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Background and Objective: When agents (e.g. a person and a social robot) perform a joint activity to achieve a joint 
goal, they require sharing a relevant group intention, which has been defined as a We-intention. In forming We-

intentions, breakdown situations due to conflicts between internal and “external” intentions are unavoidable, 
particularly in healthcare scenarios. To study such We-intention formation and “reparation” of conflicts, this 
paper has a two-fold objective: introduce a general computational mechanism allowing We-intention formation 
and reparation in interactions between a social robot and a person; and exemplify how the formal framework 
can be applied to facilitate interaction between a person and a social robot for healthcare scenarios.

Method: The formal computational framework for managing We-intentions was defined in terms of Answer set 
programming and a Belief-Desire-Intention control loop. We exemplify the formal framework based on earlier 
theory-based user studies consisting of human-robot dialogue scenarios conducted in a Wizard of Oz setup, video-

recorded and evaluated with 20 participants. Data was collected through semi-structured interviews, which were 
analyzed qualitatively using thematic analysis. N=20 participants (women n=12, men=8, age range 23-72) 
were part of the study. Two age groups were established for the analysis: younger participants (ages 23-40) and 
older participants (ages 41-72).

Results: We proved four theoretical propositions, which are well-desired characteristics of any rational social 
robot. In our study, most participants suggested that people were the cause of breakdown situations. Over half 
of the young participants perceived the social robot’s avoidant behavior in the scenarios.

Conclusions: This work covered in depth the challenge of aligning the intentions of two agents (for example, in 
a person-robot interaction) when they try to achieve a joint goal. Our framework provides a novel formalization 
of the We-intentions theory from social science. The framework is supported by formal properties proving that 
our computational mechanism generates consistent potential plans. At the same time, the agent can handle 
incomplete and inconsistent intentions shared by another agent (for example, a person). Finally, our qualitative 
results suggested that this approach could provide an acceptable level of action/intention agreement generation 
and reparation from a person-centric perspective.
1. Introduction

A patient and a physician share the plan to form and agree upon a 
treatment jointly and to realize this plan. In this case, both have a joint 
intention, or so-called We-intention [125] for establishing the treatment 
plan. A We-intention is not reducible to mere personal intention or I-
intention [128]. It is not enough for a We-intention to plan the treatment 
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together that each patient and physician intends to plan. Such coin-

cident intention does not even ensure that each knows of the other’s 
intention or is appropriately committed to the joint activity itself [17].

The patient’s and physician’s intentions may be uncertain, leading to 
disagreements or conflicts that we call here breakdown situations. These 
situations are characterized by the misinterpretation or misunderstand-
(H. Lindgren).
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Fig. 1. Example dialogue flows depicting avoidant, partially agreeing, and agreeing behavior.
ing (among other factors) of the We-intentions and their misalignment 
with I-intentions of the involved agents [17,128].

The care implications due to the pandemic worsened the already 
existing shortage of human-care services, moving in the direction of 
finding alternative solutions [47]. One such viable alternative was, 
for example, to use autonomous [52], telepresence- and teleoperated-
robots [118,133].

To enable interaction between robotic-care providers as a physician 
with patients requires certain social skills [51]. Specific to the pur-
poses of this work are the abilities of a robotic physician, enabling it 
to learn and differentiate models of the patient and to communicate 
with high-level dialogue. Researchers are already exploring interaction 
scenarios where a robotic physician interacts with a patient in clini-
cal practices [118,133]. Due to inherent uncertainty in understanding 
mental states, breakdown situations during interactions are unavoid-
able, and their management in patient-physician interaction settings is 
a complex challenge [100].

Most people develop skills and learn to manage breakdown situa-
tions employing different strategies (e.g. negotiation, deliberation, even 
fighting [129]). However, in a patient and robotic physician joint activ-
ity, the robot needs human-like capabilities to form a joint intention 
with the patient, share a mutual understanding about the activity, 
and manage breakdown situations in collaboration with the patient 
[122,121].

Recent research has highlighted the importance of detecting break-
down situations and proposed taxonomies in human-robot interactions 
(HRI) [123,64]. Capabilities to recognize and manage breakdown situ-
ations have been considered essential and make the interaction natural 
[93]. Researchers have found human-like conversational styles improve 
acceptance of assistive agents among people with dementia and mild 
cognitive impairment [130]. Therefore, managing Breakdown situa-
tions becomes salient when introducing robotic physicians capable of 
interacting with patients.

For this work, we use the definition of a robotic-physician corre-
sponding to the social robot as described in [121], where a social robot 
is defined as proactively engaging to fulfill internal goals of people [32], 
displaying cognitive capabilities similar to people [19,20], can distin-
guish other entities, and for which social interaction plays a key role 
[51]. Furthermore, the social robot strives to maintain a joint intention, 
hence, is characterized as a We-intentional agent (in the rest of the ar-
ticle, we interchangeably refer to robotic-physician as a social robot or 
simply an agent). Furthermore, the interaction by We-intentional agents 
(including people) is called joint activity in the rest of the text.

This paper focuses on breakdown situations arising from uncertainty

around the ‘intention’ an agent aims to co-create during joint activities 
with a person. Such a co-creation is directed towards achieving a group 

goal by agents (including people) capable of having a ‘We-intention,’ 
which is an aim-intention that all involved agents share the belief about 
[126]. Researchers have argued We-intention to be a mode or an atti-
tude that differentiates it from a case of fear [126], and contrasts with 
I-intentions that are internal to an agent. However, we cannot expect 
people always to form We-intention with a social robot, requiring it to 
manage breakdown situations.

For example, Fig. 1 depicts alternative interaction flows, where, 
in Fig. 1a the agent avoids (hence, the name avoidant behavior), the 
human’s proposed We-intention (that is not to have breakfast) and con-
tinues to co-create its prior proposed We-intention even though the 
person is not up for it. On the other hand, and in Fig. 1b a partially

agreeing behavior is considered when some intentions of the person co-
incide or align with that of agent, but there exist conflicting intentions 
that lead to a partially-agreeing behavior. In Fig. 1c, the robot adapts its 
intention with respect to what the person proposes, thus displaying an 
agreeing behavior. Therefore, in this work, we propose a formal frame-
work that allows a social robot to co-create such behaviors, facilitating 
We-intention despite breakdown situations from internal conflicts that 
may emerge from an agent’s I-intention.

This work aims to develop and exemplify a formal framework to 
manage intentions and breakdown situations. This is done based on ear-
lier theory-based user studies of people interacting with social robots 
in home-care scenarios focusing on the formalization of agreement on 
We-intentions [102,120,121]. Following previous works [120,121], we 
identified and define the following three situations that can occur relat-
ing to an agreement on We-intention:

– We-intention alignment. A social robot believes that a person in-
tends to do a joint activity, and thus such an agent intends to do its 
part of the activity.

– We-intention breakdown. A social robot believes that the person 
does not intend to do a joint activity but rather has an activity 
contradictory to the agent’s proposed activity.

– Partial We-intention alignment. A social robot believes there is a 
fragmentary agreement to jointly do an activity with the person.

Two main technical challenges that we faced in this paper are: 1) 
the uncertainty in the shared intention (e.g. a robot and a person try to 
act jointly, and both have partial information of the intentions of each 
other), and 2) a partial or null congruence between the internal and 
shared intentions (e.g. the social robot’s and the person’s intentions are 
contrary). Therefore, the following research questions are addressed in 
this paper:

1. How can We-intentions and breakdown situations in human-robot 
joint activity be captured and repaired using a formal computa-

tional mechanism?
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2. How could such a computational mechanism be materialized in 
human-robot joint activity and be perceived by people?

Research question 1 is addressed by extending a well-established 
framework of rational agents [16] with a non-monotonic mechanism for 
repairing the We-intention before the plan is defined and executed. The 
mechanism is exemplified (addressing Research question 2) by revis-

iting three dialogue scenarios and analyzing data collected in earlier 
studies with a particular focus on three levels of alignment defined in 
this paper [120,121]. The contributions of this paper are the following:

– Novel application of Answer set programming as a formal frame-

work to form and repair We-intentions in a human-robot joint 
activity specific to healthcare scenarios.

– Framework founded in a human-centered methodology basing our 
formal framework on empirical findings.

More specifically: 1) we prove that the mental states of an agent are 
always consistent if an Answer set programming (ASP) [85] approach is 
used to manage We-intentions (see Proposition 2 and Theorem 1); 2) 
we present two mechanisms for repairing We-intention breakdown, the 
first one using the Closed World Assumption in ASP (Proposition 3), and 
another more restrictive using ASP constraints (Proposition 4).

This paper is organized as follows: the methodology and a necessary 
background are provided in Section 2, and the results, including the 
formal framework and some properties that the framework fulfills, in 
Section 3.1. We exemplify the formal framework and how people may 
perceive the agent’s behavior in Section 3.2. The related work of this 
paper was made following a systematic literature review procedure and 
is presented in Section 4. We end our paper by discussing our contribu-

tions in Section 5 and conclusions in Section 6.

2. Methods

This section introduces the necessary background for characterizing 
We-intentions based on Tuomela’s work [125,126,128], and Subsection 
2.2 introduces the formal framework based on Answer set programming 
(ASP), basic concepts, and the theoretical background used.

ASP provides methods to account for ‘uncertainty’ for knowledge 
representation and allows non-monotonic reasoning. Non-monotonic 
reasoning draws tentative conclusions, which can be retracted in the 
presence of new evidence or facts. This is important for co-creating 
We-intentions as they evolve during the interaction, and the agreement 
about them may change as the interaction unfolds.

The intention control mechanism was defined in a high-level algo-

rithm which was evaluated as a first step by applying this to a subset of 
the scenarios defined and evaluated in [120,121]. Three human-robot 
healthcare scenarios were used as a benchmark in this evaluation. The 
methodology to develop those three scenarios is presented in Subsec-

tion 2.3.

2.1. We-intentions concepts

The concept of joint intentions is central to the We-intentions the-

ory, which drives the agents’ acting together. Therefore, to define joint 
intentions between agents, we follow the work of Tuomela [125–127]. 
In Tuomela’s work, a joint intention is referred to as “action intention”, 
which can be achieved by agents performing joint actions. These ac-

tions are preconditioned on involved agents having 1) a We-intention 
to perform the actions, and 2) they mutually believe those actions can 
be achieved. Such We-intentional agents, during a joint activity, can 
commit to their private or internal intentions, in other words, form an 
I-mode attitude or a mutually agreed We-mode attitude. Let us define 
the two types of intentions more formally depending on the intentional 

mode in a formal representation used in our framework. We define in-
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Fig. 2. We- and I-intention scenarios in a human-robot interaction.

ternal, external, and We-intentions during an interaction between a social 
robot and a person, as follows:

Definition 1 (Internal intentions). Let �𝑎𝑔 be the full set of an agent’s 
intentions, then the internal intentions of an agent is a set 𝐼𝑎𝑔

𝐼𝑛𝑡
⊆ �𝑎𝑔 .

Similarly, we can define the agent’s external and We-intentions with 
respect to a person as follows:

Definition 2 (External intentions). Let �𝑝𝑒𝑟 be the set of a person’s in-
tentions. Then we say that the external intentions of an agent is a set 
𝐼
𝑎𝑔

𝐸𝑥𝑡
⊆ �𝑝𝑒𝑟.

Then we define the We-intentions:

Definition 3 (We-intentions). Let �𝑎𝑔 and �𝑝𝑒𝑟 be the sets of (full) in-
tentions of an agent and a person. Then a We-intention is given by: 
�𝑎𝑔
𝑊 𝑒
⊆ �𝑎𝑔 ∩ �𝑝𝑒𝑟.

Example 1. Suppose a social robot (as an agent) aims to support the 
health and well-being of a person through two internal intentions: 
1) reminding to take pills, and 2) advising healthy cooking recipes, 
i.e. �𝑟𝑜𝑏 = {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙, 𝑎𝑑𝑣𝑖𝑠𝑒_𝑟𝑒𝑐𝑖𝑝𝑒}. Now, let us suppose that a per-
son starts an interaction with a social robot in a kitchen, saying that 
she intends to prepare breakfast and read the newspaper, i.e. �𝑝𝑒𝑟 =
{𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡, 𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟}.

Then, in this specific scenario, three sets of alignment, breakdowns 
due to conflict, and partial alignment of intentions can be found (see 
Fig. 2):

– We-intentions alignment: 𝐼𝑟𝑜𝑏
𝑊 𝑒

� 𝐼𝑝𝑒𝑟
𝑊 𝑒

𝐼𝑟𝑜𝑏
𝑊 𝑒

� 𝐼𝑝𝑒𝑟
𝑊 𝑒

= {𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡, 𝑎𝑑𝑣𝑖𝑠𝑒_𝑟𝑒𝑐𝑖𝑝𝑒}

– We-intentions breakdown: between 𝐼𝑟𝑜𝑏
𝐼𝑛𝑡

and 𝐼𝑝𝑒𝑟
𝐼𝑛𝑡

𝐼𝑟𝑜𝑏
𝐼𝑛𝑡

= {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙}

𝐼
𝑝𝑒𝑟

𝐼𝑛𝑡
= {𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟}

– Partial We-intentions alignment: between 𝐼𝑟𝑜𝑏
𝐼𝑛𝑡

and 𝐼𝑝𝑒𝑟
𝐼𝑛𝑡

𝐼𝑟𝑜𝑏
𝐼𝑛𝑡

= {𝑎𝑑𝑣𝑖𝑠𝑒_𝑟𝑒𝑐𝑖𝑝𝑒}

𝐼
𝑝𝑒𝑟

𝐼𝑛𝑡
= {𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡, 𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟}

Moreover, we can see that the subset 𝐼𝑝𝