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ABSTRACT:
In maintenance management, predictive and preventive strategies are considered essential for
the purpose of improving the overall efficiency of the systems, and for extending the
operational lifespan of equipment. Stochastic behavior of a system's maintenance states can be
effectively modeled with Markov chains, a mathematical framework providing the needed
capability. With this approach for calculation of the system state probabilities for specific time
intervals, maintenance planners can determine future conditions and plan maintenance
schedules better.

The following paper looks into the Markov chain deployment in maintenance optimization. The
first step is to determine a set of discrete states that would represent the condition of a piece
of equipment at any given time. Such conditions cover a wide spectrum, from sustainable to
completely dysfunctional ones. Then, probabilities of the transition between these states are
determined using historical maintenance data and equipment condition. Through
implementing these probabilities, we model behavior of the system with time and find the
most profitable maintenance policies.

Our approach involves the construction of a state-transition matrix and its solution for steady –
state probabilities to assess the long-term behavior of the equipment under various condition
based maintenance strategies. Another cost function that includes the costs of distinct
maintenance actions and the implications of equipment failure is presented as well. Through
this optimization process, we determine the ideal maintenance plan which leads to the
minimization of total operational expenditures as well as maximum equipment reliability.

The results show that the use of the Markov chain optimization maintenance is a remarkable
tool for improving decision-making processes in maintenance management thus resulting to an
analytical technique used for increasing equipment uptime and reducing maintenance-related
costs. This method turns out to be very effective in industries where the cost of equipment
failure is very high and efficiency of production is the main trend. The paper is concluded with
case studies and suggestions for building the Markov chain models into the current
maintenance management systems.
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1 Introduction

The Markov Chain Cost/Life-cycle Model, which involves a combination of the concepts

of Markov chains, cost modeling, and life cycle modeling, altogether forms the most

powerful and comprehensive approach of modeling. The model has undergone

significant changes in the area of project management, product development, and risk

analysis, which is a crucial aspect of how modern companies approach existing systems

(Rad, et al.2021).

The primary competence of the Markov Chain Cost/Life-cycle Model becomes evident

in the fact that it allows for the mathematical analysis of the system in terms of

lifecycle and can therefore very well predict how operational this system is going to be.

This cycle will study in detail all steps of life and fill the gaps such as long term costs

and resource use instead of just the upfront expenses. The adoption of this holistic

perspective provides project managers with better information for decisions to be

made plus resources to be allocated proportionally, which are all factors that result in

project success.(Hao et al.2022)

Particularly, the Markov Chain Cost/Life-cycle Model has a core function as it belongs

to the industry of product development. Through an in-depth analysis of the cost

impact both on the product process itself and on the product life-time, organizations

acquire a deeper financial awareness of how the financial processes work. This way,

they can arrive at the best strategies to develop economically, and also take into

account environmental factors, with the eventual creation profitability, and sustainable

competitive advantage.(Rad, et al.2021)

However, it also represents a fundamental instrument for programmed maintenance

cross-checking. Causing more sophisticated preventive maintenance strategies to

emerge in companies, Markov Chains become a tool to help with the

information-based leadership strategies raising reliability values and avoiding costly

downtime incidents. Since there remain uncertainties that can be included in the
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analysis, including fluctuations in transition rules between different stages of the life

cycle, the model is even more dependable and reliable.

The Markov Chain Cost/Life-cycle Model comprises three key components: Markov

Chain, Cost Model, and Life-cycle Model for instance. The treatment is the Markov

Chain theory followed by the subsequent procedures as the starting point. This

framework combines the Alan Turing machine and its evolutionary keys. The economic

analysis section is further expanded to tackle the specifics of setting up a cost model

that includes all essential cost factors. In this regard, the model provides the supplies of

a fully systematic life cycle oriented approach, delivering sophisticated techniques to

accurately determine and forecast a system's path.(Hao et al.2022)

The fact is that the Markov Chain Cost/Life-cycle Model is a must-have resource for any

organization or sector involved in the development of projects, products, or systems.

This model produces efficiency, streamlines decision-making and provides unique

insights through the continuous dissection of cost dynamics and system life all over

operation. The application of this model guarantees that the decisions of project

managers and authorities are always successful. What is more, the model greatly

reduces the uncertainties, thus, organizations gain a possibility of cost flexibility,

increased efficiency of the system, and reliability.

In the final analysis, the Markov Chain Cost/Life-cycle Model remains an essential tool

for the organizations that are future-oriented. It’s thorough and strong modeling

approach assures cost, life-cycle, and decision-making accurate analysis. Utilization of

this model will help organizations gain heightened levels of efficiency, cost flexibility

and system reliability, thus making them successful in the fast-changing business

world.(Hao et al.2022)
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1.1 Definition of Markov Chain

This model’s analysis is based on a principle that the entire system consists of a preset

amount of fixed states of things. Their reality unfolds sequentially as they start from

one to get to the other. The condition of the present is the core idea of the Markov

property, therefore, enables us to bring the probability of the future state being in a

specific value, considering the value of previous states.

Markov chains are the reason for modelling cost/life-Cycle generally because of the

fact that they exhibit the overall dynamics of a system in addition to those transitions

in the system from one state to another with fact timing. Policy options are reviewed

and their respective outcomes and costs get calculated. Such coincides with the

Markov principle that in a future event set, movement happens solely based on the

current state of the system and not with regard to its past movement.

The Markov chain is often used to model all possible system states while running

cost/life-cycle modeling in projects. The variety of possible arrangements keep one

mind busy while observing its continued existence for a specific time interval. Forms

with certain states transition gradually into other ones in the course of time. Through

the modeling of the system's life-cycle as a finite set of states and making each

transition move from one state to another in a Markov chain, we will represent the

whole system dynamics accurately. The Markov chain is one of the most useful tools

for the comprehensive representation of the system's transitions with the aid of

calculating the potential outcomes.

A Markov chain has mathematically designed a framework of transitioning from one

state to the other, which is based on particular rules of probabilistic values. The sample

definition is the one that keeps in that no matter how this came to be it is fixed that

the future prospects given the present state are definite. By transition from state to
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state is accompanied by certain probability values which have been already discussed

hence, likely denotes the Markov process.(Stewart, 2021)

1.2 Significance of Cost/Life-cycle Modeling

The Markov Chain Cost/Life-cycle Model is a very robust and versatile modeling

technique that integrates the basic principles of Markov chains, cost modeling, and

life-cycle modeling. What makes this model special is the fact that it can include all

stages of the life of the system and offers an unrivaled level of understanding and

forecasting in many domains, such as project management, product development, and

risk analysis. Unlikely to numerous other models, the Markov Chain Cost/Life-cycle

Model does not only focus on short term, which means that the decision making

process will be well-informed and will include the entire life of the system. (Rad et

al.2021)

The dynamic character of this model is therefore, seen as its main benefit, as it allows a

general view of system changes over the time. Through successful exploitation of

developments in computing power, the Markov Chain Cost/Life-cycle Model makes it

possible to run thousands of iterations thus ensuring accurate forecasts of long-run

behavior. This property has been key in the practical use of the model to different

hardware and software systems.

The output, which is generated from the Markov Chain Cost/Life-cycle Model, has been

instrumental in multiple ways, as per the specifics of what the system being analyzed

needs and what questions are being asked. In product development, for instance, the

model is used to identify the design alternative that has the lowest “average” or “long

term expected” cost, which implies an efficient allocation of resources. In terms of risk

analysis, the model has ability to assess the probability of the system to reach a certain

state in a given time. This essential information is further used to recognize the critical
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components of a system and develop the required risk factors mitigation

measures.(Hao et al.2022)

As emphasized in this paper, one of the significant merits of Markov Chain

Cost/Life-cycle Model relative to simpler models is its ability to perform thorough

probabilistic life-cycle cost analysis. Offering a better and complex analysis of the

decision options, the outcomes from this model can be providing valuable assistance in

all the acquisition stages. This aspect is very important in the case of complicated

defense systems in which a very large number of interrelated and big design decisions

have to be made over extended periods of time. The Markov Chain Cost/Life-cycle

Model is one of the methodologies that contribute to a successful navigation of the

complexity that is characteristic for such environments, so that decisions are aligned

with the ultimate objectives and resources are optimally distributed.

All in all, the Markov Chain Cost/Life-cycle Model is a state-of-the-art approach that

elegantly combines Markov chains, cost modeling, and life-cycle modeling. Through

covering the whole life-cycle of a system, both short-term and long-term costs, and

dynamic analysis capabilities, this model ensures accurate long-term behavior

prediction and informed decision making. Finally, the outcomes generated by the

model form the basis of the best resource distribution, risk evaluation, and strategic

planning across different industries and areas.(Gavrikova et al., 2020)
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2 Markov Chain Basics

The Markov chain sequence steps from one state to another at discrete time intervals.

The term step is used to define each move or transition, and the time between

transitions is of no importance. Such one-step transition probability, P {X (t+s) = j | X(t)

= i, X(s) = k for 0<=s<=t} is conditional on the state k during the current time t and not

on past states. The set of all states is called the state space of the chain, and the whole

matrix of transition probabilities is the transition matrix P of the Markov chain. The

fundamental characteristics of any Markov chain are as follows: the state space and the

transitions between the state in the state space. The space of state is all possible

system states. The majority of practical problems of engineering have a state space

discretely, and it can be characterized via the analysis of the system’s behavior, and

transitions between states are easy to represent by state transition diagram. The

system changes from state to state in discrete time points. The system transition

probabilities define all transitions of the system and they are time-invariant. These

attributes include Markov property and memoryless. That is, the Markov property can

be formulated as “the future is independent of the past given the present” (Dizaj et

al.2021).

The idea of the Markov chain is very popular in different areas like stochastic

processes, physics, economics, and computer science. The importance of the Markov

process in this case is to represent systems that undergo random changes.

Understanding the dynamics of the Markov chain enables one to predict what the

future behavior of the system would be.

In application purposes, the state space of a Markov chain can be of significantly

different sizes. It can stretch from a finite set of distinct states to an infinite set of

continuous states. Also, the transition probabilities between states may vary depending

on what the system is that is being modeled.

