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ABSTRACT

The purpose of this study is to investigate whether option price implied
volatility, skewness and kurtosis are good estimates of realized return
distribution. Earlier studies suggest that implied moments, i.e. volatility,
skewness and kurtosis, of the distribution do contain some information about
future price behavior, but the information is usually biased and exaggerates the
importance of past market shocks.

This study employs method introduced by Corrado & Su to obtain estimates of
implied volatility, skewness and kurtosis. The data consists of daily close values
of DAX index for years 1999-2001. Furthermore, regression analysis is used to
compare the information content of implied and history-based estimates to see
if implied estimates contain some additional information about future price
behavior.

The overall results indicate that implied volatility, skewness and kurtosis do
contain some information about the future volatility, skewness and kurtosis,
but as the prediction power of these models used in this study is so low, it is
difficult to implement thisinformation on predicting the future.
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1. INTRODUCTION

The importance of financial derivatives has increased rapidly in the past 20
years. Most of this success is due to development of accurate pricing models
such as Black-Scholes (1973) formula and binomial model by Cox, Ross and
Rubinstein (1979). With these models it is easy to calculate option prices if input
parameters crucial to option valuation are known. These parameters are stock
price, strike price, time to maturity, risk-free interest rate and volatility. All
other parameters but volatility can be obtained without much effort because
they reflect present time and can be found from electronic- or newspaper
quotes. In order to value options, volatility, measuring the uncertainty about
the future price behaviour, has to be estimated some way. There is no closed
form solution to calculate volatility from e.g. Black-Scholes option pricing
model (later B-S model), but instead of that it can be estimated from historical

data or it can be solved from market price using iterative methods.

B-S model is based on an assumption that all the options with same underlying
asset and same maturity should have equal volatility throughout all the strike
prices. Volatility structure can be illustrated by plotting implied volatility as a
function of strike price. It usually takes somewhat skewed form, or it can even
form a 'smile’, meaning that volatility rises always when moving from at-the-
money (ATM) to either in-the-money (ITM) or out-of-the-money (OTM).
According to Rubinstein’s (1994) study the equal volatility assumption did
actually hold quite well until the market crash in October 1987. After the market
crash the prices of OTM put options, and because of put-call parity also the
price of the ITM call options, began to rise as investors feared for further decline
in stock prices. It can be observed from the option markets, that the volatility
smile has not restored to the flat pre-crash form. In their study Dumas, Fleming
and Whaley (1998) found support for the hypothesis that implied volatility

patterns exhibit time dependant divergencies.

Because market participants are willing to know markets concensus opinion of
future price development, and B-S model gives us tools to estimate markets

expectations of the volatility of the underlying asset, implied volatility has been



studied with great interest since the development of B-S model. Shortly after
Fischer Black and Myron Scholes (1973) had published their revolutionary
option-pricing model, Latané and Rendelman (1976) investigated the
relationship between the realised volatility and the implied volatility. They
found that the implied volatility significantly outperforms historically
estimated volatility in future volatility prediction. Subsequent studies by
various researchers have confirmed that implied volatilities are more useful

than historical volatility when the realised future volatility is forecasted.

The existence of volatility smile makes the use of implied volatility as a forecast
of realised future volatility more complicated. Because volatility changes
among the strike price, it is not clear which strike prices should be used in
volatility calculation. At the same time when volatility smile complicates the
use of implied volatility, it gives us new possibilities to predict the future price
behaviour of an asset. The shape of a volatility smile can be used to reveal
investors estimates about the probability distribution of the stock price at the
maturity. If investors value options with low and high strike prices relatively
higher, i.e. they use higher implied volatility for OTM options than ATM
options then it implicates that they assume the extreme stock price outcome

being more probable than what the lognormal distribution suggests.

Volatility smile can be exploited to obtain risk-neutral densities, which reveal
market operators expectations about the stock market returns in the future.
Implied probability distribution derived from a volatility smile is a useful tool
in examining market participants anticipations of underlying assets future
volatility and the direction of probable price movements. If the volatility smile
deviates from the flat line, then also the implied probability distribution must
deviate from the normal distribution. This non-normality of the implied
distribution can be approximated by skewness and kurtosis, third and fourth

moments of the distribution.

This study concentrates on the prediction power of implied distributions. It is
accomplished by comparing correlations between implied and realised versus
historical and realised moments of corresponding distributions. Implied

moments are estimated from daily data of German DAX index, covering years



1999-2001. Methods used in the estimation are the very same as used by
Corrado and Su (1996) and later by Navatte and Villa (2000).

1.1. Purpose of the study

For market participants and policy makers it would be very useful to be able
calculate and interpret the market consensus view about predicted direction
and volatility of the future asset behaviour. Traders could use implied
distributions as a support and additional information for their market decisions
and strategies, whereas policy makers could use implied probability
distribution functions (PDFs) to forecast how the markets will react on their
economical decisions. Two important questions rise when using implied PDFs
as a forecast of future market events is discussed: How truthful PDFs
estimation methods yield, and, how accurately implied PDFs can predict future

realised price behaviour. This study concentrates on the latter issue.

The purpose of this study is to investigate the market participants” ability to
predict future price behaviour, or more theoretically expressed does option
market implied probability density function predict future underlying asset
price behaviour. This is carried out by using implied volatility, skewness and
kurtosis as proxy of the distribution. Earlier similar studies have been
accomplished using, for example, S&P500 (Corrado & Su 1996) and CAC-400
(Navatte & Villa 2000) data. This study contributes to the current literature
using daily data of German DAX index.

If the results indicate that implied distributions have no additional information
content and deep-ITM or -OTM options are in that sense overpriced, then the
situation can be taken advantage of by selling the overpriced options and
neutralising the risks by buying undervalued options. If the results reveal that
implied distributions do contain statistically significant information about the
future price behaviour, then it can be also very advantageous to use the

information in practice. In either case, the results are very interesting.



1.2. Structure of the study

This study is constructed so that first the previous research, related to this
study, is reviewed in chapter 2. Essential theoretical framework is discussed in
chapters 3 and 4, the earlier concentrating mainly on option pricing theory and
the latter on implied distributions and the ways to recover them. 5% chapter
introduces the research hypotheses. Chapter 6 introduces the data and
discusses research methods. Empirical results are presented and discussed in

Chapter 7. Chapter 8 contains final summary and conclusions of the study.



2. LITERATURE REVIEW

In this chapter the previous research, most important to this study, are
reviewed and discussed. The studies under consideration are divided into three
categories which describe the focus of these studies. These categories are
implied volatility, estimation of implied distributions and the information
content of implied distribution. Because these topics are closely related and
most of these studies deal with more than one of these topics, it has been
difficult to assign some single study to one specific topic. However, these
studies have been tried to divide into logical categories on the basis of what
issue has had most emphasis on the study and what has the main purpose of

the study been.

2.1. Implied Volatility

Information content of implied volatility has been studied by many researchers,
for example Beckers (1981), Canina and Figlewski (1993), Jorion (1995) and
Fornari & Mele (2001). Most of these studies support the idea that the implied
volatility is the best available, yet biased, forecast of the volatility of the future
returns. Canina and Figlewski (1993) found opposite results and conclude that

implied volatility is a poor predictor of the future realised volatility.

Beckers (1981) investigates the predictive ability of implied standard deviations.
The research is done by using regression analysis where actual realised
standard deviation acts as a dependent variable and historical and implied
standard deviations as explanatory variables. Three differently weighted
implied standard deviation measures are used to investigate which options
(ITM or ATM) contain most information about the future, but for the current
study only the difference between historical and implied volatility matters. The
data used in Beckers’ study contain CBOE option prices, and because those
options are not payout protected, the standard deviations are obtained using
procedure that calculates correct value of an unprotected American call option.
The results show that in almost every case, the implied standard deviation

outperforms the historical standard deviation in predicting the future realised



10

standard deviation. Furthermore, including both historical and implied
standard deviation to the model did increase the R?>-measure in every sample
period. Beckers notes that this increase in R> may indicate market inefficiency,

because some past information was not revealed in actual option prices.

Canina & Figlewski (1993) were suspicious about widely accepted assumption
that implied volatility is better predictor for the future volatility than the
historical volatility. They investigated the market's ability to forecast future
price volatility by forming simple regression equations for realised volatility
where implied volatility and historically measured volatility were used as
predictors. The data sample for the study was constructed from daily closing
prices of S&P 100 Index options in period 15.03.1983 — 28.03.1987, and it
contained total 17 606 observations. Options with fewer than 7 or more than 127
days to expiration and options with more than 10% in- or out-of-the-money
were excluded from the data. The results show that the implied volatility is a
very poor estimate of the future volatility and it is outperformed even by
historically estimated volatility. Canina & Figlewski conclude that they do not
believe that small information content of implied volatility originates from
irrational option traders, but more probably from the law of supply and
demand which might alter the price, or in this case the implied volatility, of
some specific type of options. This idea gives rise to the discussion whether the
whole strike-volatility structure, or volatility smile, should be taken into

account when future volatility is predicted.

In his study, which this study is quite similar to the paper by Canina &
Figlewski (1993), Jorion (1995) investigates the information content and the
prediction power of currency market implied volatilities. Information content is
studied by measuring the implied volatility's ability to forecast subsequent 1-
day volatility, while predictive power is tested by regressing the implied
volatility on the volatility over the remaining days until the maturity. The actual
testing is done by using regression analysis, which was used in many earlier
studies on this issue. The data for the study was taken from the Chicago
mercantile exchange's closing quotes for currency futures and options on
futures. The three most active currencies were chosen, meaning that the data

consists of options on Deutsche mark, Japanese yen and Swiss franc. The period
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the data covers varies a bit depending on the currency, but it begins around the
year 1985 and ends in February 1992. The results show that implied volatilities
contain a substantial amount of information about currency movements on the
following day, slopes of regression equation for all three currencies being
around 0.8, while historical volatilities have slopes as low as 0.3 - 0.4 level. The
results for prediction power of implied volatility are alike; Implied volatility
outperforms the historically measured volatility significantly. Regression
equation slopes on realised volatility are around 0.5 and 0.15 for implied- and
historical volatility, respectively. Jorion notes that the results are quite opposite
to the Canina & Figlewski study, and suggests that the difference in results may

be due to error in estimation of S&P100 implied volatilities.

Fornari & Mele (2001) study how scheduled and unscheduled news affect the
implied volatility of options on Italian 10-year bond traded in LIFFE during
observation period March 1994 - March 1997. In addition to earlier studies,
Fornari & Mele focus on OTM and ITM volatility which they assume to be more
sensitive to news releases. For each day three measures for implied volatility
are estimated, meaning that only the volatilities for most far-out-of-the-money,
most deep-in-the-money and most nearest-at-the-money options are calculated.
Finally the research hypothesis, that news resolve uncertainty is tested using
regression analysis. The paper provides some evidence that the news may help
to resolve uncertainty, i.e. the implied volatility decreases, but most of the
change occurring to volatilities of ATM options, while OTM and ITM implied

volatilities are affected only by marginally.

Because of volatility smile, it is not obvious which strike price should be used
for calculation of implied volatility for these tests. Usually the volatility
structure is ignored and only at-the-money implied volatility is used. Obviously
this kind of approach can be seen problematic, because it leaves much
information out of the scope of study. Furthermore it seems evident that while
ATM implied volatility may have some forecast power about future short term
volatility it is inadequate in predicting long term volatility. Implied volatility
should somehow incorporate the non-flat form of volatility structure to be able

to reflect better the market’s opinion of future volatility.
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In many studies it is suggested that option prices can be seen as the sum of
Black-Scholes price plus adjustment terms for skewness and kurtosis. These
methods are used in studies from authors like Jarrow and Rudd (1982) who
employed generalised Edgeworth expansion, Corrado & Su (1996, 1997) who
used Gram-Charlier expansion and Madan & Milne (1994) and Abken et al.
(1996) who applied Hermite polynomial expansion. Adding skewness and
kurtosis to option pricing model helps us to obtain implied distributions in
similar manner as implied volatility is usually obtained. Next chapter discusses

more about estimation of implied distributions.

2.2. Estimation of Implied Distributions

Among many others, Rubinstein (1994) and Jackwerth and Rubinstein (1996)
have studied option prices implied probability distributions and ways to
recover them. Earlier, probability distributions of stock market returns have
been usually estimated from historical time series, which Jackwerth and
Rubinstein (1996:2) comment to be very inappropriate method because, as they
say: "it may not capture the probability of extreme events and the events of
interest are rare or may not be present in the historical record even though they

are clearly possible".

Rubinstein's article Implied Binomial Trees (1994) concentrates on different
methods to derive risk-neutral probabilities from simultaneously observed
European option prices and using these end-node probabilities to build
implied binomial trees. Methods introduced there are Amended Longstaff
Method (for original version of Longstaff method, see Longstaff 1990), Shimko's
Method (see Shimko 1993) and optimization method. Rubinstein finds
Amended Longstaff Method problematic, because the discrete probabilities it
yields are very volatile, with values jumping from negative to highly positive,
which yields probability distribution very different from lognormal. It is also
difficult to get the tail probabilities with this method. In order to acquire tail
probabilities options with striking prices from 0 to infinity would be needed,
unfortunately this is not the case in the real financial markets and interpolation

or extrapolation would be needed to obtain price for options with strike prices
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in between of real striking prices. Shimko's method utilises the idea, discovered
by Breeden and Litzenberger (1978), that if European options with striking
prices from zero to infinity would exist, the maturity date risk-neutral
probability distribution could be obtained by calculating the second derivate of

price respect to striking price for each option. (Rubinstein 1994)

Jackwerth and Rubinstein (1996) use optimisation procedure introduced in
Rubinstein’s (1994) article to derive risk-neutral probability distributions from
option prices. The data used in this study contains all reported trades and
quotes covering S&P 500 European index options and futures traded on CBOE
and intraday S&P 500 index levels from April 1968 to December 1993. The data
is adjusted for occurring dividends. The stock market crash on October 19, 1987
occurs in data period, and thus Jackwerth and Rubinstein compare implied
distributions before and after crash. They find a distinct change in shape
between the pre-crash and post-crash distribution. Pre-crash distributions are
very close to lognormal distribution, while the post-crash distributions exhibit
significant leptokurtosis and left-skewness. Although, there is a significant
change in distribution after the crash, it seems that after that skewness and
kurtosis stay quite stable at their new post-crash levels. This new form of
implied distribution assumes another significant decline in the S&P 500 index

far more likely than it did before the crash.

In their study Skewness and Kurtosis in S&P 500 Index Returns Implied by
Option Prices (1996) Corrado and Su suggest skewness and kurtosis of the
return distribution as a source of volatility smile and they derived Skewness-
and Kurtosis-Adjusted Black-Scholes option pricing model using Cram-Charlier
series expansion of a normal density function. They developed extended Black-
Scholes model which incorporates the non-normal skewness and kurtosis in the

stock return distribution.

Basically their model yields option value which is equal to Black-Scholes value
plus the adjustments for skewness and kurtosis. Like implied volatility,
skewness and kurtosis are also parameters which cannot be directly observed
from the market and thus must be estimated somehow. Fortunately, this

extended Black-Scholes model can be used to simultaneously estimate all three
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moments, standard deviation (implied volatility), skewness and kurtosis, from
the data.

Main purpose of their study was to investigate, whether extended Black-Scholes
model removes pricing biases of deep-ITM and deep-OTM options. The data
used in their study consists of CBOE S&P 500 index options, and it is adjusted
by subtracting the present value of future dividend payments during the
maturity. Using Whaley’s (1982) simultaneous equations procedure, Corrado
and Su estimate implied volatility for Black-Scholes model and implied
volatility, skewness and kurtosis for extended Black-Scholes model for each
day. Then they calculate theoretical values for each option using these
parameters as input in Black-Scholes and extended Black-Scholes model and
furthermore compare these theoretical prices to market prices. The results show
that using only Black-Scholes model, on average 89% of theoretical prices are
outside the bid-ask spread, while using extended model only 63% of theoretical
prices lie outside bid-ask spread. Also the average deviation of theoretical
prices from spread narrows from $0.76 to $0.40, for Black-Scholes and extended
Black-Scholes, respectively. The final conclusion of this study is that the pricing
accuracy for deep-ITM and deep-OTM options is significantly improved when

terms for skewness and kurtosis are included in the option pricing formula.

In their subsequent study, Implied Volatility Skews and Stock Return Skewness
and Kurtosis Implied by Stock Option Prices (1997), Corrado and Su use the
very same methods to estimate option implied skewness and kurtosis for four
actively traded stock options. The research problem is two-folded. First of all,
the measures for implied skewness and kurtosis are estimated and explored
using the very same methods as in their previous study. Secondly, the pricing
accuracy of skewness and kurtosis adjusted option pricing model is compared
to the Black-Scholes model. The pricing performance test is accomplished so
that the prior day estimates are used as an input to calculate the current day
theoretical prices for all options belonging to the same maturity group and then
the theoretical prices are compared to the real occurred trades. The data used in
their study consists of intraday data of four Chicago Board Options Exchange
(later CBOE) actively traded stock option contracts. The data includes stock

prices, strike prices and option maturities. Because CBOE stock options are
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American style, only call options with no dividends during the maturity are
included in study. Empirical results, which are consistent with their previous
foundings, suggest that the implied distributions tend to be negatively skewed
and exhibit positive excess kurtosis relative to a normal distribution.
Furthermore, Corrado and Su conclude that the Skewness and Kurtosis
Adjusted Black-Scholes model significantly improves the pricing of deep ITM
and -OTM stock options.

Because, these earlier studies concerning estimation of implied distributions
indicate that the implied return distributions exhibit non-normal skewness and
kurtosis, and as Corrado and Su conclude, using implied distribution as an
input for option pricing model results more accurate option pricing, it seems
that implied distributions are useful and worth estimation. Furthermore,
Corrado and Su method for obtaining implied distribution using optimisation

procedure seems to be easily adapted to the current study.

Even though implied distributions differ from normal distribution and they can
be used in option pricing models, the question about prediction power or
information content of implied distribution remains. Next chapter discusses this

issue more closely.

2.3. Information content of Implied Distributions

Many earlier studies on information content of implied volatility suggest the
idea that implied volatility has prediction power about future volatility. This
assumption has encouraged researchers to study also the information content of

higher moments of the distribution.

Navatte and Villa (2000) investigate if also the higher moments, i.e. skewness
and kurtosis, of the distribution contain similar information about the future.
They used Skewness- and Kurtosis-Adjusted Black-Scholes option pricing
model developed by Corrado and Su (1996) to obtain estimates for implied
volatility, -skewness and -kurtosis from European long maturity CAC 40 index

options data. Descriptive statistics of the implied moments were consistent with
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the empirical results of previous studies; On average, implied skewness was
significantly negative and implied kurtosis exceed the kurtosis of normal

distribution.

Firstly, they found out that the Skewness- and Kurtosis-Adjusted Black-Scholes
option pricing model significantly outperforms the traditional Black-Scholes
model in out-of-sample pricing. Secondly, they found that implied moments
(volatility, skewness and kurtosis) contain significant amount of information
about moments of realised return distribution. Furthermore, they discovered
that different shapes of the volatility smiles are consistent with different

distribution of the underlying returns.

Weinberg (2001) examines how the risk-neutral implied distributions compare
with realised distributions and, in addition to earlier studies, he also tests the
information content of implied volatility and skewness against the
corresponding moments of daily returns. The daily settlement price data
covering years from 1988 to 1999 used in this study is obtained from CME and
the contracts examined are on the S&P 500 futures, the Japanese yen/U.S. dollar
futures, and the deutsche mark/U.S. dollar futures. First of all, implied
distributions are estimated from option prices using volatility smoothing, also
known as Shimko's method, and then the goodness of fit of these distributions
are compared with the goodness of fit of a lognormal distribution with the same
mean and standard deviation. Secondly, the information content of these
volatility smile smoothed implied volatility and skewness are tested using
regression analysis. The results of distribution comparison show that for foreign
exchange series, DM and JY, both the lognormal and implied distribution fit the
realised distribution reasonably well, even though the lognormal distribution
tits the data better. For S&P 500, the risk-neutral implied distribution does not
fit the realised return distribution, but when it is adjusted to risk it fits the
realised distribution even better than the lognormal distribution. The results
concerning information content of implied volatility, which are consistent with
the findings of Jorion (1995), indicate that the volatility smoothing method
performs slightly worse in predicting future volatility when compared to ATM
Black-Scholes implied volatility. Furthermore, the information content of

implied skewness was found out to be poor, actually Weinberg found profit
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opportunities available from betting against the market when strong skewness
existed. As a possible explanation for poor prediction power, he suggests that
because market participants hedge portfolios and therefore they are willing to

pay higher price than the true statistical risk for their insurance.

Shiratsuka (2001) examines the information content of implied probability
distribution in predicting the future return distribution and price behaviour.
First of all, he investigates whether the implied distribution contains
information about the future realised stock return distribution. Secondly, he
examines whether the implied distribution produces useful information in
predicting the future stock price changes. The study employs daily data of
Nikkei 225 stock price index options and Japanese Government futures options
from mid-1989 to mid-1996. The data contains also the daily estimates for

implied volatility, -skewness and -kurtosis.

The forecasting power of implied distribution is tested and compared to the
historical return distribution using a simple regression analysis. The results
suggest that implied volatility does contain some information about future
realised volatility, yet historical volatility is still better predictor. Both implied
and historical skewness and kurtosis turned out to contain no useful
information about future. These results are consistent with Weinberg (2001).
Secondly Shiratsuka uses Granger causality tests to explore whether the shape
of implied distribution contains useful information about the future price
behaviour. The results indicate that there exists some causality, and the shape of
implied distribution provides useful information for predicting future volatility

and skewness.

In their paper Risk-Neutral Skewness: Evidence from Stock Options, Patrick
Dennis and Stewart Mayhew (2002) study the importance of various factors in
explaining the skew in implied distributions. They investigate whether the firm-
size, leverage, market risk, trading volume or put/call ratio can explain
variations in risk-neutral skewness. Because Dennis & Mayhew are only
interested in skewness of the distribution, they use method developed by
Bakshi and Madan (2000) which allows to easily compute the risk-neutral

skewness and does not rely on any particular option pricing model. The data
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used in their study is daily trading data of CBOE covering years 1986 - 1996 and
including all strikes and maturities for over 1000 underlying stocks and S&P
500 index. They compute skewness for each day and average these values to
obtain weekly skewness measures. Also the explanatory variables, including
implied volatility, trading volume, beta, firm leverage and put/call ratio are
constructed and calculated from each week. Finally the weekly cross-sectional
regressions are calculated. They found out that the market risk, measured as
beta, significantly affects the risk-neutral density skewness. Stocks with high
beta tend to have more negatively skewed implied distribution especially when
the market volatility is high or when the implied distribution for index options
is negatively skewed. Also, large market value seem to make the skew negative,
while higher trading volume makes the skew more positive. Although, put/call
volume ratio, which could intuitively be seen as a market's forecast of future

price direction, does not correlate with risk-neutral skew.

In their recent study Anagnou et al. (2002) investigate whether implied
probability densities provide unbiased forecast of realised probability densities.
They use four different approaches, from which three are parametric and one is
non-parametric, to estimate implied distributions for options in S&P 500 and
the US Dollar / British Pound from 1986 to 2001. The selected approaches are
Generalised Beta Approach, Normal Inverse Gaussian Approach, Two-
lognormal mixture and B-Splines. They found out that parametric methods are
clearly superior to non-parametric, but none of these methods present an
appropriate forecast of the true distribution of the underlying at expiry. Their
main conclusion is that the implied distributions provide only biased
information about future market dynamics. It also seems that implied
volatilities reflect more past shocks than provide accurate forecasts of the
future. Therefore, using implied distribution as only forecast would lead to

overreaction and wrong conclusions about the future price behaviour.

Most of these studies on information content of implied distribution indicate
that implied skewness and kurtosis have a poor prediction power on future
skewness and kurtosis. Anagnou et al. (2002) found that implied distributions
do contain significant information about future distribution, but are biased and

therefore cannot be as only forecast of future return distribution. Shiratsuka
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(2001) notes that even though neither implied nor historical higher moments do
contain useful information, there exist some causality between the shape of

implied distribution and future volatility and skewness.

Poor prediction power has few possible explanations which are closely related
to each other; 1. Options are used as insurance and therefore market
participants are willing to pay higher price, 2. Market participants have
unrealistic expectations, which reflect more past than the future. For example
market crash may result in high negative implied skewness, because market

participants are expecting the market to continue further down.

Moreover, it seems that implied distributions reflect more past shocks and
market participants’ fears than realistic predictions of future price behaviour.
These fears or possibility of decline are related to market risk, which Dennis
and Mayhew (2002) found to significantly affect implied return distribution.
Stocks with high beta tend to have more negatively skewed implied

distribution than stocks with low beta.

In short, these studies concerning the information content of Implied
Distributions indicate that implied distributions or implied moments do contain
some information about future price behavior, but the information is usually
biased and exaggerates the importance of past market shocks. So, using implied
distribution as a future market price predictor may lead to poor trading
decisions. It seems that because implied distributions provide exaggerated and
overreacted information about market expectations, it may be profitable to bet
against the market when implied distribution exhibits high (negative or

positive) skewness.
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3. OPTION PRICING THEORY

3.1. Stock Price Behaviour

It is generally assumed that the stochastic process behind the movement of a
non-dividend-paying stock is geometric Brownian motion. The geometric
Brownian motion model contains two components, expected return and
volatility. (Hull 2000:225) According to the geometric Brownian motion, the

change in the stock price during a short time period is

(1) AS = LSAt + 0AZ,

where S =stock price,

1 = expected return,

o = volatility,

AZ=eJAt , where € is a random drawing from normal
distribution, ¢ (0,1)

Figure 1 illustrates geometric Brownian motion simulated path followed by a
stock. Initial value of stock is 100, expected return used in the simulation is 10%
p-a. and stock price volatility is 20%. Hull (2000:227) has presented, that when
the volatility equals to zero equation 1 truncates to the form of equation 2. This
truncated version of geometric Brownian motion is illustrated as a trendline in

figure 1.
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Figure 1. Geometric Brownian motion simulated stock price behaviour

(2) AS = uSAt
as At -0
ds
(3 and 4) dS=uSdt or S = udt

and the stock price at the maturity (time T) should equal to
(5) S, =S¢

As it can be seen from equation 5, stock price grows at a steady continuously
compounded rate I, when the volatility of the stock is zero. Stock price change
can be also expressed as a relative to the current stock price. This can be done

by dividing equation 1 by the stock price, S.

(6) A—SS _ UMt — oeJAT
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In geometric Brownian motion model, both the expected return, p, and the
volatility, o, are assumed constant. From equation 6 we can see that pAt is the
expected return over time At and, because € is a random drawing from the
normal distribution, ce/At is the only component including stochastic process.
This means that the return, AS/S, is normally distributed with mean uAt and
standard deviation o+/At as expressed in equation 7.

(7) A—SS ~ g(uAt,o+/At)

Ito's lemma (see Ito 1951) can be used to prove that if the process behind the
stock price, S, is geometric Brownian motion, then the natural logarithm of
stock price follows generalised Wiener process and is thus normally

distributed. Furthermore, the change in In S during time T
2

(8) dInS:(y—%jdHodz.

This means that
9) |na—|nso~¢{(ﬂ—%2)naﬁ}

and this simplifies further to equation 10, showing that In Sr is normally
distibuted,

(10) InS, ~ ¢{|ns0 + [ﬂ —%}T,aﬁ } . Hull (2000:231)

If natural logarithm of a variable is normally distributed, then the variable itself
is lognormally distributed. Because equation 10 shows that In Sr is normally
distributed, then the stock price at time T must be lognormally distributed.
From the properties of lognormal distribution we know that it can take any

value between zero and infinity (see, e.g., Cox and Rubinstein 1985:201-204 and
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Smith and Merceret 2000). Furthermore, from equation 10 and the properties of

lognormal distribution, we know that the expected value of S1, E(S1), is
(11) E(S)=Se”

Terminal date stock price distribution implies the probabilities of stock price
ending at certain level at the maturity. Figure 2 illustrates the probability
distribution of stock price at terminal date. Distribution in figure 2 is calculated
with initial stock price of 100, volatility of 20%, interest rate 5%, time to

maturity 1 year.

T T 1
0 a0 100 1350 200 pagsll]
stock price

Figure 2. Probability distribution of terminal date stock price.

Geometric Brownian motion is only one suggestion for stock price behaviour. It
is problematic because of assumptions behind the model. It assumes that the
volatility of returns is constant throughout the maturity of an option and that
returns are normally distributed, which both are evidently untrue. This gives a

rise to a phenomenon called volatility smile.

Other stock price behaviour models are models involving jumps and models

with stochastic volatility. Jump model is used in option pricing models such as
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The Pure Jump Model by Cox, Ross and Rubinstein (1979) and The Jump
Diffusion Model by Merton (1976). Stochastic volatility model is discussed for
example in a study by Hull and White (1987).

3.2. Risk-neutral valuation

In a risk-neutral world all individuals are risk-neutral, and therefore do not
require compensation for risk beared. Furthermore, the expected return on all
investments equals to the risk-free interest rate and the value of an asset is its
expected future price discounted at the risk-free rate. The expected stock price,
E(St), at time T can be expressed as following, (Hull 2000:205)

(12) E(S)=5¢".

Consider that we have a situation where a stock is currently trading at $20 and
after a one period (say 1 month) the price of the stock can be either $23 or $17.
In Figure 3, the situation is illustrated with a one-step binomial tree, which is a
simplified model of stock price behaviour. According to the equation 12, the
expected return on the stock should be equal to risk-free interest rate (say 5%

continuous compounding), so the expected stock price after 1 month, E(51), is

1

(13) E(S,)=$20e 12 ~ $20.08.

Stock price =$23
Option price =$2

Stock price =320

Stock price =$17
Option price =$0

Figure 3. One Step Binomial tree
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As earlier mentioned, after 1 month, the stock price can be either $23 or $17 and
now we know that the expected value of the stock after 1 month is $20.08. Now
we can calculate the risk-neutral probabilities of up- and down-movements;
define p as the risk-neutral probability of an up-movement. Expected price of a
stock is, simply put, the probability weighted average of the possible outcomes
and in risk-neutral world it must equal to equation 12. (Hull 2000:206) Example

calculation of the probabilities is presented below

O.OSXi
23p+17(1-p)=20e 12

(14)

0.05><L
(15) 6p:206 12—17
(16) p= 0.5139

Now we can use these risk-neutral probabilities to value an option on the stock.
Consider a situation, where we have a European call option with strike price
$21 and 1 month maturity. The option values at the final node are presented in
figure 3. At the end of one month, the call option has a 0.5139 (this is the very
same as the probability of a stock moving up) probability of being worth $2 and
a 0.4861 (=1-0.5139) probability of being worth zero. The expected value of the

option therefore is,
(17) 0.5139x 2+ 0.4861x 0=1.0278.

To obtain the risk-neutral value of the option today the expected value should

be discounted using the risk-free interest rate. The option is today worth of

1
(18) 10278 12 =1.0235.

Using binomial tree, we obtain probabilities of stock price ending at large
variety of levels. Of course, one-step binomial tree is extremely simplified
model of the stock price behaviour and using it we obtain probabilities for only
two outcomes, which are obviously inadequate. But when we add more and
more steps, the probability density function becomes more and more accurate

and resembles more and more the lognormal density function. This density is



26

the risk-neutral probability density, and it indicates the probability of the stock

price ending at some certain level.

Actually, in order to value an option, we do not have to construct the whole
binomial tree. We need only the appropriate risk-neutral probability density,

about which is discussed more detailed later in chapter 3.3.2.

3.3. The Black-Scholes Model

The Black-Scholes Model, derived by Black and Scholes (1973) expanded by
Merton (1973), has played a major role in the development of modern financial
derivative markets. Rubinstein (1994) praises the model being one of the most
successful models in the social sciences and perhaps even the most widely used
formula throughout the human history. It is also a generally accepted as a
benchmark model, which alternative models are tested against (Nikkinen
2001:9). The importance of this model was recognised all over in the academic

world in 1997, when the Nobel prize in economics was awarded to Myron
Scholes and Robert Merton (see Hull 2000).

3.3.1. Derivation of the model

The Black-Scholes option-pricing model is derived using the Black-Scholes-
Merton differential equation, which is an equation that every derivative on non-
dividend paying stock must satisfy in order to fulfil the no-arbitrage
assumptions. It is based on an assumption of ideal market conditions and a
possibility to create a riskless position of stock and options. Riskless portfolio
can be created because both, the stock and the option price, are dependent on
the same source of uncertainty, the stock price movement. In a short period of
time, price of a call (put) option is perfectly positively (negatively) correlated
with the stock price. So, it is possible to create a riskless portfolio of options and
a stock, because loss or gain in stock is always offset by an equal gain or loss in
option position. Option sensitivity to the stock price is not constant over time
and therefore this portfolio is riskless only for a very short period of time and it

must be constantly rebalanced to remain riskless for longer period, but during
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that short time it must yield risk-free interest rate in order to satisfy the no-
arbitrage assumptions. (Hull 2000:224)

Hull(2000:245) has listed assumptions behind the Black-Scholes-Merton

differential equation as following;:

1. The stock price follows the geometric Brownian motion.

2. The short selling of securities with full use of proceeds is permitted.

3. There are no transaction costs or taxes. All securities are perfectly divisible.
4. There are no dividends during the life of the derivative.

5. There are no arbitrage opportunities.

6. Security trading is continuous.

7. The risk-free rate of interest is constant and the same for all maturities.

To understand the derivation of Black-Scholes-Merton differential equation we
have to concentrate on the behaviour of the underlying stock price. In this
model it is assumed that the stock price follows geometric Brownian motion, as

shown in equation 1 and again in equation 19 below

(19) AS = uSAt + 0SAZ.

It is showed (see Hull 2000:246 for example) that if f is a price of a derivative on

S, then using Ito's lemma we find out that process followed by derivative is

of . of  19°f ot
20 Af =| —uS+—+= ’S? At+-——0Az,
(20 (as” o205t ¢ ] "5

where AS and Af are the changes of stock price and derivative price over very

short time At, respectively.

Wiener process behind f and S is the same; this means that Az in both equations
is the same. This fact can be used to eliminate the uncertainty by creating a
portfolio containing

-1 derivative
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and +a_f shares.
JS

When this kind of portfolio is created, then the value of the portfolio, /7 is

of
21 M=—f+__S
(21) 35

and the change in the value of the portfolio, 477 during a small interval of time,
At, is

(22) At =-af + & as.
S

When 4f and 4S in equation 22 are replaced with equations 19 and 20 then the

equation can be expressed as follows

2
(23) All = @—i + % gs‘; azszjm .

As we can see, equation 23 does not contain stochastic process Az. Because of
this the portfolio must be riskless during time At and as the portfolio is riskless,
it must yield exactly the same risk-free return as other risk-free securities do.
This is presented in equation 24. If it were not true, arbitrageurs could make
risk-free profits by selling security/portfolio with smaller return and using the

proceeds to buy higher yielding security/portfolio. (Hull 2000:247)
(24) AIT = rTIAt,

where 1 is the risk-free interest rate. Substituting A/7 and /7in equation 24 with

equations 23 and 21 yields

of  10°f o, ( of j
25 N 19T oes ae=r[ 1 - P s|at,
@) [aﬁzaszg j 'S

which simplifies to the Black-Scholes-Merton differential equation presented

below.



29

F  of 1, ,0%f
26 LRGN TS B
(26) a Cas 27 0 s

Solution for Black-Scholes-Merton differential equation can be found for all
kind of different derivatives with S as an underlying variable. Solution of the
equation depends of the boundary conditions, which define the range
derivative price must lie within. Taken a European call option for example, key

boundary condition at maturity of an option is
(27) f=max(5-X, 0).

Famous Black-Scholes option pricing model was developed, when Black and
Scholes (1973) found solution for European options for Black-Scholes-Merton
differential equation. They found out that for boundary conditions of European
call option the differential equation simplifies to similar form as the heat-
transfer equation in physics and therefore they could use its solution by
Churchill (1963) to solve the differential equation. For European put and call
options, the solutions which satisfy the Black-Scholes-Merton differential
equation are presented below. These are the Black-Scholes option pricing

formulas for put and call options

(28) c=S,N(d,) - Xe"" N(d,)
(29) p=Xe""N(-d,) - §N(-d,)
where

and
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3.3.2. Derivation of the model using risk-neutral valuation

Cox and Ross (1976) were first to prove that the Black-Scholes formula can be
also derived using the risk-neutral valuation. In proof it is supposed that the
stock price follows the geometric Brownian motion, from which follows that the
stock price, and because of that, also the risk neutral probability density

function, is lognormally distributed.

If ¢(S) is defined as a probability density function of S, then if follows that the
expected value of a European call option at the maturity equals to the integral
of how much the stock price exceeds the strike price times the probability. This

relation is presented in the following

(30) E[max(S, - X,0)]= T(S— X)g(S)dS.

By solving the integral presented in right-hand side of the equation 30 Cox and
Ross(1976) obtained their key result, which proved that if the stock price, S, is

lognormally distributed and the standard deviation of In S is o then

G1)  Elmax(S-X.,0)]= E(S)N(d,) - XN(d;)

where N(x) is the cumulative probability distribution and d: and d: are the very

same as presented in equation 29.

As we know, the present value of an option is its expected value discounted at
the risk-free interest rate. Value of a European call option, ¢, can therefore be

expressed as

(32) ¢ =e " E[max(S, — X,0)]

In risk-neutral world the expected value of a stock at the maturity, E(Sr) ,
equals to See'" (see equation 12). When the key result of Cox and Ross (1976) is
applied to equation 32, the value of the European call option, ¢, can be

expressed as
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(33) c=e""[S,e"N(d,)- XN(d,)]
or
(34) ¢=S,N(d,)~ Xe"N(d,)

and as can be seen, equation 34 is the very same as the BS model for call
options, already presented in equation 28. The terms in equation 33 can be
interpreted as following: N(dz) represents the probability that the option will be
exercised in risk-neutral world and SoN(d1)e’" is the expected value of the stock

if it exceeds the strike price and is zero otherwise. (Hull:251)

It has to be noted that BS model and equation 34 are assuming that the stock
price is lognormally distributed. If this does not hold, then the option prices
given by the BS model are biased and differ from the market prices. If the very
same model is used to obtain values for implied volatility, then this pricing
error can be observed as a volatility smile, which is discussed more detailed in
chapter 3.4.1.

If the probability density function of the stock price is non-normal, then we just
have to use the proper probability density function as an input in equation 30.
Actually the probability density function of the stock price, g(S), is the most
important parameter affecting the value of an option in the risk-neutral

valuation model.

3.3.3. Critique against the model

According to the empirical studies(see Bates 1996), theoretical prices for OTM
and ITM options given by the Black-Scholes model often seriously differ from
the prices observed in the market. Especially the deep OTM and -ITM option

prices are heavily biased.
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3.4. Volatility

Volatility, o, is one of the crucial parameters needed by the Black-Scholes model
to value options. It measures the uncertainty concerning the returns provided
by the stock. It is also the only parameter which can not be easily observed and
must therefore be estimated, for example from historical data or directly from
market prices. If this market implied volatility is needed, then some iterative
methods must be used. Stock price volatility is usually somewhere between

20% and 40%, depending on a riskiness of a company. (Hull 2000:241)

Jackwerth and Rubinstein (1995) say that “Historically measured volatility
varies significantly over different time intervals; and second this can be a poor

predictor of subsequent implied volatility.”

3.4.1. Volatility smile

The Black-Scholes model assumes the volatility to be constant throughout all
the striking prices. This is consistent with the idea that stock price follows the
geometric Brownian motion and changes are lognormally distributed. Evidently
neither of these assumptions is true; Hull (1993) and Nattenburg (1994) found
out that the stock returns exhibit non-normal skewness and kurtosis. These
non-normalities of the distribution cause volatility smile, meaning that implied
volatilities of deep-out-of-the-money and deep-in-the-money options differ
from those of at-the-money options. Volatility smile can be illustrated by
calculating implied volatilities for different striking prices and then plotting

them as a graph. An example of a volatility smile is presented in figure 4 below.
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Figure 4. An example of volatility smile

The term volatility smile usually refers to a special form of volatility smile,
where implied volatility is lowest for ATM options rising towards both, low
and high, striking prices. Because options with extreme strike prices are valued
relatively higher by using higher volatility for those options, than ATM options,
this kind of smile implies that market operators expect extreme movements to
be more probable than what would be predicted on the basis of lognormal
distribution. This implied distribution exhibits more kurtosis, i.e. fatter tails and
more peaked, than the lognormal distribution, meaning that both small and
large price changes are more probable and medium changes are less likely than
with the lognormal distribution. (Hull 2000:437)

Equity options usually exhibit another special case of volatility smile, called
volatility skew. It means that the volatility is relatively high for options with
low striking price decreasing gradiently as the striking price increases; this is
presented in figure 5. The implied distribution consistent with volatility skew
is somewhat negatively skewed and has higher kurtosis than for the lognormal
distribution. Rubinstein (1994:775) gives “crash-o-phobia” as one possible

explanation for this phenomenon. The idea is that traders fear that a crash
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similar to October 1987 could happen again and therefore they value deep OTM
put (and because of put-call-parity also the ITM call) options very high relative
to ATM options. It seems quite valid explanation, because the Black-Scholes
model did hold satisfactory well until the mid 1980's (see Rubinstein 1994).

0.25
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Figure 5. An example of volatility skew

3.5. Skewness- and Kurtosis-Adjusted Black-Scholes Model

Corrado and Su (1996) suggest skewness and kurtosis of stock return
distribution as a primary source of volatility smile and develop an extended
Black-Scholes model, which incorporates with these non-normalities of the
return distribution. Their formula consists of the Black-Scholes option pricing
formula and the adjustment terms for non-normal skewness and kurtosis.
Adjustment terms for skewness and kurtosis are based on a Gram-Charlier
series expansion of the standardised normal density function. Corrado and Su
truncated the Gram-Charlier series expansion so that only the first four
moments are included and that truncated risk-neutral density function, g*(z),

can be expressed in the following form:
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(3) 9*(2)= n(z)[1+%(z3 ~39)+ 222 - 62 + 3)},

IS /S)-(r =0 12T
oT

where z

and n(z), us and [ are the standard normal density function, skewness and
kurtosis respectively. Equation 35 simplifies to the standard normal density
function as skewness, U3, equals to 0 and kurtosis, W, equals to 3. Using
truncated density function Corrado and Su (1996) derived the approximate
formula, presented in equation 36, which can be used to value European call
options. The skewness- and kurtosis adjusted option pricing formula for

European call options is following;:

(36) Cec = Cpg + 11,Q; + (1, —3)Q,,

where

Q, = %Staﬁ [2ovT —d)n(d) - o2TN(d)],

Q :%S[a\/ﬂ(dz 1-363T(d - 0T )n(d) - o°T¥2N(d)),

J- IN(S, /K) + (r + 62 12)T

oy

The terms Qs and Qs measure the effects of non-normal skewness and kurtosis
on the option price and the effects are also illustrated in Figure 5 below. It
should be noted, that when the risk-neutral distribution is lognormal (i.e.
skewness=0 and kurtosis=3) the Skewness- and Kurtosis-adjusted Black-Scholes
model yields to the very same result as the original Black-Scholes model (ccc =
css). Figure 6 illustrates the price adjustments due to non-normalities. (Corrado
and Su 1996:179)
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Figure 6. 5=100,6=0.2, r=0.05, T =1 year, us =-0.5, ps = 3.5.

Equation 36 can be used to value European put options as well. This can be
done by applying put-call-parity relationship between put and call options
which must hold in order to satisfy no-arbitrage assumptions. Using put-call-
parity a skewness and kurtosis corrected price of a put option can be denoted as
follows: (Navatte and Villa 2000:44)

(37) Psc =Coc — St +Ke™".

Even though, neither the Black-Scholes model or Skewness and Kurtosis
Adjusted Black-Scholes model can be inversed so that the implied volatility
could be directly calculated, some approximation functions for implied
volatility can be derived. Navatte and Villa (2000) derived an approximation

function for implied volatility with following input parameters: volatility, o,
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option moneyness, x, time to maturity, T, skewness, pus and kurtosis, ps. The

approximation function for implied volatility, oy, is following;:

Coals o N@)
o =0+ 2olQoNT - d)-0 ]

+H4 6@ —1-30T(d— oyTY) - o* T X,

4! oS

(38)

Equation 38 can be used to visually illustrate how much skewness and kurtosis
affect implied volatility and how does the volatility smile change when
skewness or kurtosis changes. Using this approximation, Navatte and Villa
(2000) found out that different shapes of volatility smiles are consistent with
different return distributions. For example positive excessive kurtosis, which
means distribution with “fat tails”, is consistent with symmetric volatility smile
(see Figure 3). Effects of kurtosis are more closer investigated in figure 7. When
kurtosis alone leads to symmetric volatility smile, skewness creates skewed
volatility smiles, or volatility skews. Positive (negative) skewness of the return
distribution is consistent with volatility skew, meaning that the implied

volatility rises as the moneyness increases (decreases), as illustrated in figure 8.
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Figure 7.5=100,6=0.2, r=0.05, T =1 year and pu3; = 0.
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Figure 8. 5=100,6=0.2, r=0.05, T =1 year and ps=3.
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4. IMPLIED DISTRIBUTION

As earlier discussed, when the risk-neutral valuation is used to value options
the most important thing to know is the appropriate probability density
function. There are many ways to obtain this density function. As the estimate
for volatility, similarly the probability distributions of stock market returns can
be estimated from historical time series. The problem with this method is that
the probability distribution based on past price behaviour reflects the past and
not the future, also it may be that the extreme events are not present in the
historical record even though it is obvious that they are possible. Jackwerth and
Rubinstein(1996) take a good example about the possibility of extreme events:
“...the stock market crash of October 1987. Following the standard paradigm,
assume that stock market returns are lognormally distributed with an
annualised volatility of 20% (near its historical realisation). On October 19, 1987,
the two month S&P 500 futures fell 29 percent. Under the lognormal hypothesis,
this is a -27 standard deviation event with probability 10", which is virtually
impossible. Nor is October 1987 a unique refutation of lognormal hypothesis.
Two years later, on October 13, 1989, the S&P 500 index fell about 6 percent, a -5
standard deviation event. Under the maintained hypothesis, this has a
probability of 0.00000027 and should occur only once in 14756 years.”
(Jackwerth and Rubinstein (1996):1611-1612)

Alternatively the probability distribution function can be directly implied from
the option markets. This means that option data can be used to obtain this so-
called risk-neutral distribution or implied distribution. It is obvious, that the
implied distribution is not necessarily the same as the realised distribution.
Implied distribution is useful because it can be regarded as the market
participants consensus forecast of the future price of the underlying, at least it is
forward looking estimate in contrast to the probability distribution estimated

from historical prices. (see Anagnou, Bedendo, Hodges and Tompkins 2002:2)

Next chapter introduces some methods to derive implied distributions.
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4.1. Shimko's Method

In their early study Breeden and Litzenberger (1978) presented the idea, that the
risk-neutral probability distribution function can be obtained by calculating the
second derivative of each option with respect to its striking price. In order to
solve the entire distribution, the data should contain values of european options
with the same maturity, the same underlying asset and the strike prices from 0

to infinity.

Unfortunately, in reality we observe market values only for a quite narrow
range, which definitely is not even close to from zero to infinity range. Shimko
(1993) presented a way to use Breeden's and Litzenberger's idea, which does not
need dense strike price continuum. Shimko suggested fitting a smooth curve to
the volatility smile plot, in order to obtain interpolated volatility values for
every strike price. Then, using the Black-Scholes formula, the option price could
be presented as a continuous function of strike price. Finally, taking the second
derivative of the option price function, the implied risk-neutral distribution

between the lowest and the highest strike price is a result.

Rubinstein (1994) comments Shimko's method being appropriate in a way that
it results lognormal risk-neutral probability distribution when the volatility

smile used is flat.

4.2. Corrado and Su Method

In their study 'Skewness and kurtosis in S&P 500 index returns implied by
option prices' Corrado and Su (1996) derive Skewness- and Kurtosis-adjusted
Black-Scholes model (see chapter 2.5 for the derivation) and use maximum
likelihood method to simultaneous estimate implied-volatility, -skewness and -
kurtosis via the model. The estimation method of Corrado and Su does not
assume any specific distribution behind the risk-neutral density function, it just

estimates the standard deviation, skewness and kurtosis of the distribution.
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The parameters are obtained by minimising the following sum of squares with
respect to ISD, ISK and IKT:

N
. 2
iy 2 Cons, o (ISD) +ISK x 0 + IKT <))

(39)

The output values for ISD, ISK and IKT represent estimates for implied
volatility, implied skewness and implied kurtosis, respectively. (Corrado and
Su 1996:184.)
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5. HYPOTHESES

The present study concentrates on the information content of implied
distribution in respect to the future price distribution. In this study, the
information content actually means the prediction power and thus it is

investigated if the implied distribution predicts the shape of future distribution.

Actual distributions are not compared to each other, but implied moments
(volatility, skewness and kurtosis) are used as proxy of the implied distribution.
So, instead of comparing implied and realized distributions we compare three
moments of those distributions; implied- vs realized volatility, implied- vs

realized skewness and implied- vs realized kurtosis.

Comparing only implied and realized moments does not make any sense,
because without any reference value it is impossible to say whether some
implied moment contains any relevant information about future realized
moment. Therefore we use historical moments as reference value and
investigate if they perform better in predicting future realized moments that the
implied moments. In order to be able to say that implied moments contain
additional information about the future, the prediction power of implied
moments should be better than the prediction power of historically measured

moments.

Because implied moments (volatility, skewness and kurtosis) are used as proxy
of actual distribution and thus we have three different measures to be tested,
we have to form three different research hypotheses, one for every moment.

The research hypotheses to be tested can be expressed as following;:

Hi Implied volatility contains additional information about the future
volatility, i.e. the prediction power of implied volatility in respect to
the future realised volatility is better than the prediction power of

historical volatility.

Ho Implied skewness contains additional information about the future

skewness, i.e. the prediction power of implied skewness in respect to
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the future realised skewness is better than the prediction power of

historical skewness.

Implied kurtosis contains additional information about the future
kurtosis, i.e. the prediction power of implied kurtosis in respect to
the future realised kurtosis is better than the prediction power of

historical kurtosis.



6. DATA AND METHODOLOGY

6.1. Data

The data in this study comprises of three years daily data of German stock
index DAX and is provided by Estlander & Ronnlund Financial Products Ltd.
The time period of the data is 4.1.1999 — 28.12.2001. Each day, the data contains
end-of-the day prices for DAX index and options on the index.

DAX index is so called performance index, so it has already been adjusted for
capital changes and dividends. The daily ending prices of DAX index are so
called daily settlement prices meaning that it is the price of the last trade that
occurred during the last 15 minutes of trading on an exchange trading day. If it
is not possible to determine a price under these conditions or if the price so
determined does not reflect the true market conditions, Deutche Borse will set
the settlement price. (Deutche Borse 2002)

Figure 9 illustrates the behaviour of DAX index during the observation period.
As it can be seen from the graph the market conditions have been very volatile
during the period. Most of the year 1999 the index stayed at steady 5000 level
until the end of the year when it rose steeply to 8000 level in march 2000. After
peaking the all time highs in march 2000 the DAX index began to fall and the
downtrend lasted till the end of the observation period. From the future
prediction point of view the market situation has been challenging, because
there has been many sudden changes in the direction of the index. In other
words, instead of unambiguous major trend there has been at least three
different minor trends or market periods; the steady period of 1999, the steep
rise and the downtrend in 2000-2001.
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Figure 9. Dax index 4.1.1999 — 28.12.2001

For each day the data contains settlement prices for options with at least 4
different maturities with about 20 different strike prices each. It is obvious that
all the data can not be taken into the study, and it is not even the purpose. The
test sample, against which the hypotheses are tested, is formed by drawing a
random sample of days from the time period. The sample consists of three

random draw days for each month so the total sample size is 108 days.

The characteristics of the daily returns data are graphically illustrated in figure
10, while table 1 summarises the descriptive statistics. As the descriptives
clearly show, the logarithmic daily returns are not normally distributed and the
entire data clearly exhibits negative skewness and excess positive kurtosis. For
years 1999 and 2000 the distributions are not clearly skewed but the year 1999

exhibits non-normal kurtosis, while returns in year 2000 actually seems to be
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quite normally distributed. The descriptives for year 2001 are similar as for the

entire data, skewness being -0,4 and kurtosis being as high as 5,4.

Table 1. Statistical characteristics of Dax index daily returns for years 1999-2001

N Mean| Median| Std.Dev.| Skewness Std. Error| Kurtosis std. Error

Entire dataj

1999-2001 759 0,00004| 0,00057 0,016 -0,212 0,089 4,870 0,177,
1999 252/ 0,00125] 0,00140 0,014 0,071 0,153 4,414 0,306
2000] 254 -0,00025| -0,00012 0,015 0,016 0,153 2,942 0,304

2001) 253| -0,00087| -0,00071 0,018 -0,395 0,153 5,446 0,305
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Figure 10. Logarithmic daily returns
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For each day in the sample and for each maturity at that day, a measure for
realised volatility (standard deviation), -skewness and -kurtosis to the maturity
is calculated. Methods of calculating realised moments are adopted from the
study by Navatte and Villa (2000). Formulas for realised volatility (RSD),
skewness (RSK) and kurtosis (RKU), respectively, are the following:

RSD*(T)=—)_(R,,
o) (T)= Z(
RSK (T) = Z( R =R
(41) (T 1)(T RSD(T)
B T(T+1) R.-R
(42) RKU’(T)_(T —I(T-2)(T - 3)Z(RSD (T)

The estimation of implied volatility, skewness and kurtosis is done using least
squares minimisation method, which is discussed earlier in chapter 4.2.. It is the
very same method as used in studies by Corrado & Su (1996 & 1997) and
Navatte & Villa (2001). Estimates for implied moments are obtained for each
day and for each maturity in the data sample, so they are corresponding to
historical and future realised moments. Furthermore, also the black-scholes
implied volatility is calculated to enable the comparison between the prediction
power of black-scholes and skewness and kurtosis adjusted models. The actual
estimation procedure is carried out by using linux based GNU Octave, which is
a high-level mathematical program and is mostly compatible and comparable to

well known MatLab-program.

The descriptive statistics of estimates for black-scholes implied volatility, gram-
charlier implied volatility, -skewness and -kurtosis are presented in table 2
below and the intertemporal variance is graphically illustrated in figure 11. As
the descriptives show, on average, implied distributions are negatively skewed
and exhibit positive excess kurtosis. When compared to the realised
distributions, it can be seen that the implied distributions are systematically
more negatively skewed. The realised skewness for entire data is -0,212 while
implied skewness is on average as high as -0,854. It should be noted that neither

implied volatility, skewness nor kurtosis is intertemporally stable.
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Table 2. Descriptive statistics of the implied moments.

Entire data Black and Scholes Gram-Charlier series expansion

1999-2001 Implied volatility Implied volatility Implied skewness Implied kurtosis

Mean 0,24860 0,25685 -0,85371 3,59257

Median 0,24205 0,25008 -0,87155 3,46049

Std.dev. 0,04520 0,04990 0,40472 0,81977

Minimum 0,16290 0,16180 -1,92450 1,56420

Maximum 0,44620 0,50470 0,72410 7,72060

# observations 410 410 410 410

1999

Black and Scholes

Gram-Charlier series expansion

Implied volatility

Implied volatility

Implied skewness

Implied kurtosis

Mean

Median
Std.dev.
Minimum
Maximum

# observations

0,26221
0,25413
0,04340
0,16550
0,44620
137

0,27330
0,26455
0,05000
0,16490
0,50470
137

-1,16935
-1,20530
0,30058
-1,92450
-0,16870
137

4,03506
3,81187
0,87602
2,19920
7,72060
137

2000

Black and Scholes

Gram-Charlier series expansion

Implied volatility

Implied volatility

Implied skewness

Implied kurtosis

Mean

Median
Std.dev.
Minimum
Maximum

# observations

0,24762
0,24421
0,03450
0,16400
0,33050
166

0,25458
0,25562
0,03700
0,16180
0,33870
166

-0,75194
-0,79828
0,37645
-1,39760
0,72410
166

3,40101
3,29865
0,61503
2,11470
5,71250
166

2001

Black and Scholes

Gram-Charlier series expansion

Implied volatility

Implied volatility

Implied skewness

Implied kurtosis

Mean

Median
Std.dev.
Minimum
Maximum

# observations

0,23270
0,21387
0,05590
0,16290
0,42540
107

0,23932
0,22238
0,05990
0,16340
0,45250
107

-0,60746
-0,63778
0,29881
-1,17580
0,11800
107

3,32322
3,21689
0,79738
1,56420
5,89350
107
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Figure 11.

