KASUMI SW-based implementation is much slower than the KASUMI
HW-based implementation and this difference increases gradually as the packet
block size is doubled;

2- An increase in the packet size processed does not make any significant change to
the number of processing cycles per bit for both implementations;

3- With lower data rates, neither of the KASUMI implementations shows much
difference between encryption or decryption processing functions, regardless of
an increase in the amount of data that are involved in the processes;

4- An increase in the number of data packets has profound effects on the data
processing effectiveness of both the KASUMI implementations but this effect is
especially huge in the SW-based implementation;

5- When all the 16 cores of the OCTEAN processor are populated, as the number
of core increases, the processing cycles decrease accordingly.  Another
observation was that when the number of cores in use exceeds 5, it does not
make much difference to the reduction in the number of processing cycles;

6- As the number of data blocks increases, the memory allocation for buffering
becomes essential; for instance, when data blocks of more than 24K are being
processed, it requires at least a 2K byte cache size memory allocation;

7- Hardware-based KASUMI acceleration experiments shows that it is not
necessary to allocate more than one or two cores for the KASUMI algorithm
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handling task, while other cores could be allocated to other system
functionalities.

Finally, Thesis wish to suggest some directions for further research, For instance, the
SW-based KASUMI implementation should be optimised at least partially (blocks), if
not the whole implementation. Second, in order to see where the resources of the
processor are used most in the KASUMI SW implementation case, for further
optimisation, if needed, it would be good to perform detailed tests on the internal
processes of the SW implementation by using the tools that the OCTEON analysis
software toolkit offers.

Last, but not least, the current KASUMI software implementation used in these
experimental tests is not fast enough and cannot be used unless it can be significantly
optimized.
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APPENDIX 1. Testing Environment

Test environment consists of following components:

 Development Host: The term development host will be used to describe the
x86_64 machine which is used as a cross-development platform. In this test
experiment, Linux based DELL Laptop (Latitude D610) is used.

 Development Target: The term development target refers to be OCTEON
evaluation board connected to the development host which has a KASUMI
hardware accelerator unit.

 Software under the test: Software under the test or to be tested software is
3GPP based KASUMI cipher software implementation. Tests contain two
different KASUMI implementations. The first one is based on 3GPP reference
implementation from (3GPP TS 35.202, 2007) with several SW performance
improvements. SW based performance improvements are described in detail in
section 4.2. The second KASUMI implementation will include sections that will
take benefit of Octeon HW based security accelerator. Details of OCTEON HW
accelerator based implementation are described in section 4.1.

 Software Development Kit (SDK) of Cavium Networks: The SDK is software
consists of two software packages, the base SDK and OCTEON Linux that is
based on Debian. This SDK is used for compiling the source application in order
to run on OCTEON processor.

 Test Cases: Test cases consist of number of configuration test cases, that to be
tested in order to verify the 3GPP reference results as well as to satisfy the
existing product requirements.  Header and script files which are part of tested
software and are used to help to configure the test case setups.

KASUMI application that is to be tested is built on the development host. Once the
application is built, it will be downloaded to stand-alone development target board
connected to the development host. Following figure illustrates the high level view of
the test environment setting.

Figure A1.Test Environment configuration
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Detail description of how development target is setup is shown in following figure.

Figure A2. Detail view of development target

In above shown figure, OCTEON Development Target consists of One PC that are used
for multiple purpose, which is acting as normal Server machine that has OCTEON
evaluation board, TFTP  Server and has a dedicated Ethernet connection to
Development Host.

Development Host is x86_64 laptop platform computer which has NSN Red Hat
Enterprise Linux operating system.  It has Cavium Networks SDK software, Kasumi
software application, and Testing scripts and test cases.
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Test system it is not configured to have an isolated Ethernet connection to Target board
which is separate from office Ethernet but it has been carried out through remote
connection from office to laboratory.

System Administration

Create a personal account on the development host and login this user and do all the
work as this user name. It is important to obtain root permission on the development
host, the reason is that it is needed for SDK installation, to build Linux kernel and to use
the PCI tools.

Lastly, t is import to remember that if user´s home directory is on a NFS-mounted drive,
then user must also have a separate non-NFS-mounted workspace.

Quick Start Guide (Cavium Networks, 2009g) document that is provided by Cavium
Networks describes how Development Host is set-up and be configured and connects to
Development Target.

Viewing the Target Board Console Output

The easiest way to view the target board console output is by running the Minicom
utility on the host, and connecting to the target board via a null-modem serial cable. The
console output for the target board is directed to UART0 on the target board. UART0 is
connected via a serial cable to the first port on the development host. Linux connects to
the fourth serial port on the device /dev/ttyM4.

Following snapshot shows the minicom console running on host computer:

Figure A3. Console running on host computer
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Install the SDK

Installation CD which accompanies the evaluation board contains the SDK ( The base
SDK and OCTEON Linux) and other files. There are optional products also included
like support of special hardware capabilities on OCTEON: Crypto, ZIP and DFA. Also
Software to implement packet send/receive over the PCI bus, etc. Detail description of
Installation can be referred to SDK installation document from Cavium Networks or
Installing from the Support Site instead of a CD” from Cavium Networks´s site.

In this thesis work tests are carried out with SDK 1.8.0. After the correct installation,
$OCTEON_ROOT is working directory and it needs to do couple of environment
variable value settings. Following variables are set by the env-setup script:

1- $OCTEON_ROOT- This variable will be set to the directory the env-setup script
is executed.

2- The PATH environment variable is  modified to add the directories containing
the tool chain binaries and development host utilities

3- OCTEON_MODEL [add used model]

4- OCTEON_CPPFLAGS_GLOBAL_ADD

Building Applications

Application is created by using Makefiles. These are typically files named makefile,
Makefile, or *.mk (as in cvmx.mk or application .mk). A Makefile can be included other
Makefiles.

When application is built, first Simple Executive code located in the $
OCTEON_ROOT/executive directory is built, and the archive program (ar) package the
Simple Executive object files into one library: libcvmx.a. The object files and library put
in application directory /obj directory. In SE-S application, there are two possible
Makefile targets and the target is selected by setting OCTEON_TARGET equal to the
desired target on the make command line.

SE-S Targets:

 OCTEON_TARGET = cvmx_64

 OCTEON_TARGET = cvmx_32

Each target is built with the object files in separate directory and each ELF file has a
unique name. In this work 64-bit applications were used.
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APPENDIX 2. More test case scenarios

A2.1 Hardware based KASUMI acceleration case simulation

a)  KASUMI HW Encryption on 40 bytes packets

In this test case, HW encryption in accelerated on data length of 40 bytes  in order to see
how long it takes to process only encryption functions. Following table shows results
how KASUMI HW Encryption behaviours when data length is 40 byte.

Table A1. KASUMI HW Encryption on 40 byte packets

b)  KASUMI HW Encryption on 88 bytes packets

In this test case, the HW encryption is accelerated on data length of 88 bytes in order to
see how long it to process encryption functions. Following table shows results of
KASUMI HW Encryption behaviours when data block size increases to 88 byte.

Table A2. KASUMI HW Encryption on 88 byte packets

Number
of
packets

Data
length
(byte)

Data
size
(bits)

Kasumi
HW Enc
(ticks)
Tics for
data
transfer

Kasumi HW
Enc (ticks)
Tics for
processing
packets

Actual
Kasumi HW
Enc (ticks)
Processing
time –
Transfer
time

1000 40 320000 219612 843617 624005
2000 40 640000 439118 1687179 1248061
3000 40 960000 660397 2532857 1872460
5000 40 1600000 1031367 4215528 3184161
8000 40 2560000 3285773 6976989 3691216

Number
of
Packets

Data
length
(byte)

Data
size
(bits)

Kasumi
HW Enc
(ticks)
Tics for
data
transfer

Kasumi HW
Enc (ticks)
Tics for
processing
packets

Actual
Kasumi HW
Enc (ticks)
Processing
time –
Transfer
time

1000 88 704000 219655 1484582 1264927
2000 88 1408000 439125 2969078 2529953
3000 88 2112000 660238 4455994 3795756
5000 88 3520000 1009960 7453475 6443515
8000 88 5632000 3260919 2296532 9035613
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Following graph is depicted both HW Encryption processes in 40 byte and 88 byte.