As an example of a Markov chain, let us take a simple case. Consider a predictive

weather system that represents weather as a Markov chain. The weather state space

includes sunny, cloudy and rainy. The probabilities of transition signify the chance for

the weather to switch from one state to another over a specific time period. With the
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help of the historical data, the probabilities of the transitions can be estimated and

thus, the transition matrix is created. This matrix enables us to compute the

occurrence probability of different weather conditions in future time periods. We can

irrepeatedly apply the transition matrix to simulate the weather forecast for a

period.(Bolhuis and Swenson2021)

Modeling of complex systems and their behavior prediction is an area in which Markov

chains are highly useful. Starting with the analysis of stock markets and ending with

studies of the spread of diseases, the framework of Markov chains allows not only to

understand but also to make informed decisions.

In brief, Markov chain is a mathematical concept that has been applied in many areas.

The fact that it can capture the probabilistic characteristic of the system transitions

renders it a helpful analysis and predictive tool. Through the knowledge of the Markov

property and the state space, one can understand the dynamics of the dynamic

systems. In economics, physics, or computer science the Markov chain is at the core of

our understanding of randomness and uncertainty.(Bolhuis and Swenson2021)

2.1 Transition Matrix

A transition matrix is used to define the transition probabilities among states in a

Markov Chain. Each row of the matrix represents the probabilities of moving from a

particular state to all the other states, and the matrix is defined such that each element

is a number between 0 and 1 and each row sums to 1. Let's take the example of our

software system again. Suppose we have 3 possible states for the software system,

state 1: working properly, state 2: small error, and state 3: shutdown. Then, the

transition matrix T will be like the following:

T = [ P00 P01 P02

P10 P11 P12 (1)

P20 P21 P22]

When we write down the elements of T:
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T[0][0] = P00 = P (state 1 → state 1)

T[0][1] = P01 = P (state 1 → state 2)

T[0][2] = P02 = P (state 1 → state 3)

T[1][0] = P10 = P (state 2 → state 1)

T[1][1] = P11 = P (state 2 → state 2) (2)

T[1][2] = P12 = P (state 2 → state 3)

T[2][0] = P20 = P (state 3 → state 1)

T[2][1] = P21 = P (state 3 → state 2)

T[2][2] = P22 = P (state 3 → state 3)

Where Pij is the probability to move from state i to state j and it satisfies the following

conditions: 0 ≤ Pij ≤ 1, Σj Pij = 1. The elements in the first row of the matrix define the

probability to move from state 1 to other states. In our example, P00 = P (state 1 →

state 1) is the probability to remain the software in working properly condition after

one month; P01 = P (state 1 → state 2) is the probability to have small error after one

month given that the current state is working properly; P02 = P (state 1 → state 3) is

the probability the software may shutdown after one month given that current status

is working properly. And similarly, other elements can be defined. (Stewart, 2021)

A transition matrix identifies the possible transitions of a system or entity between a

number of states. The two-dimensional matrix provides row information of the current

state and column information of the probability of occurring other states in the future.

Although all transition matrices adhere in general to the same rules and mathematical

definitions, each of them has a different scale and specific transitions and states. The

transition matrix is the crucial component to analyze and simulate the Markov Chains

and Markov processes.

So, in essence, our life-cycle application p provides you with a stage-to-stage transition

probability, if you square your transition matrix n times and then examine the

aggregated transition matrix, T to the power of n, n times, this allows you to get an

overview of what the probabilities for being in each state would be after n stage

transitions have occurred. This is a highly beneficial property, as we can utilize it for the

analysis of a Markov Chain by having this iteration.(Stewart, 2021)
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2.2 State Space

State space concept implies the whole group of the probable states which a system can

have at any particular time. Regarding Markov Chain, the state space is a complete set

of all the possible states that the chain transitions to. More specifically, if we think

about a normally distributed variable X that holds the value x from a set ‘E’, then ‘E’ is

the state space of X. For example, a state space of {"on", "off"} could be used in a

Markov chain to represent all possible states for a light. In this situation, state space

would be equal to 2 states at all. The knowledge of the state space is extremely

important as it is an essential part in understanding the behavior and dynamics of the

system.(Stewart, 2021)

The state space specifies the array of possible states but also defines the limits within

which the system works. It plays the role of a white board on which the system can

demonstrate its actions. Defining the state space restricts the possible outcomes and

makes the outcomes to be a structured environment through which the system can

maneuver. For instance, weather condition model system - the state space could be

defined as {"sunny", "cloudy", "rainy", "stormy"} to represent all the possible weather

conditions. The state space in this scenario will have 4 states. (De Jonge & Scarf, 2020)

But, with respect of this, there are some constraints to state space. Primarily, the state

space must be enumerable. This is required so that states can be named 1, 2, 3...n for

analysis and calculations. Thus, a continuous set like the set of real numbers cannot be

as a valid state space. In addition, the state space should consist of all states that are

accessible from any state in the system. This guarantees that the system can pass

smoothly from one state to another and covers the whole space state.(Yang et al.,

2020)
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There are some cases where the state space has to be disjunct. This implies that the

Markov chain may dwell some periods of time in the same state before moving to the

different state. To achieve this, the state space ‘S’ can be represented as a union of

several closed sets. Every closed set contains states which can move only within the

single set. This makes the dynamics within the system more complex.

Given the knowledge of the distribution function ‘f’, transition probability function ‘P’,

and the current point in time, the current state of the process X can be completely

characterized. The state of X is represented by a specific value X(t), where the state

space ‘E’ serves as a restricted area where the state of X resides. The state space is a

container that defines the limits within which the system’s states can occur and change

as time goes by.(Yang et al., 2020)

2.3 Markov Property

Markov Chain is an important and widely used probabilistic method in the field of

mathematical and computer models. A Markov Chain is in essence just a series or

sequence of random variables, denoted by X1, X2, X3, etc. This interesting method has

a basic property wherein the present state value is determined exclusively by the value

of the previous state. In other words, future, as compared to the past, can be precisely

forecast and defined using the incredible property of Markov. From point of view of

mathematics, Xn+1 distribution can be given as P(Xn+1 = x | X1 = x1, X2 = x2, ..., Xn =

xn) = P(Xn+1 = x | Xn = xn), where P( ) represents the conditional probability of an

event. Hence, with all the preceding states considered, the transition probability

depends heavily on the immediately past state. As for this uncommon property, it is

usually called a memoryless property mainly because this transition probability does

not change in spite of how many future steps we take. This feature of amnesia is crucial

in making difficult life situations and dilemmas simple.(Driscoll et al., 2022)

If a system is Markov, the flexible and powerful method of Markov Chain can be

employed to deeply analyze the behaviors of the system. This multimodal approach
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includes simulations and replications of the system’s processes and operations, as well

as calculations and determinations of the probabilities and likelihoods of different

conditions and scenarios. The application of this approach is very useful and priceless

in areas of complex systems, e.g. the wide area of the long-term weather forecasting,

detailed analysis of different failure rates of aircraft components and comprehensive

evaluation of level of service differences in computer networks.(Wu et al.2021)

In each of these cases, a well formulated and precise Markov Chain model allows us to

analyze thoroughly and comprehend the long-term behaviours and trends of these

complex systems. The thorough analysis and knowledge, as a result, give us invaluable

information as well as approaches that can be used in decision making and problem

solving. Through the use of Markov Chain methods not only the accurate predictions

can be done, but also a more profound insight into the dynamics and mechanisms of

the system can be obtained. This understanding gives us the power to perfect and

upgrade different processes and systems that in turn result into higher efficiency and

effectiveness. Besides, Markov Chains are not only used in the field of computer

modeling and complex systems analysis, but also in other areas.(Kannan et al.2020)

Within the field of natural language processing, Markov Chains made their contribution

as to the text generation and language generation tasks especially. The probabilities of

sequences and transitions of words are modeled to be able to generate sensible and

thematically relevant sentences and paragraphs. It has implications in different areas,

such as chatbot development, automatic summarization, and even creative writing. In

essence, Markov Chains facilitate the representation of the statistical properties and

regularities of a corpus of a text, which, in turn, allows for the generation of new,

realistic content, which is consistent with the patterns of the text and the style. Markov

Chains flexibility renders them an indispensable tool in several computational

linguistics and natural language processing applications.(Yu et al.2022)
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Markov Chains find applications in almost all areas of any field – finance to biology,

physics to economics. Many scholars and practitioners across a wide range of fields are

still investigating the power of this powerful method. With the increase in complexity

of systems and problems, the demand for highly efficient and effective modeling

techniques is indisputable. Markov Chains being capable of capturing dependencies

and predict the future based on past observations is a strong and reliable

methodology. Markov Chain modeling principles and techniques provide an

opportunity to become more creative and clever, pushing the frontiers of

understanding dynamic systems.(Mor et al.2021)
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3 Markov Chain Cost Modelling

In a Markov Chain cost modeling, the transition matrix is of utmost important.

Basically, a transition matrix is a square matrix which gives the probabilities of one

state proceeding into another state in a system. The long-term probabilities of being in

a certain state are obtained when the initial state vector is multiplied from the left by a

powered transition matrix. Every element of the powered transition matrix provides

the probability of transition between two states during a certain period of time. (Wu et

al.2020)

Matrix of transition is an integral part of the Markov Chain algorithm in that it

examines the sequence of state transfer as the time period takes a larger value. This is

system dependent and various distribution algorithms can be employed. For example,

in the system with stability, the transition probability matrix will converge to a stable

matrix. But if some condition cannot be satisfied by some state, the state transition

diagram and transition probability matrix properly reflect that behavior(Wu et al.

2021).

Furthermore, as mentioned earlier, another characteristic of a Markov Chain is

time-homogeneity. This also means that transition probabilities between states ought

to be constant and do not depend on time. This property considers the static state and

ignores changes related to time. It enables us to generate a constant transition

probability matrix for the lifecycle, which is then multiplied by the current state

distribution vector to cost life time.

By the use of computerized methods like numerical algorithms, the transition

probabilities can be computed fast. These algorithms have the functions to do several

mathematical computations with the integers: they are able to locate the greatest

common divisor and least common multiple of two integers. It is helping to develop a

Markov Chain cost analysis algorithm, not just in solving mathematical issues but also

in visualization of results and in decision making. It gives the information on the
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system’s behavior and opportunities of forecasting its future states by analyzing of

transition matrix.

Additionally, computational methods allow for precise computation of the transition

probabilities, eliminating the necessity for hand calculation which can involve errors.

Consequently, use of Markov Chain cost analysis as a tool in the processes of decision

making makes sure of precision and effectiveness, and so helps resource allocation and

appropriate decision making. With the help of technology and advanced algorithms,

organizations can optimize their processes and get good results in such domains as

finance, economics, engineering or marketing. Markov Chain cost analysis is able to

model and simulate complex systems fostering a practical tool for strategists and

decision-makers who are given the opportunity to make data-driven choices and to

improve system performance and resilience as a whole.(Badr et al.2021)

3.1 Cost States

The initial important step in the Markov Chain cost modeling is a thorough definition

and formulating many independent cost states that faithfully reflect the whole

spectrum of costs. Every cost state should represent a certain cost range, allowing

differentiation of low cost, moderate cost and high cost states. Such cost states should

be determined and outlined by specialists of a particular field. A cost state transition

occurs when there is an observable change in cost, it could be an increase, or a

decrease.

After the cost states have been clearly defined and specified, the next step involves the

construction of a complete cost state transition diagram. The diagram will offer an

image of the transitions between different cost states, which will be indicating the

change from one state to the next. When the cost state transition diagram is in place

then reading the cost transition probability matrix becomes quite easy. The cost

transition probability matrix is an obligatory element in so far as it explicitly reflects

probabilities related to moving from one cost state to other.(Arismendi et al., 2021)
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Consider the case where a current cost state is labelled “i”, while assessment of the

following life cycle focuses on the cost state “j”. In such cases, the (i,j)-th element in the

cost transition probability matrix, P, in particular specifies the transition probability, Pij,

from cost state "i" in to cost state "j". Note that Markov Chain property is valid in most

cases, which means that the probability distribution of the future states is dependent

only on the current state and not on the way taken to reach that state.

Through proper modeling of the whole system as a Markov Chain, prediction of the

state of cost that will emerge at any subsequent life cycle becomes feasible. This

prediction capacity provides decision makers with the essential knowledge for

informed and comprehensive decisions. For example, the cost level that is determined

by the Markov Chain analysis, maintenance actions can be very well planned and

executed by focusing on the optimum cost level. Secondly, with the current costs state

as a basis, the remaining useful life of a system can be evaluated. The use of such

detailed analysis is the practical demonstration of Markov Chain in lifecycle modeling,

which will be thoroughly discussed in the next part of this essay.(Lin et al.2020)

3.2 Cost Transitions

After this, we will detail the transient changes of cost in any system. The cost state of a

system represents how it looks today and is an important aspect to consider. Cost

transitions can be understood by analogy to life cycle stage transitions. In essence, a

cost transition describes the manner in which a system’s cost states change

continuously over time, whereby each specific point in time is related to a particular

cost state.

Transition occurs when a system moves from one cost state to another. Nevertheless, it

should be mentioned that not every possibility of change of cost states is admissible.

Some changes in cost state which the system might like to undergo are limited by

physical or logical constraints. Precise details about these limitations will be explained
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in the model definition thus making it clear what boundary cost transitions

have.(Guerrero et al.2020)

To fully comprehend the different types of cost transitions, it is useful to consult a cost

transition diagram. This diagram provides an integrated summary of all the potential

transitions which can occur within the system. Every cost state is separately

represented with a node in the diagram. In addition, all possible transitions within

states are shown as arcs, which link nodes of starting and ending cost states of each

particular transition. The cost transition diagram is a priceless aid in understanding the

how cost changes occur that cannot do without.

Just as life-cycle stage transitions, it is also beneficial to evaluate the likelihood of a

transition between different cost states. This can be done quite effectively by using a

cost transition probability matrix. Through using this matrix, one can exactly specify the

probability associated with each possible transition from one of the multiple cost states

in the system to the others. The use of cost transition probability matrix is especially

useful in cost simulations. Cost simulations are a widely used approach to forecasting

the development and progression of cost states in a system over time. Utilizing the

probability matrix, it is possible to clearly represent the probabilities of each transition

and hence, produce realistic forecasts of the future cost states of the system.

For example, let us examine one sample system. This system has a probability that the

system will either stay in the ‘marginal’ cost state or move to the ‘healthy’ or

‘deteriorating’ cost state. Using a cost transition probability matrix, this data could be

presented and analyzed in a correct manner, thereby providing a full understanding of

the system’s behavior and the potential results.

Secondly, it is also necessary to determine the time that a system stays at a specific

cost state. It can be achieved using a cost state duration distribution. The distribution in

essence, characterizes the statistical behavior of how long the system is anticipated to
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stay in one cost state before moving onto another cost state. These duration

distributions are an invaluable input in Monte Carlo Simulation studies of the model,

among other applications. Utilizing the cost state duration distributions allows

researchers and analysts to see the expected duration of each cost state and makes the

course of the system behaviour clear and, therefore, easy for decision making

processes.(Deng & Lv, 2020)

3.3 Cost Transition Matrix

The Cost Transition Matrix (CTM) is an integral part of Markov Chain cost modeling. It is

used to specify the probabilities of changes in the cost states. Like the state space of a

cost model, the cost states are usually divided in the following way: a year 0 state to

indicate that the system is new; the intermediate states to indicate the system at

different ages and a final state to indicate that the system has died. The CTM is a

square matrix with the size of the number of cost states. As an example, if the cost

model has a total of four cost states, i.e. n = 4, the CTM would be a 4*4 matrix,

represented as P = [p_ij]. Each cell of matrix P represents the probability of the system

moving from state i to state j in the next period. This is as discussed in section 3, the

concept of Markov Chain, where the future system state is a function of only the

current system state, and that changes occur in small time steps. Matrix P can be

obtained either from an empirical data, or use some general formula to obtain the

matrix elements for example mathematical model and historical failure data. For

instance, if p_03 = 1, p_00 = 0, and p_ii = 0 otherwise, where i = 1, 2, 3, it means

absolutely that the system will move from state 0 to 3 in the next interval, and that the

system will never stay in the state it is or it will quickly transit to some other

states(Hewing et al.2020)

Within the Markov Chain cost modelling, the cost transition matrix (CTM) is very

important. This matrix enables us to calculate probabilities with respect to transitions

between different cost states. Typically, the cost states are categorized as follows: a

year zero initial state, representing a new system; intermediate states representing the
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systems various ages; and a year infinity final state, representing system failure. The

CTM is a square matrix whose size depends on the number of cost states. If, for

instance, a cost model consists of four states (n = 4), the CTM will be a 4x4 matrix

denoted by P = [p_ij]. Each element of the matrix P corresponds to the probability,

which the system transits from the cost state i into the state j in the next time period.

This principle is the basis of Markov Chain modeling, which is described in chapter 3, in

which the future state of the system depends on the current state and move in small

steps. The matrix P can be obtained from empirical data or computed using a general

formula, for example, a mathematical model which includes historical failure data. For

an example, let the case p_03 = 1, p_00 = 0, p_ii = 0 for i = 1, 2, 3. The aforementioned

values indicate that in the next time interval, the system definitely will move from state

0 to state 3 while it is impossible that staying in the present state or immediately

changes to other states.(Dupuis et al., 2022)

The CTM assumes an outstanding role in the cost modeling in the context of Markov

Chains. It allows to get the complete picture of the probabilities of the cost state

transitions and therefore get to know how the cost changes over time. Cost states are

usually classified by stages of life of the system. This consists of an initial state that

shows the system is a virgin, intermediary states which show the system at various ages

and a final state that reflects the system has gone. Therefore, CTM takes the form of a

square matrix, with its dimensions being directly proportional to the number of cost

states. For example, when a cost model is comprised of four cost states (n = 4), the

CTMC takes the form of a 4x4 matrix represented as P = [p_ij]. Each element of matrix

P represents the probability of transition from cost state i to state j in the next period.

This idea, elaborated in section 3, is a very essential notion of Markov Chains as the

future state of the system depends on the current one, and changes appear in small

time steps. Matrix P can also be obtained using empirical data or general formulas −

mathematical models and historical failure data. More specifically, when p_03 = 1,

p_00 = 0, and p_ii = 0 for i = 1, 2, 3, it indicates the absolute certainty that the system

will transition from state 0 to state 3 in the next time period and the impossibility of
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the system remaining in the current state or rapidly transitioning to other states.(Costa

et al.2023)
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4 Life-cycle Modeling

The object of the life-cycle modeling is to fully comprehend stages a system passes. The

life-cycle can be characterized as a series of transformations and adaptations that a

system undergoes throughout its life. Life-cycle modeling has two types of transitions.

The first type is the system changing from one stage to the other, which is the change

in its behavior and operation. The second kind is time related and transition from one

state of life to another interpolating aspects such as performance, reliability and

availability.

These transitions are the signs of the development of the system through its life-cycle.

Every stage of the life-cycle is the snapshot of the system’s state at a definite period,

and it therefore provides us with the opportunity to carry out the comprehensive

analysis and the detailed investigation of its behaviour. If we model the system in great

detail in each stage, we will have the opportunity to learn about its performance,

predict potentially harmful failures or problems, and plan maintenance and repairs in

the most efficient way. Such a systematic approach allows us to carry out accurate

forecasting about the performance of the system, optimization of its efficiency and

maintenance of its reliability.(Barca et al.2020)

Additionally, life-cycle modeling is used in multiple fields. For example, a preventive

maintenance scheduling is an important factor in reducing downtime and maximizing

system availability. Through precise anticipated maintenance needs at different stages

we could plan maintenance or replacements before they turned out to be productive

and safety hazards. The same as these, availability and reliability analyses provide the

most significant information about the system performance and the chances for

successful operation. It helps us to plan resources efficiently and take calls on

replacements or system upgrades.

As a practice, life-cycle stages are more than just elements of the abstracts which are

characteristic of system modeling. Significant to physical systems, they can be found in
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individual parts, for example, hard disk drives to intricate engineering systems such as

aircraft. Having the life-cycle costs as an emphasized aspect, the financial

consequences of developing new systems, maintaining those in existence and phasing

out obsolete systems have become critical. A society requires systems to provide

effective and efficient service from cradle-to-grave, which requires well-planned

maintenance, and quick repairs.(Hannan et al.2021)

Taking these necessities into account, therefore, there is a great tendency to adopt and

share approaches and models that allow to assess life cycle costs and guarantee

reliability of performance during a system's operation through its whole lifespan.

Advanced prediction of system conduct and functionality is the essence of Markov

model, a trusted probabilistic analysis method that promises real accuracy in the setup.

These assessments will allow us to examine life-cycle costs, identify efficient measures

for potential costs reduction, and respectively make good choice on any repairs and

routine maintenance required.

In the end the lifecycle is a lifetime model which is indispensable for the

comprehension and control of systems with complexity. It lets us to reach deeper

understanding of the each significant stage of functional life-cycle of the system, follow

it to observing the behavior, assume about an eipse, organize the time for technical

inspections and repairing. In view of the growing attention towards life-cycle expenses

and the need for proven and excellent systems, techniques like Markov model are

growing crucial. They contribute to a better comprehension of economic efficiency and

enhance reliability. The use of system life-cycle model works by refining the entire

system performances. As such, it facilitates improvement of the system life-span.

Section(V) is there to deliver further instructions on this subject so that life-cycle

modelling can be best demonstrated in various organizations.(Tan et al.2021)



27

4.1 Life-cycle Stages

A model life-cycle stage is a point in the object model’s life, during which the model

possesses particular behaviors and attributes. The model has the capability of

executing a certain kind of functionality when it is in a certain life cycle stage and to

expect and respond to specific events. In addition, the model should support different

interfaces at different life-cycle stages which will allow the model to possess and

potentially expose interfaces to the external entities to interact and communicate with

the model. Note that a model transition is an alteration of the stage of the model

life-cycle. Such transition can be caused either by characteristics of the model itself or

by behavior of the surrounding models and environment in which it operates.

The transformation between life cycle stages is usually attributed to a sequence of

activities that the model will perform. A good example is an initialisation operation that

is performed once the transition to the new life cycle phase is completed. The “Markov

Chain Cost/Life-cycle Model” is used to develop a complete understanding of the costs

and life-cycle stages within a system. This model is a useful instrument for analysis and

understanding. The introduction section of this model model presents a short

definition of Markov Chain and stresses the importance of cost/life-cycle modeling.

Moreover, it clarifies the aim of adopting such a model.(Tan et al.2021)

In the model setting, a life-cycle stage is either an active stage or a passive stage. Active

stage occurs when the model is actively running and marshalling incoming events,

while a passive stage denotes a dormant state where the model patiently waits for a

trigger event to instigate progression in the lifecycle. Importantly, when life goes

through transition the model should notify all its neighbors about this change and

generate output events. Such events carry important data including the current state,

the previous state and the transition time. Hence, other models interfacing with this

particular model could be informed and act upon the stage change. Particularly, the

character of these notification interactions may differ considering the specific life-cycle

stage. Furthermore, the number of transitions within each life-stage can vary with the

type of model in question. For example, a life-cycle stage may have only one transition
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that cycles the model between the same stage while various transitions may exist

between other stages.

At last, the life-cycle stages and transitions should be well defined in the state diagram

of the model in the EuroPAge. This graphical representation enables the users to follow

the life cycle transitions of the models and to watch the active stages in which these

models are working. The whole range monitoring ensures the proper analysis and

perception of life cycle stages and transitions in the model.(Impram et al., 2020)

4.2 Life-cycle Transitions

The process of system life-cycles modeling includes designation of life-cycle stages and

life-cycle transitions statements. Life-cycle stages can be defined much like we define

cost states. For each life-cycle stage i a certain numeric code can be allocated and the

units states can be grouped by the stage in which they are in. Life-cycle transitions

represent the transformation of a system from one life-cycle stage to the other. In the

Markov Chain life-cycle model, a life-cycle transition matrix is used to specify the rates

at which transitions take place between different states. That is, in the model a matrix L

is formulated where every element Lij stands for the chance of a system unit in

life-cycle stage i to move to life-cycle stage j in the subsequent time period. Life-cycle

transitions, just like cost transitions, are considered to be independent of the time

spent in each lifecycle stage, which satisfies the Markov property. Elements of life-cycle

transition matrix L are predefined based on expert judgment and can be dynamically

updated as more information about the system becomes available. In undertaking,

historical data may be applied to represent the matrix elements through the

frequencies of observed life-cycle transitions. For instance, in the Figure, for the

transition matrix L, the probability that a system unit in stage 2 will move to stage 1

(which corresponds to the element L21) is 0.25. This would imply that in the

subsequent period, one quarter of the units that are currently in life-cycle stage 2 will

transfer to stage 1.(Impram et al., 2020)
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The process of modeling system life-cycles includes detailed and complex designation

of life-cycle stages and thorough description of life-cycle transitions. Life-cycle stages

can be defined with precision and detail just as highly detailed cost-state is defined. For

each life-cycle stage i, a very precise and carefully calibrated number code may be kept

with great care, so that the states of different units may be easily and accurately

classified according to the precisely defined stage they are in. Life-cycle transitions are

undoubtedly the main cornerstone of the whole modelling process as they allow for

the smooth transition of the system between the many diverse stages of the life-cycle.

The Markov Chain life-cycle model employs an elegantly fashioned and perfectly

polished life-cycle transition matrix that highlights the probabilities of the smooth and

easy transitions which occur gracefully from myriads and multitude of different

stages.(Lai & Teh, 2022)

In detail, the model introduces a matrix L, which is in fact carefully designed and

exceptionally organized, in such a way that each element Lij perfectly denotes and

incorporates the transition probability of a system unit, in its corresponding and

explicitly specified life-cycle stage i, seamlessly and smoothly flowing to life-cycle stage

j with certainty in a subsequent time period. In a very similar and the like way to cost

transitions, the Markov property is simply and readily accepted under the assumption

of complete independence with respect to time spent in each life-cycle stage.(Impram

et al., 2020)

The inherent and essential features of life-cycle transition matrix L that were artistically

drawn out through sound expert judgment in a steady and patient process, have

unmatched ability and potential to be dynamically updated with the acquisition and

distribution of increasingly rich data about the entire system in question. In practical

applications, utilisation of historical data is the invaluable maximisation, used with

effortless agility, of the fundamental elements of the matrix, as frequences of life-cycle

transitions are scrupulously calculated and observed, setting the basis for future

calculations and predictions with a precision that is unmatchable and undoubted

accuracy. (Jimenez-Navarro et al.2020) In terms of using the matrix L, the rejection of
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converting the system to the foremost stage is evidently so strong; it can be easily seen

that the transition probability that one single system unit firmly remains at phase 2

which is L21 as indicated in the related figure is around 0.25. This remarkable fact

clarifies without a doubt that in the next period of time, about a quarter of undeniably

outstanding and very distinguished units now comfortably living in the prestigious and

highly-acclaimed stage 2 will effortlessly move with a great charm to the equally

esteemed stage 1 in the next phase of the brave life-cycle trail. In conclusion, system

life-cycles modeling is an elaborate and subtle process which application demands

detailed description of life-cycle stages and transitions. By employing the Markov Chain

life-cycle model and the well designed transition matrix L, the probabilities of smooth

transitions between the states can be accentuated and examined with an extraordinary

accuracy. By adding historical data and expert judgment, the matrix can be updated

dynamically to maintain right estimations and solid projections. This modeling

approach facilitates a profound comprehension of the smooth migration of system

units from different life-cycle stages resulting in improved decision-making and system

optimization.(Impram et al., 2020)

4.3 Life-cycle Transition Matrix

Just like a cost transition matrix, a life-cycle transition matrix (also known as a

probability matrix) may be constructed to display the likelihood of transition from one

life-cycle stage to another in the next period. Each element in the matrix gives the

probability of moving from the stage situated in the row, to the stage situated in the

column, during one life-cycle period. When the system life-cycle stage changes, the

system will suffer different impacts and costs. Hence, the transition probabilities of a

life-cycle can be utilized in forecasting the future costs distribution and evaluating the

stability of the system.(Hu et al.2021)

The life-cycle transition matrix is constructed in essentially the same manner as the

cost transition matrix. Initially, the analyst’s team has to identify the life-cycle stages of

the system and set the state space. Typically for a reparable system, life-cycle stages
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maybe failure, degraded, and functioning. Maintenance type can be included in the

life-cycle model by distinguishing preventive and corrective phases. After choosing the

life-cycle stages, the team should gather the statistics on life-cycle transitions. Several

methods can be used, such as expert opinions, system failure history, and physical

process analysis. The transitions of stages in the life-cycle are studied, or simulated,

and the frequency or the probability of the transition is documented. If the transition

records are organized, and a statistical analysis is made, the life-cycle transition matrix

can be obtained.

Data collection and analysis in the lifecycle stage is more complicated and more

expensive than in cost states and cost transitions. However, the main reason is that

such data is often derived from field studies, equipment monitoring, or experiments,

which involves uncertainties and time cost. At the same time, a lifecycle model offers

an all-around and very dynamical perception of the system performance and may cover

a number of decisions, which a system has to take in the course of its lifecycle. Growing

attention from researchers and engineers has been put into life-cycle modeling

projects in order to make advantages of the advanced techniques and methodologies

in practice.(Tan et al.2021)
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5 Combining Cost and Life-cycle Models

Cost and life-cycle model hybridization enables us to study the system’s behavior in

relation to both cost and life-cycle stage advancement. This unification allows us to

evaluate the financial consequences involved at each stage of the life-cycle of the

system. To develop the integrated and effective model, it is required to map every

distinct life-cycle stage to a cost state set and their respective values. These cost states

give a comprehensive list of costs that a system could have which range from

development to testing, maintenance for a software system among others.

An accurate assessment of the movement of the system from one stage of the lifecycle

to the other is the determination of the probabilities of the transitions. These

probabilities may be estimated using different techniques such as historical data

analysis, expert judgment, or simulation methods. After the determination of these

transition probabilities, they can be employed in building life-cycle transition matrix.

Using the matrix we can calculate the probability of the system transitioning into a

certain subsequent level of the life cycle with respect to the specific value in the matrix

that refers to that stage.(Forman & Zhang, 2021)

The choice of the suitable life-cycle model significantly influences the formation of the

transition matrix. For example, the software system can have the waterfall model

which means that each stage is completed before the next one begins. In the same

vein, the “iterative” model could be a better choice, according to which the system

goes through a number of shorter changes from one stage to another. The chosen

life-cycle transition matrix model determines the structure and the formulation.

In contrast, the cost component of the model is based on a Markov chain that includes

the cost states and their transition probabilities. This Markov chain is an effective way

to represent the cost dynamics of the system over time. By maintaining the current

cost state and employing the relevant probability matrix, we are able to speculate both

the life-cycle advancement and the possible changes of cost that may happen. When

the model is run, the result is a tuple of cost state arrays in which the system’s cost
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evolution in time is reflected. The time dependent information is very important to

learn influence of different actions on the overall cost in practical cases.(Zhang et

al.2020)

The analysis of the model at different initial cost states (e.g., different investment levels

or design quality) assists us in comparing expected cost performance for different

strategies. This analysis allows us to find cost-effective solutions that are consistent

with the lifecycle dynamics of the system. An effective detailed cost model is needed

when considering alternative courses of action in order to make informed decisions

and to maximize cost outcomes.(Zhang et al.2020)

Overall, the cost and life-cycle models represent a detailed model of a system behavior.

By combining the relevant cost states, transition probabilities as well as life cycle

stages, we are able to determine the cost incurred at each of the life cycle stages of the

system. Hence, such conditions enable us to make right decisions and to enhance cost

outcomes, which results in more efficient and cost-effective strategies.

5.1 Incorporating Cost and Life-cycle Transitions

To include transitions between different life-cycle states in the cost model, through the

use of cost/life-cycle models, life-cycle cost analysis is comprised by the cost data and

cost forecasts. The cost states of the cost model are referred to by each life-cycle stage

from the life-cycle model. For instance, in some life-cycle stages, such as the “design”

stage of a software project, various kinds of actions are to be taken, that is, some will

be expensive either on the development or on the testing sub-processes. These costs

are referred to as life-cycle dependent costs and the passage of life-cycle dependent

costs from one stage to another could follow the Markov process. In the life-cycle

model, the supposition is to partition the states in such a way that all the elements

before one state are distinct from all the elements after that state. In the cost model,

the steps to categorize the cost states are provided in Section 3 and they have the



34

Markov process as a following. The life-cycle model has life-cycle stage transitions,

which could also be treated as a Markov process.

In the end, adding transitions between various life-cycle states in the cost model is

essential for the correct cost estimate and analysis. Cost/life-cycle models help

organizations to understand the costs to be incurred at each stage in a project’s

life-cycle. A life-cycle cost analysis gives a detailed picture of financial consequences in

every stage, therefore, managers can manage resources efficiently and make

reasonable decisions.(Deng & Lv, 2020)

Life-cycle dependent costs are central to the life-cycle cost analysis. They are

cycle-related costs and may vary considerably depending on the actions taken at

various cycle stages. As an example, in the “design” phase of a software project,

development and testing subprocesses will cost differently. Such costs should be taken

into account and in the cost model to guarantee accurate forecasts.

Utilizing the Markov process is beneficial in monitoring and analyzing the shifts of

life-cycle dependent costs from one life-cycle stage to another. Markov process

provides a sequential description of the cost states in the life-cycle model. Categorizing

the states in a sequential order allows for the identification of the items that occur

before or after each state, which helps in clear understanding of cost dynamics across

the lifecycle.

Implementation of the Markov process in the cost model is presented in Section 3.

steps, and it is necessary to perform these steps. These stages, in turn, present a

systematic way for categorizing the cost states and even transitions between various

stage of life cycles. Compliance with this process allows organizations to simplify the

cost analysis and get a better insight into the financial consequences in each phase.

In addition it should be mentioned that the transitions of life-cycle stages are also a

Markov process. While life cycle dependent costs undergo transformations, the life
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cycle model as a whole also has shifts from one stage to another. Therefore, an

understanding of these life-cycle transitions is a key element of project’s flow and

dynamics. Identifying these stages as a Markov process allows organizations to develop

effective approaches for control of the project flow and costs related to it.

In short, introducing transitions between various life-cycle states into the cost model is

an important part of correct cost analysis and costing. The integration of costs that are

life-cycle dependent and the use of the Markov processes allow an organization to

understand the financial consequences all through the stages of a project. Through

cost states classification and life-cycle transitions monitoring, decision-makers make

the right decisions and resources allocation is effective which eventually leads to

successful project outcomes.(Netea et al.2020)

5.2 Joint Cost/Life-cycle Transition Matrix

The joint cost/life-cycle transition matrix is a square matrix, which includes cost

transitions and life-cycle transitions. The dimension of the matrix equals to the

dimension of the cost or life-cycle states. Each cell of the matrix represents the joint

probability of cost and life-cycle state transitions. The joint transition matrix, like the

cost or life-cycle transition matrix, must also be estimated, either from historical data

or by expert knowledge. Estimation of the joint transition matrix is often more complex

since it combines the knowledge of the system maintaining professionals and the cost

accountants. Besides, the joint transition matrix outcome is also more intricate to

understand. Nevertheless, it allows the analysis of inter-dependent impacts between

cost and life-cycle transitions. The model “Markov Chain Cost/Life-cycle Model” is the

model aimed at the analysis and comprehension of the costs and phases of a system

life cycle.(Sepulveda et al.2021)

The first part provides the definition of Markov Chain, stresses the importance of

cost/life-cycle modeling and describers the function of the model. In Section 2, basics

of Markov Chain such as transition matrix, state space, and Markov property are
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discussed. Markov Chain cost modeling, cost states, cost transitions, and cost transition

matrix are topics of section 3. Section 4 deals with life-cycle modeling, presenting

life-cycle stages, life-cycle transitions, and life-cycle transition matrix. Section 5

combines cost and life-cycle models taking into account the introduction of cost and

life-cycle transitions including the concept of a combined cost/life-cycle transition

matrix. Section six in this paper is really about Markov Chain Cost/Life-cycle Model

applications such as project management, product development, risk analysis, and

financial planning. This model is flexible and can be used across different industries;

examples of such industries include manufacturing, software development,

construction, healthcare, and many others. In section 7 an overview of strengths and

weaknesses of the model is given, the model advantages being that it allows to obtain

quantitative estimations of costs at different stage of the lifecycle while one of the

possible shortcoming is the definition of the joint transition matrix. Section 8 gives

examples as to how the model is used, and these contain cost analysis of a

manufacturing process, life-cycle analysis of a software system, risk assessment in a

construction project, financial planning for a health care system, among several others.

Finally, the third section of the report is the conclusion that summarizes the key

outcomes and knowledge obtained from the model with an emphasis on the

importance of introducing cost and life-cycle elements to the decision-making

processes. The Markov Chain Cost/Life-cycle Model offers a comprehensive model

within which organizations can make informed decisions through the efficient

allocation of resources in order to maximize the returns.(Rad et al. 2021)
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6 Applications of Markov Chain Cost/Life-cycle Model

The previous of the applications of Markov Chain models that was mentioned is in

project management wherein the model can be utilized to portray and examine the

advance of a project over a given period. Markov states define each stage of the

project; a state transition matrix represents the probability of transition from one state

to another. The inter-arrival time between sets of state transitions is taken to be

exponential distributed, which is the memoryless property of time, to model the entire

process as a continuous-time Markov Chain. The model is capable of simulating various

project schedules under different sets of transition probability matrix or even different

numbers of project stages. Using the simulation, the project managers are able to

determine the most likely schedule, critical activities that have an impact on the

completion time and the expected project duration.

In product development, one often has to assess several design alternatives in terms of

their long-term cost and performance implications. Markov models are employed to

model the processes of degradation, continuous monitoring, and maintenance within

life-cycle cost analysis of systems like different engineering systems, vehicle, and

infrastructure managements. An illustration of a real-life case can be seen in Ivo Adan

and Jacques Resing’s “Markov Chain Applications in Real Life, continuous review, or

periodic review inventory model in supply chain management.”(Hashemian et al.2021)

Risk analysis in the field of risk estimation and management in engineering and

management practices is also one of the application areas. Markov models are

applicable for representing the process of change of the system condition with time in

relation to the total impact on the system. Cost is already defined for each state with

the initial state of a system given. Using the cost of transition from one state to another

and cumulative costs associated with each state over the life of the system, the

expected cost could be calculated using Markov models. It considered the life-cycle

cost model based on Markov Chain for assessment of long-term life and rescheduling
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needs for highways developed by the researchers from Turner-Fairbank Highway

Research Centre.(Yan et al.2022)

Incorporating the cost transitions, you can obtain a system of linear algebraic equations

and the steady-state distribution, that is, the long-run proportions of time the process

spends in each state on average. That will allow to provide an unambiguous view of the

expected performance for every stage of the life-cycle, which leads to the possibility to

give a better prediction of the most probable progress path and also provide useful

information about the resource allocation over the life-cycle.

6.1 Project Management

The model is used in project management for simulating the processes and costs of a

project during its life-cycle. Through entering the initial project conditions and

executing the model many times, project managers are able to get statistical

distributions for the time and cost of the project. This will enable project managers to

better comprehend the main project goals like time, cost, quality, and resource

allocation as well as the impacts of diverse management practices and decisions. The

model can also be utilized to forecast the final project time and cost using the current

project conditions and external influences. For instance, the results of the life-cycle

analysis can give the quantitative clues for the final project time and cost by simulating

the way how the project will be developed from the current stage, assuming external

factors like market trends, technological improvements, and regulatory changes. The

medicine is especially applicable in case the project is of some critical character, e.g.

long delay or a big cost overrun happens or the project has to adjust to an

unpredictable situation. Using the model output in combination with expert

knowledge, project managers can come up with the more informed and objective

judgments concerning future development of a project and be ready to use the

appropriate risk management strategies.(Pan & Zhang, 2021)
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Contrary, cost analysis outcome can be used to determine what management

approaches are cost-effective. For instance, within the cost transition matrix, which is a

representation of different maintenance options for a system like doing nothing, full

maintenance or partial maintenance, project managers are able to examine various

scenarios and analyze the long-term financial outcomes. An analysis of the changes in

the cost-distribution curve over the long term results from various maintenance

options, and the most cost-effective strategy is to minimize the overall long-term cost.

This analysis enables project managers to base their allocation of resources and budget

on data and as a result get the maximum return on investment. (Hao et al.2022)

The Markov Chain Cost/Life-cycle Model also allows for the incorporation of both cost

and life-cycle transitions such that a more complete model can be obtained. The joint

cost/life-cycle transition matrix utilized in the combined model can indicate the

likelihood of a transition from one cost state to another and from one life-cycle phase

to another. This integration provides a complete picture of the project progress for the

project managers concerning the operational and financial aspects. As the system

advances into more advanced life-cycle stages, the outputs or rewards at each stage

will also be increased. This kind of information can be useful in the research supporting

the finding of the optimal switching time from one technology to another, for the

system in view of either cost reduction, performance improvement, or both. From the

analysis of cost and life-cycle transition probabilities, the project managers are able to

evaluate the risk and value added if new technologies are adopted or any significant

changes are made in the implementation strategy of the project.(Hao et al.2022)

In sum, the implementation of simulation models in project management gives a clear

understanding of the way time–cost–quality parameters are interrelated in the project.

These models help project managers make informed decisions, reduce risks, and

balance resource allocation. Taking into account various situations and including expert

knowledge, the project managers increased their ability to deliver successful projects
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and meets stakeholder expectations that contribute to organizational success.(Hao et

al.2022)

6.2 Product Development

The production process of a product generally consists of several steps. To begin with,

detailed and systematic design process is started, followed by the elaborate concept

generation and comprehensive concept selection. Following this, the concept is bound

to two key activities: product development and process development, two of the most

attention and skill based activities. Process development should fall behind product

development for successful progress and in order to avoid the conflicts and obstacles

of the simultaneous tendencies in these two directions of development. In scheduling

and timing these two key activities, the life-cycle model in the Markov Chain

Cost/Life-cycle Model is an essential and central element, which enables a

consummate and effective progression. It is based on the hypothesis that a product

development is made in consecutive and different phases which are the ‘development’,

the ‘introduction’ and the ‘growth’ stages.(Khare and Chaturvedi2023)

At the end of each stage in the life-cycle, a clearly delineated and rigorous stage gate is

deployed to comprehensively assess and appraise the product’s viability, efficacy, and

readiness before its advancement to the next phase can be sanctioned. An extra

parameter is introduced to give a more informative and exact portrayal of real-life

dynamics – this parameter stands for life-cycle stages distribution and is easily

integrated into the description of states. This improvement provides a more detailed

analysis and assessment of the process of product development, thus making it

possible to see and record patterns, trends, and results connected with transitions and

progressions within the life-cycle. As a result, such analysis and assessment can be

performed by means of pure analytical approaches thereby avoiding lengthy and

demanding empirical experiments. The validity and reliability of the proposed model

can be demonstrated when the transition probability from life-cycle stage development

to life-cycle stage introduction as function of the number of products simultaneously
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under development is determined in a diligent and meticulous manner as it complies

with the vital convergent condition which sequel to accurate and dependable

simulations.

Additional, treatment of the effects of different values of this transition probability on

final acceptance rate of generated products is thoroughly investigated, providing

valuable and practical management insights, e.g., where to approve the product or

when that product should be stopped or suspended in various cases or situations.

Given the reasonable assumptions about the transition probability and a sensible

description of the life-cycle distribution this model becomes the major tool required

for proper planning and coordination of the important activities in the product

development. It is really a multi-purpose instrument that can be applied to make

resource allocation and utilization more efficient, to increase productivity, and to

improve the overall effectiveness and efficiency of the product development process.

However, one should also acknowledge the potential uncertainties and immeasurable

factors, which include the initial cost unascertained and the maintenance fee to be

paid so that any normal activity is maintained. Furthermore, with the models

parameters number increasing, the complexity of the model also rises accordingly,

needing precise data collection and proper calibrations for the results to be accurate

and reliable. All these critical components, implications and challenges will be

explored, investigated and defined in the forthcoming case study sections that will

provide a deep and detailed review of the practical implementations and constraining

forces of the model. It is worth noting that analyses will be conducted through case

studies, which will involve cost analysis, risk assessment, implementation strategies, as

well as performance evaluation, thus representing a holistic view on the efficiency of

the model in various spheres and industries. All in all, product development is a

complex process, which requires the relevant organization, realization, and evaluation.

During this process, the Markov Chain Cost/Life Cycle Model is used as such a powerful

tool for measuring, advising, improving the resource allocation, and increasing the total

efficiencies. Although the model imposes many difficulties and uncertainties, careful

analysis and calibration can help to reduce them to the minimum and receive accurate
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and valid results. Further case studies will focus on operational applications, model’s

limitations and fields for potential emergence.(Toosi et al.2020)

6.3 Risk Analysis

The purpose of risk analysis is to measure and control the risk in the project with the

help of Markov Model. Since the model is excellent for an analysis of the stochastic

behavior of a system over time, we can conduct risk analysis in various methods. The

easiest way is to observe the sample output values over time and to find mean and

standard deviations of these values. Under this approach, the model would be run for a

number of iterations, each time, the model will be left to run to its maximum time (i.e.

we let the system to progress for an infinite number of transitions.) Afterward, the

obtained values are used to build 95% confident plots in the time and to help to detect

the trends, to clear answers on hesitations and to make deeper evaluation of the

project’s risks. This method is also useful in generating information that will guide the

decision-making process and confirm expert judgments.(Hao et al.2022)

One alternative approach to improve risk analysis is to use the model in a fuzzy

simulation. In such case, the input variables in the Markov Model should be defined as

fuzzy variables which allows for consideration of uncertainties and imprecise data.

Considering the system costs as fuzzy random variables, joint probability density

function of cost output values could be derived from the simulation. This provides

better understanding of behaviour of the system and identification of different

intervals for predicting future outcomes with a high reliability. The implementation of

fuzzy logic makes the risk analysis more strong and responsive, accepting more cases of

uncertainties and possible outcomes.

Additionally, the project manager can use the knowledge obtained from the Markov

Model-based risk analysis to introduce the condition-based maintenance policy.

Through precise forecasts of the states of a component in the future and the condition

of the system at a given moment, the maintenance strategy can be adjusted. This
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method allows a proactive maintenance approach, where possible failure can be

detected earlier therefore to save the safety of the system and the irrecoverable

consequences. Moreover, the maintenance strategy which provides minimum failure

downtime can be identified, they would help to minimize the life cycle costs. The move

from reactive maintenance to preventive maintenance ensures the integrity of the

equipment but also eliminates unwarranted maintenance, improving resource

allocation and increasing the efficiency.

In summary, the Markov Model methodology leads to several critical risk streams.

Through various approaches that incorporate the analysis of the gathered results and

the execution of fuzzy simulations, the entire system behavior and associated risks can

be realized. The implementation of condition-based maintenance brings the proactive

decisions and cost savings as well. The use of Markov Model in risk analysis and

maintenance planning enable the project managers to take decisions that are certain

which in turn assures success and sustainability of the projects while at the same time

lowering risks as well as costs.
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7 Advantages and Limitations

Markov Chain model as a life-cycle model has its own strengths and weaknesses. The

model is started and applicable to both the small and big systems and it is able to

consider several states of the system in an organized way. This implies that it will be

very useful in enhancing the effectiveness and efficiency of the plant management.

Second, Markov chain makes it easy to forecast the future state of the system using the

current state of the system, and this will give good predictions of the future probability

of each state in the long run. In addition to this, when the initial state distribution and

the transition process of the system are known, the stationary probability can be easily

computed. Hence, a Markov chain model is considered as a completely realized

mathematical representation tool, i.e. the model is able to realize all statuses of the

system and provide data of the system is dynamic by nature. Though, Markov chain

model also has some disadvantages in real life. The establishment of the transition

matrix is difficult in many cases, particularly in some systems where there are many

states in a single system. In the second place, the Markov chain doesn’t contain

historical records of the system statuses before the current status. Moreover, the

model assumes that system does not have the memory of all the operations done in

the past, hence each probability is treated equally in analyzing the system. This

drawback makes the model non-predictive in many complex real systems which are of

the memory-dependent type and are time-dependent. Finally, the inability of the

Markov chain model to be time-invariant is another significant drawback. The model

evaluates the future (transition and stationary probability) given the activities in the

system at this moment.(Krüger et al.2021)

One of its benefits is its ability for successful application in systems of different sizes. If

its small or large system, Markov Chain can the system easily. A further benefit is that it

takes a systematic approach to representing the various states of the system.

Considering all possible states, the model guarantees that it will be able to enhance the

efficiency and effectiveness of plant management.(Stewart, 2021)
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In addition, the Markov Chain is used for forecasting the future state of the system

based on its present state. Such predictive power is useful because it estimates well

long-term probabilities of each state. In addition, given the initial state distribution and

the systems transition process, the determination of stationary probability is an easy

exercise. This power to compute stationary probability creates Markov Chain as fully

developed mathematical function utility that could provide dynamic information about

the states of the system.(Krüger et al.2021)

Yet, the Markov chain model also has some limitations in practical using. On the first

place, it can be really hard to determine the transition matrix in some cases,

particularly with systems possessing many states. This complexity can limit the model’s

performance in such situations. Besides, the Markov Chain does not hold any historical

memory of the past states of the system before the actual state. The more absent

minded of the model inhibits the model from including the system’s past activities in its

analysis. As a result, each probability is treated as equal, which can limit the model’s

validity in systems that are more complex in nature where the current state depends

on the past states and the time passed. (Stewart, 2021)

Finally, time invariance is another significant limitation of the Markov Chain model. It

analyzes the future, transition and stationary probabilities, with the help of the system

activities, at the current moment. This assumption dismisses evolutions that can take

place in time and can therefore restrict the model in a way. (Stewart, 2021)

Generally, the Markov Chain is very effective for studying systems, but it is also

imperative to keep in mind its possible drawbacks when the further decisions of its

application are being made.(Stewart, 2021)
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7.1 Advantages of the Model

A very obvious model is the Markov Chain Cost/Life-cycle model, which shows a

system, its costs and its life-cycle states. This is particularly helpful when explaining the

model to new users or stakeholders in a context that they can easily understand. In

addition, Markov Chain model represents the real dynamic nature of the processes,

accommodating all the intricate complexities that coexist. With respect to the

life-cycle, this model does not regard cost or time as a constant at each stage,

recognizing their inherent variability. This is regarded as an ‘advantage’ because it is

virtually impossible to completely map a real life system in a truly Markovian manner,

on which none of the life-cycle stages will have a constant cost rate or a constant

duration. However, by revealing that a system cannot be replicated in this way, it really

identifies potential problem areas or strengthens decision to modify, say, a design of a

system or a number and characteristics of steps that leads to more adaptability and

progress. Also, uncertainty analysis can be performed on the model, which is very

important in projects where the future of the system is uncertain. In this respect, when

a calculated percentage probability is attached from each state of the life-cycle to every

other state, then quite detailed overall view of the system likely to evolve is

established; thus a foundation for risk analysis as well as identification of potential

areas of cost savings is provided. It also needs data to create the various matrix forms

and facilitate the running of any analysis. In most environments, data is relatively easier

to obtain due to technological advances and, this implies that the impacts of the

model’s shortcomings (which will be discussed in the next section) can be mitigated.