6.2. Research process

The actual testing of the research hypothesis is done with a simple regression

analysis using realised moment as a response and implied moment as a

predictor. Similar regression equations for realised moments and historical

moments are formed. Regression equations for skewness and kurtosis are the

same as equations 43 and 44 for volatility show, except the volatility being

replaced by corresponding moment.

(43) O raiisd = A+ B1Cigorica + €
(44) Qmw:a+&qmm+g
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For regression analysis concerning the volatility prediction also the Black-
Scholes implied volatility is used as a predictor so that the prediction power of
the black-scholes implied volatility and gram-charlier implied volatility can be
compared. For higher moments only the gram-charlier implied and historical
measures are used, because it is not possible to obtain black-scholes implied

measures for them.

Furthermore, it is explored whether historical- and implied moments contain
some additional information when combined together. This is done by forming
regression equations for volatility, skewness and kurtosis similar to the

equation 45 below.
(45) O\eised = A+ P10 visoricas + ﬂzo-implied +&

As already mentioned, during the observation period the market conditions
have been very volatile and there has not been one distinct major trend, but
many different minor trends. The market occurred steep rises, sudden
collapses, hope and despair among market operators. The investment decisions
are made on the basis of current market sentiment and for longer maturity
options the market sentiment can change many times until the maturity. It is
very difficult to predict all these changes in the market and it might be reflected
on the different prediction power of long and short term implied moments.
Option contracts in the sample have wide range of maturities, contract life
spans ranging from 20 days to 1 year, therefore while reflecting many different

investment horizons they might have different forecast power.

Because of the maturity issue, the data sample is split in two categories on the
basis of maturity and then the regression equations used on the entire data
earlier are applied also to this new split data. The option contracts are divided
in these categories so that all options with less than or equal to 100 days to
maturity are considered as short maturity options and options with more than

100 days to maturity are considered as long maturity options.

Next chapter presents and discusses the empirical results.
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7. EMPIRICAL RESULTS

This chapter presents and discusses the empirical results. Predictive power
hypotheses are tested using regression equations (43, 44 and 45) presented
earlier in chapter 6 and the results for volatility, skewness and kurtosis are

presented in sub-chapters below.

7.1. Resultsonimplied volatility

First of all, the prediction power of historical and implied volatility on future
volatility is tested using four different regression models; Historical, Implied
BS, Implied GC and Historical + Implied GC. These models are presented as
equations 43, 44 and 45 in previous chapter. The results for volatility prediction
are presented in table 3, which summarises regression coefficients for different
models. Significance levels for each coefficient are presented in parenthesis

below coefficients.

The results imply that, when all maturities are examined, both, historical and
implied (both BS and GC) volatilities contain a substantial amount of
information for future volatility. All of those coefficients significantly differ
from zero, which is quite consistent with foundings of Navatte & Villa (2000)
and Canina & Figlewski (1993), although Navatte & Villa (2000) report that
coefficient for historical volatility does not differ from zero. Furthermore, it
should be noted that the coefficients also significantly differ from the number
one which is consistent with Canina & Figlewski (1993), but is in sharp contrast
with Navatte & Villa (2000) who report coefficients for implied volatilities
statistically close to the number one. As slope coefficients are compared it
seems that coefficients of both implied volatilities (BS & GC) are slightly higher
than coefficients of historical volatilities. This can be also observed from the
coefficients of model combining both, historical and implied volatilities;
Coefficients of implied GC volatility is slightly higher that the coefficient of

historical volatility.
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These four models can be compared by their R? -measures. In this point of view
it is not clear whether historical or implied volatilities should be used to predict
future volatility. R? measures for all of these four models are between 0,029 —
0,042, which can be considered to be rather low when compared to R? measures
around 0,25 which Navatte & Villa (2000) reported for implied volatility
models. Still, highest R? measure is archieved by model combining both
historical and implied volatility information, so it seems like they are not

exclusive and should be combined to archieve better prediction results.

When maturity issue is explored and the data is split in two categories, the
results seem little different. For historical model there are not much changes,
except the prediction power beyond 100 days seems to be even worse; Slope on
historical volatility on maturity over 100 days does not statistically differ from
zero, and R? measure is as low as 0,002. For both models using implied
volatilities, the maturity split makes a dramatic change in R?> -measures and
slope coefficients. All coefficients for implied models significally differ from
both zero and the number one. For implied BS model, the R? for all maturities is
0,034 and it improves to 0,107 and 0,163, for maturities less than or equal to 100
and over 100, respectively. Simultaneous, the slope coefficients change as the
maturity increases; Slope for implied BS on all maturities is 0,248 and for
maturities under or equal to 100 days it is 0,440, while being —-0,532 for

maturities over 100 days.

So, it seems like there is a strong negative correlation between implied BS
volatility and future volatility, i.e. market operators somehow overreact and fail
to predict the future volatility correctly. The results for implied GC model are
quite similar to implied BS model; R?> measures for implied GC models improve
when maturities are split in two. R? for all maturities is 0,029, while for being
0,095 and 0,173 for maturities under or equal to 100 and maturities over 100,
respectively. Also, the slope coefficient for short maturities is 0,374 and —0,506
for longer maturity options. So, there is similar change from positive to negative
coefficient as there was in implied BS model. When we take a look at the model
combining historical and implied volatility information, we observe similar
tendency in R? measures as in both implied models; R? improves from 0,042 for

all maturities to 0,100 for short maturity options and 0,183 for longer maturity



options. All coefficients differ significantly from the number one and all but the
coefficients of historical volatilities differ significantly from zero. So it seems
like implied volatility has more additional information about future volatility
than the historical volatility does. Even though, coefficients of historical
volatility in this combined model do not significantly differ from zero, they do
contain some additional information because R? measures are higher than for

the model which contains only implied volatility information.

Implied volatility information seems to outperform historical volatility in
predicting the future volatility, and thus Hypotheses Hi holds. As the maturity
of options increase the R? measures of implied volatility models seem to get
better, but at the same time the coefficients turn from positive to negative. So, it
seems that even though information content of implied volatilities is higher for
longer maturity options, implied volatilities are not good estimate of future
volatility. In other words, if implied volatility for long maturity options is
relatively high, then one should expect that the future realised volatility will be

relatively low, and vice versa.
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Table 3. Regressions on volatility

Slopes on

Intercept Historical Implied BS Implied GC

Historical

All maturities 0,198"! 0,186"! 0,031
(0,000) (0,000)

Maturity <= 100 0,187 0,216 ! 0,048
(0,000) (0,001)

Maturity > 100 0,262 ! -0,072! 0,002
(0,000) (0,575)

Implied BS

All maturities 0,179"! 0,248*! 0,034
(0,000) (0,000)

Maturity <= 100 0,127 0,440*! 0,107
(0,000) (0,000)

Maturity > 100 0,378 "! -0,532*! 0,163
(0,000) (0,000)

Implied GC

All maturities 0,187 0,207*! | 0,029
(0,000) (0,001)

Maturity <= 100 0,141~ 0,374*! | 0,095
(0,000) (0,000)

Maturity > 100 0,376 ! -0,506*! | 0,173
(0,000) (0,000)

Historical + GC Implied

All maturities 0,174~ 0,134~ 0,141*1 | 0,042
(0,000) (0,018) (0,031)

Maturity <= 100 0,135"! 0,081! 0,323*!' | 0,100
(0,000) (0,245) (0,000)

Maturity > 100 0,416 -0,163! -0,522*1 | 0,183
(0,000) (0,168) (0,000)

* Significantly different from zero at the 95% confidence level
I Significantly different from one at the 95% confidence level
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7.2. Results on skewness

The prediction power of historical and implied skewness on future skewness is
tested using three different regression models; Historical, Implied GC and
Historical + Implied GC. These models are presented as equations 43, 44 and 45
in chapter 6. The results for skewness prediction are presented in table 4, which
summarises regression coefficients for different models. Significance levels for

each coefficient are presented in parenthesis below coefficients.

The results show that when all maturities are examined, historical skewness
seems to contain some information about future skewness, because the
correlation coefficient significantly differs from zero and the number one,
whereas the coefficient for implied GC skewness does not significantly differ
from zero, meaning that implied GC skewness does not seem to contain any
additional information about future skewness. The R> —-measure for historical
model is 0.022 and for implied model it is 0.000, which also means that implied
skewness can not explain future skewness, as long as entire maturity range is
concerned. The regression coefficients on combined model also indicate that
historical skewness has more information content about future skewness than
the implied skewness does. Slope on historical skewness significantly differs
from zero and the number one, while slope on implied skewness does not

significantly differ from zero, and thus has low information content.

Splitting data in short and long maturity options reveals similar phenomenon
as in the case of volatility. For historical skewness coefficient does not
significantly differ from zero for short maturity options, but for longer maturity
options the slope changes to —0.708, which significantly differs from zero. At the
same time R? -measures, being 0.022 for all maturities, change to 0.014 and
0.077 for short and longer maturity options, respectively. This implies that
historical skewness contains some information about longer term future
skewness, but as R> measure is so low it may be difficult to implement in
prediction model. As we take a look at the implied skewness model, splitting
the data in two maturity categories significantly improves prediction power of
the model. For all maturities, the coefficient for implied skewness was not

significantly different from zero, but after the maturity split, slopes for both,
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short and long maturity options, significantly differ from zero and thus contain
additional information about future skewness. Similarly as in the case of
volatility, slope for short maturity options is positive and for long maturity
options it is negative. Also the R? measures improve significantly due to
maturity split, and it seems like implied skewness model outperforms historical
model. Furthermore, as combined model yields highest R? measures for both
short and long maturity options and coefficients significantly differ from zero, it
seems like historical and implied skewness do have additional information
when combined together. But still, it is not clear which of these, historical or
implied skewness, is contains more information about the future skewness. For
short maturity options, implied GC skewness has steeper slope than the
historical, but for longer maturity options, historical skewness has a little more

steeper slope than what implied skewness does.