Figure A4. KASUMI HW Encryption on 40 and 88 byte packets

c) KASUMI HW Encryption on 500 bytes packets

In this test case, the HW encryption is accelerated on data length of 500 bytes in order
to see how long it to process encryption functions. Following table shows results of
KASUMI HW Encryption behaviours when data block size increases to 500 byte. The
result of this test case is depicted in following table:

Table A3. KASUMI HW Encryption on 500 bytes packets

d)  KASUMI HW Encryption on 1000 bytes packets

Number
of
packets

Data
length
(byte)

Data size
(bits)

Kasumi
HW Enc
(ticks)
Tics for
data
transfer

Kasumi
HW  Enc
(ticks)
Tics for
processing
packets

Actual
Kasumi
HW Enc
(ticks)
Processing
time –
Transfer
time

1000 500 4000000 220294 7120846 6900552
2000 500 8000000 450726 14266298 13815572
3000 500 12000000 692503 21982685 21290182
5000 500 20000000 2788925 37204829 34415904
8000 500 32000000 5068858 59649301 54580443
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In this test case, the HW encryption is accelerated on data length of 1000 bytes in order
to see how long it to process encryption functions. Following table shows results of
KASUMI HW Encryption behaviours when data block size increases to 1000 byte.

Table A4. KASUMI HW Encryption on 1000 byte packets

The results of the experiments of cases are c and d is depicted side by side in following
graph:

Figure A5. KASUMI HW Encryption on 500 and 1000 byte packets

e)  KASUMI HW decryption on 40 bytes packets

In this test case, HW decryption in accelerated on data length of 40 bytes  in order to see
how long decryption function behaves with different data block sizes. Following table is
depicted the test case result.

Table A5. KASUMI HW Decryption on 40 byte packets

Number
of
Packets

Data
length
(byte)

Data size
(bits)

Kasumi
HW Enc
(ticks)
Tics for
data
transfer

Kasumi
HW  Enc
(ticks)
Tics for
processing
packets

Actual
Kasumi
HW Enc
(ticks)
Processing
time –
Transfer
time

1000 1000 8000000 224313 14150973 13926660
2000 1000 16000000 478345 28760045 28281700
3000 1000 24000000 2442241 43351593 40909352
5000 1000 40000000 4612936 72499959 67887023
8000 1000 64000000 6890433 116019725 109129292
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f)  KASUMI HW decryption on 88 bytes packets

In this test case, the HW decryption is accelerated on data length of 88 bytes in order to
see how decryption functions with different data block sizes. Following table shows the
result of HW decryption acceleration:

Table A6. KASUMI HW decryption on 88 byte packets

Following graph shows the results of KASUMI HW accelerations in different data
lengths 40 and 88 bytes in order to see closely how encryption process react to different
data sizes when data block load is same.

Number
of
packets

Data
length
(byte)

Data
size
(bits)

Kasumi
HW Dec
(ticks)
Tics for
data
transfer

Kasumi HW
Dec(ticks)
Tics for
processing
packets

Actual
Kasumi HW
Dec (ticks)
Processing
time –
Transfer
time

1000 40 320000 219612 843614 624002
2000 40 640000 439176 1687133 1247957
3000 40 960000 660397 2532590 1872193
5000 40 1600000 1031367 4215652 3184285
8000 40 2560000 3285773 6973431 3687658

Number
of
Packets

Data
length
(byte)

Data
size
(bits)

Kasumi
HW Dec
(ticks)
Tics for
data
transfer

Kasumi
HW  Dec
(ticks)
Tics for
processing
packets

Actual
Kasumi HW
Dec (ticks)
Processing
time –
Transfer
time

1000 88 704000 219655 1484572 1264917
2000 88 1408000 439125 2969021 2529896
3000 88 2112000 660238 4456323 3796085
5000 88 3520000 1009960 7452364 6442404
8000 88 5632000 3260919 12297176 9036257
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Figure A6. KASUMI HW decryption on 40 and 88 bytes packets

i)  KASUMI HW Decryption on 500 bytes packets

In this test case, the HW decryption is accelerated on data length of 500 bytes in order
to see how decryption function with different data blocks sizes decryption. Following
table shows the result of the experiment when executed:

Table A7. KASUMI HW decryption on 500 bytes packets

g)  KASUMI HW Decryption on 1000 bytes packets

In this test case, only difference with previous case is that HW decryption is accelerated
on data length of 1000 bytes in order to see how decryption function when executed
with large data blocks decryption.

Table A8. KASUMI HW decryption on 1000 byte packets

Number
of
Packets

Data
length
(byte)

Data size
(bits)

Kasumi
HW Dec
(ticks)
Tics for
data
transfer

Kasumi
HW  Dec
(ticks)
Tics for
processing
packets

Actual
Kasumi
HW  Dec
(ticks)
Processing
time –
Transfer
time

1000 500 4000000 220294 7121027 6900733
2000 500 8000000 450726 14266655 13815929
3000 500 12000000 692503 21982651 21290148
5000 500 20000000 2788925 37207483 34418558
8000 500 32000000 5068858 59649185 54580327
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Following graph shows the results of KASUMI HW accelerations in different data
lengths of 500 and 1000 byte to see closely how encryption process react to different
data sizes when data block load is same.

Figure A7. KASUMI HW Decryption on 500 and 1000 byte packets

A2.2 Software based KASUMI acceleration case simulation

a)  KASUMI SW Encryption on 40 bytes packets

In this test case, only difference with previous cases is that only SW encryption is
accelerated on data length of 40 bytes in order to see which one takes more time
encryption or decryption functionalities. Following table shows the result of KASUMI
SW based encryption implementation execution on 40 data lengths

Table A9. KASUMI SW Encryption on 40 byte packets

Number
of
Packets

Data
length
(byte)

Data size
(bits)

Kasumi
HW Dec
(ticks)
Tics for
data
transfer

Kasumi
HW  Dec
(ticks)
Tics for
processing
packets

Actual
Kasumi
HW Dec
(ticks)
Processing
time –
Transfer
time

1000 1000 8000000 224313 14151830 13927517
2000 1000 16000000 478345 28759716 28281371
3000 1000 24000000 2442241 43351410 40909169
5000 1000 40000000 4612936 72499744 67886808
8000 1000 64000000 6890433 116018790 109128357
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b)  KASUMI SW Encryption on 88 bytes packets

In this test case, only difference with previous test case is that SW encryption in
accelerated on data length of 88 bytes in order to see which one takes more time
encryption or decryption functionalities. Following table shows the result of KASUMI
SW based Encryption implementation execution on 88 data lengths.

Table A10. KASUMI SW Encryption on 88 bytes packets

F

Following picture show SW based KASUMI encryption implementation execution
results on data lengths of 40 bytes and 88 bytes

Number
of
Packets

Data
length
(byte)

Data
size
(bits)

Kasumi
SW Enc
(ticks)
Tics for
data
transfer

Kasumi SW
Enc(ticks)
Tics for
processing
packets

Actual
Kasumi SW
Enc (ticks)
Processing
time –
Transfer
time

1000 40 320000 219612 4417669 4198057
2000 40 640000 439176 8835131 8395955
3000 40 960000 660397 13255357 12594960
5000 40 1600000 1031367 22212297 21180930
8000 40 2560000 3285773 35841854 32556081

Number
of
packets

Data
length
(byte)

Data
size
(bits)

Kasumi
HW Enc
(ticks)
Tics for
data
transfer

Kasumi HW
Enc (ticks)
Tics for
processing
packets

Actual
Kasumi SW
Enc (ticks)
Processing
time –
Transfer
time

1000 88 704000 219655 8605117 8385462
2000 88 1408000 439125 17209759 16770634
3000 88 2112000 660238 25817179 25156941
5000 88 3520000 1009960 43157767 42147807
8000 88 5632000 3260919 69351433 66090514
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Figure A8. KASUMI SW Encyption on 40 and 88 bytes packets

c) KASUMI SW Encryption on 500 bytes packets

In this test case, only difference with previous cases is that SW encryption in
accelerated on data length of 500 bytes in order to see which one takes more time on
encryption process. Following table shows the result of the test case.

Table A11. KASUMI SW Encryption on 500 bytes packets

d)  KASUMI SW Encryption on 1000 bytes packets

In this test case, only difference with previous case is that SW encryption is accelerated
on data length of 100 bytes in order to see which one takes more time on encryption
process. Following table shows the result of KASUMI SW based Encryption
implementation execution on 88 data lengths.

Number
of
packets

Data
length
(byte)

Data size
(bits)

Kasumi
SW Enc
(ticks)
Tics for
data
transfer

Kasumi SW
Enc (ticks)
Tics for
processing
packets

Actual
Kasumi SW
Enc (ticks)
Processing
time –
Transfer
time

1000 500 4000000 220294 44993321 44773027
2000 500 8000000 450726 90010210 89559484
3000 500 12000000 692503 135597913 134905410
5000 500 20000000 2788925 226566862 223777937
8000 500 32000000 5068858 362494597 357425739
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Table A12. KASUMI SW Encryption on 1000 bytes packets

i)  KASUMI SW decryption on 40 bytes packets

In this test case, only difference with previous cases is that SW decryption is accelerated
on data length of 40 bytes in order to see which one takes more time encryption or
decryption when doing analysis in later chapters. Following table shows the result of
SW decryption acceleration.