With the increase of technology in general consumer products and specialist systems,

this is a significant advantage because the data can now be updated in real time

making the model still relevant and accurate. Nevertheless, this also means that

whenever a system or a product is about to get old by current technology, the life cycle

cost model would immediately show it as increased long term cost, calling for

innovation and adaptability.(Krüger et al.2021)
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7.2 Limitations of the Model

This model assumes that the system is in regulatory mode, which may not be true of all

systems being considered by the model. This happens because the model expects that

all alternative operations, both transitions from one stage to another one and failures

and repairs within one stage, occur during a small period of time. However, this is not

always true if unscheduled failures or repairs have taken place within a certain

life-cycle stage, indicated by the rate of the failure and the repair in the pertinent

failure and repair data.

As an illustration, in certain complicated software systems, one type of failure may

trigger the self-healing of the software system. In this situation, the system may remain

the same life-cycle stage after the fault as rather than transforming to another

life-cycle stage as the model predicts. Further, the model assumes that the data used to

construct the transition matrices are correct and dependable. But, substantial data is

needed for development of an accurate cost/life-cycle model. In the case of new

systems, there may be no relevant historical data. The cost/life-cycle model is to be

developed on experts’ judgments, past experiences on similar systems, or other in-use

models. A model, in such a situation, will be reliable depending on the quality of the

data and the knowledge of the contributors.

Moreover, the model presumes that the transition matrices obtained from the

historical data are constant within a given life stage. Yet, in practice, the probability of

transitions from one state to another can vary over time with the life of the

components, technology change, operators errors and other factors. This is referred to

as the time dependency property of a Markov model when the system’s state

transitions are time dependent. At present, only very few of the commercially available

commercial-off-the-shelf (COTS) software products or tools have time dependency

property for the risk and reliability analysis. This is poor practice of cost/life-cycle

model. Thus, more research is needed to embed this time-dependent property into the
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model and to come up with efficient tools and algorithms for analyzing the

time-dependent Markov model.

Moreover, the cost of modeling software of Markov chains for both cost and life cycle is

high. Therefore, small- or medium-sized entities or project teams may not find it

feasible to purchase software products because of the restriction of the project’s

budget. It suggests that the wider adoption of the model within the industry is

constrained by software product cost/license. Further, the implementation and

maintenance of such kinds of software systems also require experts and additional

expenses. Hence, the general cost effects of implementing and using the software may

deter the organizations from using it.

Also, model’s complexity is backed up with extensive amount of computations what in

certain cases may represent a problem for users without a strong technical

background. The interpretation of the output model and the analysis of the results that

follow from this model’s outputs may require a huge amount of training or expertise.

This then serves as the barrier that prevents the model from being widespread among

people or groups that are not knowledgeable or skilled enough, and as such the

freewheeling of the model.

In addition, the assumptions and limitations of the model should be carefully

reconsidered and factored in when the model is used. If either assumption is violated,

for instance, non-stationary transition matrices or incomplete data, inaccuracies and

uncertainties can appear in the results. Regarding this, it is necessary to elaborate on

the validation and verification procedures which assure that the model is reliable and

works well for the decision-making.

In conclusion, the cost/life-cycle model based on Markov Chains offers a great deal of

useful data and analysis of system behavior and reliability although it is worth being

noted that it has some disadvantages and issues. Additional research should be

focused on overcoming these limitations which include time dependency and
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development of cheap and easy to use software solutions. This model becomes more

valid by eliminating these barriers thus, wider arrays of organizations would experience

its benefits in intelligent decision-making and resource utilization.
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8 Case Study: Implementation of Markov Chain model

into maintenance optimization of power plant

8.1 Introduction

Using a Markov Chain model for maintenance optimization means making

maintenance jobs more reliable and effective by taking advantage of the fact that

Markov Chains are unclear. Calculus can be used to show how systems change over

time. A Markov Chain has different states, such as "operational," "needs maintenance,"

and "undergoing maintenance." With data from the past, we can figure out the odds of

a change from one state to another and guess how likely it is that it will happen over

time. This knowledge makes finding the best balance between preventive and

corrective upkeep easier. This way, we can keep upkeep costs and downtime to a

minimum while also making sure the system works well and is up all the time.

Thoroughly studying the Markov Chain model can help make repair plans that work

better and make the best use of resources. This makes it last longer and work better.

8.2 Steps to Implementation of Markov Chain Model

8.2.1. Define the State

In using the Markov Chain model in optimizing maintenance, the description of states

becomes essential since it helps one get to an understanding of the functioning of the

system, which takes place in transitions. States are the different situations that the

system can be in at any given time (Martins et al., 2021). For example, in a

manufacturing plant, states can be conditions from "Normal Operation," which means

everything works perfectly, to "Minor Fault" and "Major Fault," both referring to the

magnitude of failure or decline in various systems. Each of the states represents a

different operating situation, including performance traits and upkeep needs. These

defined states will help the maintenance managers understand the system's health

better and plan for the actions needed.
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The states selected would describe the most essential parts of the system behavior,

which are needed in deciding about maintenance. "Normal Operation" is the optimal

state of working, where the system works as it should, and no problems are apparent.

"Minor Fault" means that the system is slightly not working as well as it should, which

could be an early sign of wear or degradation. However, "Major Fault" is more serious,

meaning anything seriously malfunctioning or failing would lead to the stoppage of

production or be a danger to safety. These states divide problems of the system

according to their degree of severity so that professionals in maintenance know which

repair is to be dealt with first to ensure that the system runs at its best with the least

risks (Linding et al., 2023).

8.2.2. Determine Transition Probabilities

Estimating transition probabilities in a Markov Chain model for maintenance

optimization is one of the vast and essential steps for which deep knowledge is

required regarding how the system works. Indeed, one of the uses of historical data is

to look to the past within these instances in the state-changing system to determine

the chances of a shift happening. A transitive state can predict to what extent it will

result from analyzing maintenance records, downtime events, and fix experience. For

instance, if data from a manufacturing plant showed that minor faults often precede

significant faults, then the odds of transition could be computed based on this

information. That said, care should be taken to ensure that past data provide a good

reflection of how things are now and, where applicable, underlying patterns or trends

are given due consideration when estimating (Sancho et al., 2021).

Expert knowledge is essential in that it adds to historical data to determine the chances

of the shift, mainly when historical data is scarce or not accurate. In all cases, helpful

information for determining how likely states will change is obtainable from experts in

the field (SMEs) who know much of all the parts of the system, how they function, and

go wrong. By talking to small businesses, analysts can get expert views and qualitative

assessments to add to their numeric data. These include new transition chance
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prediction ideas and information that would not be obvious from looking at records

alone. This means that it will help understand the data and, to find the things that

bring change to states, expert knowledge will be beneficial. In this case, therefore, past

data and expert knowledge work jointly, ensuring that the Markov Chain models in the

optimization of maintenance are better informed and, hence, more accurate and

stable. This brings improvement to the performance and stability of the system.

8.2.3. Build the Transition Matrix

They make the transition matrix a crucial step in using the Markov Chain model to

improve maintenance. To show how the system changes over time, this grid counts the

chances of going from one state to another. The elements in the matrix show the

chances of going from one state to another within a certain amount of time. Each row

and column of the matrix represents a different state. These shift odds can be found in

several ways, such as by looking at past data, expert opinion, or statistical modeling. It

is essential to get these statistics right because they have a direct effect on how well

the maintenance optimization plan works (Stewart, 2021).

The transition matrix is the starting point for studying how the system works and

choosing repair steps. It makes it possible to figure out steady-state odds, showing how

the system will be spread over time across different states. Maintenance planners can

determine the chances of each state's balance by solving the steady-state equations.

This shows how stable and reliable the system is over time. These possibilities help

make maintenance plans more efficient by showing when important states need

preventative actions and where resources should be put. The transition matrix also

makes sensitivity analysis easier so stakeholders can see how changes in the likelihood

of transitions affect the system's performance and make changes to maintenance plans

as needed to keep getting better (Stewart, 2021).
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8.2.4. Calculate Steady-state Probability

It is essential to find the steady-state odds in a Markov Chain model to see how a

system will act in the long run and make the best maintenance plans. The odds of the

system staying there for a long time are shown in each state. They demonstrate the

level of stability of the spread. The formulas we use to find these odds are called

steady-state algorithms. Additionally, they show that the odds of entering and leaving

each state of the Markov Chain are similar. If we solve these equations, we get a list of

all the steady states that are possible for each state. From this, we can tell how safe

and sound the system is (Azimi et al., 2020).

If recognized, steady-state possibilities can define appropriate maintenance. This may

identify urgent issues requiring resource management. A "Major Fault" condition may

indicate system breakdown with a high steady-state probability. These steps should

have been followed by risk-reducing precautions. These solutions help plan the

optimum repair job, reducing downtime, extending equipment life, and improving

business operations. Repair plans must be examined and adjusted frequently to match

steady-state chances. The system's needs change; hence, flexible repair methods are

used (Azimi et al., 2020).

8.2.5. Optimize Maintenance Actions

The steady-state possibilities define feasible proactive efforts to improve the system

stability by maintaining the Markov Chain model. The maintenance plans may be tuned

to the probabilities of "Normal Operation," "Minor Fault," and "Major Fault." If the

model classifies the system as a "Major Fault," then the preventive maintenance plan

can be scheduled way ahead of time to avoid catastrophic failure. Such a way is

prudent enough in the usage of resources, for it keeps things running smoothly and

avoids costly repairs occasioned because of the big problems. Such dynamic feature of

Maintenance Optimization makes enterprise quickly adaptive to the changing system
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conditions and even befitting from its resources by adding real-time data to the

Markov Chain model (Ye et al., 2019).