For entire maturity range, it seems that historical skewness contains more
information about future skewness, and thus hypotheses H: fails. But when the
data is split in two maturity categories, the implied GC skewness models seems
to perform a little better in predicting future skewness. As we investigate the
model combining both historical and implied skewness, it is uncertain which
contains more information, but it is evident that both historical and implied

skewness should be included in model to archieve better prediction power.
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Table 4. Regressions on skewness
regressions on skewness

Slopes on
Intercept Historical Implied GC

Historical

All maturities -0,112*! -0,187*! 0,022
(0,000) (0,002)

Maturity <= 100 -0,038! -0,122! 0,014
(0,203) (0,063)

Maturity > 100 -0,250*! -0,708*! 0,077
(0,000) (0,000)

Implied GC

All maturities -0,084 ! 0,015! 0,000
(0,108) (0,848)

Maturity <= 100 0,093! 0,153*! | 0,019
(0,120) (0,028)

Maturity > 100 -0,642*! -0,455*! | 0,144
(0,000) (0,000)

Historical + GC Implied

All maturities -0,091! -0,19*! 0,026! 0,023
(0,081) (0,002) (0,642)

Maturity <= 100 0,087! -0,134~! 0,163*! | 0,036
(0,152) (0,041) (0,019)

Maturity > 100 -0,612*! -0,459"! -0,391*l | 0,174
(0,000) (0,018) (0,000)

* Significantly different from zero at the 95% confidence level
I Significantly different from one at the 95% confidence level

7.3. Results on kurtosis

The prediction power of historical and implied kurtosis on future kurtosis is
tested using three different regression models; Historical, Implied GC and
Historical + Implied GC. These models are presented as equations 43, 44 and 45

in chapter 6. The results for kurtosis prediction are presented in table 5, which
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summarises regression coefficients for different models. Significance levels for

each coefficient are presented in parenthesis below coefficients.

When all maturities are examined, the results on kurtosis are quite opposite to
results on skewness; Historical kurtosis does contain information about future
kurtosis, whereas implied GC kurtosis does. When the correlation coefficients
of different models are compared, it seems that the slope on historical kurtosis
does not significantly differ from zero, but the slope on implied GC is
significantly different from zero, these foundings mean that implied GC
kurtosis has higher information content about future kurtosis than historical
kurtosis. The R?> -measures for historical model is 0.001 and for implied model it
is 0.010, although neither of these is very high or even at decent levels it is
evident that the implied model is better than the historical model in predicting
the future kurtosis. The regression coefficients on combined model similarly
indicate that implied GC kurtosis contains more information about future
kurtosis than the historical kurtosis. It should also be noted that regression
coefficients for both historical and implied model are negative, so neither

historical or implied kurtosis is a good unbiased estimate of future kurtosis.

When the data is split in short and long maturity options, the coefficients and R?
-measures change dramatically. Results for historical kurtosis model are the
following: for short maturity options the regression coefficient does not
significantly differ from zero and thus does not contain any significant
information, but the regression coefficient for longer maturity options is —0.919,
which is significantly different from zero. At the same time R?>-measures, being
0.001 for all maturities, change to 0.000 and 0.056 for short and longer maturity
options , respectively. These statistics imply that historical kurtosis does contain
important information about long term future kurtosis, but fails to predict short

term future kurtosis.

As we focus on the implied GC model, splitting the data in two maturity
categories slightly improves the prediction power of the model. For all
maturities and for both split maturities the regression coefficients stay
significantly different from zero, and the R>measures improve from 0.010 for

all maturities to 0.017 and 0.047 for short and long maturity options,
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respectively. Furthermore, as for results on volatility and skewness the
regression coefficients for short and long maturity options have different signs,

coefficient for short maturity being positive and for long maturity it is negative.

Similarly as the results on skewness, the combined model yields higher R2-
measures for all maturities and both split maturities than historical or implied
model. So it seems that historical and implied model do have some additional
information when combined together. Actually, historical kurtosis seems to
improve the prediction power of the model only for long maturity options,
because historical kurtosis regression coefficients for all maturities and short
maturities does not significantly differ from zero and thus only implied kurtosis
seems to have any significance for all maturities and for short maturity options.
But for longer maturity options, coefficients on both historical and implied
kurtosis differ significantly from zero, and historical kurtosis seems to have
even steeper slope than implied kurtosis, which implies that historical kurtosis

is more information rich than implied kurtosis.

For entire maturity range, it seems that implied kurtosis contains more
information about future kurtosis than historical kurtosis, and thus hypotheses
Hs holds. But when the data is split in two maturity categories, the historical
kurtosis model seems to perform a little better in predicting long term future
kurtosis and the implied kurtosis seems to perform better in predicting short
term future kurtosis. It should be noted that R-measures for kurtosis prediction
models are much lower than measures for volatility or skewness prediction
models, so even though implied and historical kurtosis contain some
information about future kurtosis these models obviously need some other

inputs which would have additional information about future kurtosis.
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Table 5. Regressions on kurtosis
regressions on kurtosis

Slopes on
Intercept Historical Implied GC

Historical

All maturities 0,392 *! -0,049! 0,001
(0,000) (0,490)

Maturity <= 100 0,055! 0,013! 0,000
(0,344) (0,807)

Maturity > 100 1,066 * -0,919"! 0,056
(0,000) (0,002)

Implied GC

All maturities 0,475%! -0,154*! | 0,010
(0,000) (0,046)

Maturity <= 100 -0,045! 0,131*1 | 0,017
(0,545) (0,038)

Maturity > 100 1,072* -0,622* 0,047
(0,000) (0,006)

Historical + GC Implied

All maturities 0,482*! -0,048! -0,153*! | 0,011
(0,000) (0,502) (0,047)

Maturity <= 100 -0,047 0,012! 0,130*! | 0,018
(0,535) (0,823) (0,039)

Maturity > 100 1,222* -0,849"! -0,564*! | 0,094
(0,000) (0,004) (0,011)

* Significantly different from zero at the 95% confidence level
I Significantly different from one at the 95% confidence level
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8. CONCLUSIONS

The purpose of this study was to investigate the information content of option
implied probability distribution about future price behaviour. This
investigation was done by using volatility, skewness and kurtosis as a proxy of
the underlying distribution. = Furthermore, these implied and historical
moments were used in regression models and regressed against future realised

volatility, skewness and kurtosis.

Earlier research related to the topic can be divided in three categories, Implied
Volatility, Estimation of Implied Distribution and Information Content of

Implied Distributions.

Studies on implied volatility indicate that implied volatility does contain some
information about future volatility and in many cases it outperforms historical
volatility in predicting future volatility. It also seems that implied volatility
alone does not adequately represent investors’ beliefs of future price behaviour,
because it measures only uncertainty, not the direction of the market. This is
why we are interested in other option implied information such as implied
distributions, which could reveal much more information than just the

volatility.

Shape of underlying return distribution reflects the probable market direction
and probability of extreme events affecting stock price. The shape of the
distribution can be characterised by standard deviation (volatility), skewness
and kurtosis. Volatility can be easily estimated from market prices, but
obtaining skewness and kurtosis is a more complex task. Earlier studies on
estimating implied distributions present few different methods how to do it,
and a method by Corrado and Su (1996), which simultaneous estimates

volatility, skewness and kurtosis, is selected to this study.

Information content of implied distributions and higher moments of
distribution is also studied in few earlier papers. Results are contradictory,
some studies suggesting that implied distributions contain significant amount

of information about future realized distribution while others find quite
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opposite results. Earlier studies also show that even though implied moments
contain some additional information about future distribution, the prediction

power of skewness and kurtosis on future skewness and kurtosis is poor.

The results of the current study are parallel to earlier studies. Overall results
show that both historical and implied moments contain some information about
corresponding future moments, which are volatility, skewness and kurtosis, but
it is not clear whether implied information outperforms historical information.
When the whole maturity range is examined, it seems that for volatility and
kurtosis the implied information outperforms historical information in
predicting the future, but for skewness the results are opposite; implied
skewness seems to have no information about future skewness, while historical
skewness has. In every case for all maturities, it seems that combining both
historical and implied information improves the prediction power of model. So,
both historical and implied moments should be used together in model

building to archieve better prediction power.

The results show also that the prediction power of models using these moments
seem to deteriorate with higher moments. Prediction power is measured by R?
and models predicting volatility get highest R>-measures, while it is a little
lower for skewness and lowest for kurtosis prediction models. Furthermore,
when the data is split in two maturity categories, prediction power of all these
models improves dramatically. In general, it seems that these models perform
better in predicting long term price behaviour and the long term, meaning
maturity greater than 100 days, combined model yields highest R>-measures for

all these moments, volatility, skewness and kurtosis.

The regression coefficient for the short and long maturity models usually have
opposite signs. This phenomenon and the results on prediction power indicate
that the correlation coefficients of historical and implied models are not
constant and thus it is beneficial to use different models to different time

horizons.

Overall, it seems that implied volatility, skewness and kurtosis do contain some

information about the future volatility, skewness and kurtosis, but as the
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prediction power of these models used in this study is so low, it is difficult to

implement this information on predicting the future.
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