Table A13. KASUMI SW decryption on 40 bytes packets

f) KASUMI SW decryption on 88 bytes packets

In this test case, only difference with previous case is that SW decryption is accelerated
on data length of 88 bytes in order to see which one takes more time encryption or
decryption. Following table shows the result of SW decryption processing:

Number
of
packets

Data
length
(byte)

Data size
(bits)

Kasumi
SW Enc
(ticks)
Tics for
data
transfer

Kasumi SW
Enc (ticks)
Tics for
processing
packets

Actual
Kasumi SW
Enc (ticks)
Processing
time –
Transfer
time

1000 1000 8000000 224313 88625113 88400800
2000 1000 16000000 478345 177705422 177227077
3000 1000 24000000 2442241 266775160 264332919
5000 1000 40000000 4612936 444828833 440215897
8000 1000 64000000 6890433 711754587 704864154

Number
of
packets

Data
length
(byte)

Data
size
(bits)

Kasumi
SW Dec
(ticks)
Tics for
data
transfer

Kasumi SW
Dec(ticks)
Tics for
processing
packets

Actual
Kasumi SW
Dec (ticks)
Processing
time –
Transfer
time

1000 40 320000 219612 4417682 4198070
2000 40 640000 439176 8835204 8396028
3000 40 960000 660397 13255359 12594962
5000 40 1600000 1031367 22211959 21180592
8000 40 2560000 3285773 35841963 32556190
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Table A14. KASUMI SW decryption on 88 bytes packets

i)  KASUMI SW decryption on 500 bytes packets

In this test case, only difference with previous case is that SW decryption is accelerated
on data length of 500 bytes in order to see which one takes more time encryption or
decryption. Following table shows the result of SW decryption processing:

Table A15. KASUMI SW decryption on 500 byte packets

j)  KASUMI SW Decryption on 1000 bytes packet

In this test case, only difference with previous case is that KASUMI SW based
decryption is accelerated on data length of 1000 bytes in order to see which one takes
more time encryption or decryption. Following table shows the result of SW decryption
processing:

Number
of
packets

Data
length
(byte)

Data
size
(bits)

Kasumi
SW Dec
(ticks)
Tics for
data
transfer

Kasumi SW
Dec  (ticks)
Tics for
processing
packets

Actual
Kasumi SW
Dec (ticks)
Processing
time –
Transfer
time

1000 88 704000 219655 8605116 8385461
2000 88 1408000 439125 17209668 16770543
3000 88 2112000 660238 25817224 25156986
5000 88 3520000 1009960 43157470 42147510
8000 88 5632000 3260919 69350621 66089702

Number
of
packets

Data
length
(byte)

Data size
(bits)

Kasumi
SW Dec
(ticks)
Tics for
data
transfer

Kasumi SW
Dec (ticks)
Tics for
processing
packets

Actual
Kasumi SW
Dec (ticks)
Processing
time –
Transfer
time

1000 500 4000000 220294 44992749 44772455
2000 500 8000000 450726 90009893 89559167
3000 500 12000000 692503 135597265 134904762
5000 500 20000000 2788925 226567913 223778988
8000 500 32000000 5068858 362496067 357427209
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Table A16. KASUMI SW decryption on 1000 bytes packets

Following figure shows SW based KASUMI decryption processing on data lengths of
500 bytes and 1000 bytes with 3 different data block sizes:

Figure A9. KASUMI SW decryption on 500 and 1000 bytes packets

Number
of
packets

Data
length
(byte)

Data size
(bits)

Kasumi
SW Dec
(ticks)
Tics for
data
transfer

Kasumi SW
Dec (ticks)
Tics for
processing
packets

Actual
Kasumi SW
Dec (ticks)
Processing
time –
Transfer
time

1000 1000 8000000 224313 88625309 88400996
2000 1000 16000000 478345 177707020 177228675
3000 1000 24000000 2442241 266773409 264331168
5000 1000 40000000 4612936 444830796 440217860
8000 1000 64000000 6890433 711755564 704865131