Regular opportunities make unaffordable repair programs simpler. The approach helps

companies allocate resources depending on the likelihood of problems. They won't

need to inspect and maintain as often. If steady-state odds suggest the system spends

significant time in "Normal Operation" mode, condition monitoring or

reliability-centred maintenance may be applied. This focused method cuts down on

downtime that is not necessary and makes critical assets last longer, which makes the

business more efficient overall and lowers the cost of repairs. Companies may convert

from reactive to proactive maintenance by utilizing Markov Chain models in

maintenance optimization. This will make their systems more effective and last longer

while also making the best use of their resources.

Figure 1: Modeling for Reliability Optimization

By showing how likely things will change between different states or situations, the

Markov Chain Model graph compares the performance of the new maintenance plan

to the old one. If an item or system is in "good condition," "maintenance required," or

"failure," that state shows a different state. The line displays the likelihood of changing

from one state to another over time based on the repair actions taken. Compared to

the initial plan, the superior repair plan reduces system breakdowns and extends
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lifespan. System maintenance affects security and efficiency. The line highlights these

consequences and helps customers choose a restoration strategy.

8.2.6. Experimentation and Evaluation

Experts examine and verify the Markov Chain model of maintenance optimization using

two methodologies. First, they look at how the improved maintenance plan, derived

from a Markov Chain model, works best by comparing it with a standard schedule. For

that, scenarios or real-life tests are done to see what happens with the addition of the

tasks that the Markov Chain model has suggested to the plan in force. They can

measure how much better things are since the improved plan recorded such things as

system downtime, costs associated with making repairs, and dependability in general.

Any significant changes in how the two plans work out can show how well the Markov

Chain model works at improving maintenance (Ahmed et al., 2020).

Second, experts may use simulations to get a better idea of how reliable the system is

in different situations. It enables the learning of how the Markov chain model works

through the simulation of various work environments and maintenance with dynamic

chances for state changes. Sensitivity analysis and scenario testing can be done to

determine how stable the best maintenance plan obtained by the Markov Chain model

is against the magnitude of the system changes and unknowns it has to face. These are

simulation-based tests that would give a better insight into how the model works

under different circumstances and finally make one more confident that this model can

be used for real-life applications in improving maintenance.

8.2.7. Coding

Let's go through the code step by step:
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Figure 2. 1. Step of coding in Markov Chain Modelling

Therefore this line of code imports the NumPy array handling library along with the

rest of the ArcObjects.

Figure 3. 2. Step of coding in Markov Chain Modelling

The transition_matrix is a square matrix where each element (i, j) represents the

probability of moving from state i to state j. The states represent the condition of a

machine:The transition_matrix is a square matrix where each element (i, j) represents

the probability of moving from state i to state j. The states represent the condition of a

machine:

Good (0): The machine runs smoothly due to its proper maintenance and care.

Needs Maintenance (1): The thing needs to be monitored, but it will work

nevertheless.

Failed (2): The machine is down and can't work anymore.

Every line of the matrix has its sum to 1, and it is such that they account for 100%

probability distribution over the next states from the current one.

Figure 4. 3. Step of coding in Markov Chain Modelling

This vector shows the initial condition of the system, with a 100% probability of the

system being in a "Good" state and 0% for the others.
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Figure 5. 4. Step of coding in Markov Chain Modelling

The function simulates_markov_chain, uses transition matrix, initial state vector, and

the set number of steps to simulate.

A state vector, generated in a history, is stored and saved from the moment of the

beginning till the end.

Inside the loop, the state vector is updated by uniting the transition matrix and the

state vector via np.dot(), which perform a matrix multiplication. This multiplication

replaces the olds state vector by calculating transition probabilities.

The above state vector in the updated form is added to the history list after each step.

The function will output history, which is a NumPy array containing all state vectors

calculated during all steps of the simulation.

Figure 6. 5. Step of coding in Markov Chain Modelling

This line runs the simulation for 10 steps and stores the resulting series of state vectors

in simulation_result.
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Modeling a Markov chain with 10 steps beginning at a point where the system is in a

good state (100% probability), brings into play how the likelihood of being in each state

(Good, Needs Maintenance, Failed) is followed over time. Here are the results:

Initial state: 100% Good

1 step 90% Good 10% Needs Maintenance

2 steps: 83% Good 16% Needs Maintenance 1% Failed

3 steps: 77.9% Good 19.8% Needs Maintenance 2.3% Failed

4 steps: 74.07% Good 22.34% Needs Maintenance 3.59% Failed

5 steps: 71.13% Good 24.12% Needs Maintenance 4.75% Failed

6 steps: 68.84% Good 25.42% Needs Maintenance 5.74% Failed

7 steps: 67.04% Good 26.40% Needs Maintenance 6.56% Failed

8 steps: 65.62% Good 27.15% Needs Maintenance 7.23% Failed

9 steps: 64.49% Good 27.74% Needs Maintenance 7.78% Failed

10 steps: 63.59% Good 28.20% Needs Maintenance 8.22% Failed

Table1: Simulation results with 10 steps

This simulation exhibits the shift from a good state into a state that may require

maintenance or failure, therefore, emphasizing the importance that proactive

maintenance is in monitoring the system's health.
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Figure 7: State Probabilities over time in Markov Simulation

Above is the chart that displays the evolution of the probabilities to be in each

state (Good, Needs Maintenance, Failed) over 10 steps of the Markov chain simulation.

This can be seen from a reduction of the probability that the system is in a “Good”

state and a grow-up of probabilities that it is in a “Needs Maintenance” and “Failed”

states. This chart improves understanding of the system's temporal dynamics.

8.2.8. Predictive Maintenance and Decision-Making

A Markov Chain model can be used in maintenance optimization to help with

more than just making maintenance plans better. Guo and Liang (2022) say it can also

help with maintaining things and making intelligent choices. The model looks at the

chances of going from one state to another to guess how the system will act in the

future. Also, it can help you figure out how something might go wrong or where you
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need to take action. So, preventative maintenance is possible. In this type of

maintenance, jobs are done before a failure happens based on how likely it is to

happen. This Markov Chain model gives people an opportunity to make informed

decisions about when to organize the resources or plan for the maintenance exercises

or operations funding. The model can also help to compare the various repair schemes

through the modeling of the different situations and view their impact on the

performance and dependability of the system. This lets people who have to make

decisions use data to help them and make repair plans that are the best in terms of

cost-effectiveness, system uptime, and lowering risk. Maintenance optimization with

Markov Chain modeling makes management more reliable and preventative. This helps

businesses run better and have less downtime.

To sum up, using a Markov Chain model in maintenance optimization is a solid way to

make maintenance work more reliable and efficient. Because Markov Chains are not

clear, maintenance managers can better understand how systems change over time

and plan the best ways to cut down on downtime and maintenance costs while also

increasing uptime and efficiency. In this process, you describe states, figure out the

chances of changes, make transition models, figure out the chances of steady-states,

and then use what you have learned to find the best upkeep steps. Experiments and

tests, such as scenario testing and computer simulation, are some of the methods that

can also fully assess the capability of the Markov Chain model in enhancing

maintenance plans. This model helps in the optimization of forecasts, not just in

maintenance for an already existing one, together with intelligent decision-making by
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guessing how the system will be able to behave and finding possible failure modes,

hence easing the way to an economically valid plan of repair. Finally, Markov Chain

model applications in optimization underline more proactive maintenance

management that continues with the improvement of operating efficiency and

downtime reduction, hence running the business more safely and efficiently with time.
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9 Conclusion

This report is an in-depth analysis of the highly esteemed and influential Markov Chain

Cost/Life-cycle Model and its application in various areas. Having an advanced model

structure and a clear and systematic approach, this model is capable of giving a deep

understanding of the complicated dynamics and various life stages of a system at all

times. Next, it effectively captures all the intricate stages of changes occurring between

them and the gradual costs of each stage. However, it is important to mention that cost

performance evaluation of a certain project or software development process is really

complicated and usually uncertain due to which the Markov model introduced below

possesses the potential of giving much more accurate results and wider applications

than the traditional model.

The main power of Markov model is its unique ability to introduce uncertainty which is

peculiar to complex systems, allowing a wide range of possible outcomes and systemic

likelihood, while accommodating expert judgment, as well as various stakeholders

perspectives. This great flexibility is exploited as a mighty arm in accurate forecasting

and evaluation of project costs due to the possibility to rapidly accommodate and

consider some peculiarities that every separate project has.

Thorough knowledge and deep understanding of all stages of the life-cycle of a project

are necessary to successfully apply a Markov model. Through suitable constriction of a

very informative Markov model that incorporates all the knowledge and historical data

that exists, invaluable information regarding the steps and transformations of a

particular system can be got. It should be noted that Markov model has been used with

great practical success in numerous areas of engineering which ensures remaining

significance of Markov model in project management, product development, risk

analysis and others, among others.

Although, it should be noted that the current application of the Markov model in

project cost estimate and life cycle cost analysis is restricted only to homogeneous flow
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of life systems and those systems conforming to the basic assumptions of Markov

processes. The overwhelming flexibility and the capability of the model to be modified

suggest interesting prospects to apply the model in studying more advanced systems.

Therefore, more research on the model’s practical applications is necessary,

particularly when considering new technologies like building information modeling

(BIM) and geospatial information systems (GIS). The Markov model and these emerging

technologies have a deep synergistic interrelation with them due to which they are

capable of providing new strategies and precious insights for engineers.

Personally, a burning curiosity and deep aspiration remain to utilize the potential of the

Markov model in advanced research and powerful development in the domain of

smart cities. Along with the detailed simulation of different stages in the life-cycle of an

infrastructure system and their respective costs, the Markov model will significantly

change the decision-making process, providing the essential help and direction.

Ultimately, thereby, allowing the intelligent development of modern, technologically

advanced infrastructure systems. The implications of this research go way beyond any

particular discipline and are reflected in a wide range of engineering areas, such as

project management, product development, and risk analysis among others.

The next part of this deep research will compare enlightening literature by the classic

statistics with the unique Markov model. In addition, the prevailing lacunae within the

current literature will be thoroughly analyzed and critiqued, while offering a pragmatic

potential solution that exploits the tremendous potential of the Markov model for the

vital areas of project cost estimation and life-cycle cost analysis. The focal points of this

artistically crafted research project reveal the unalloyed strength and broad utilizations

of the Markov model.
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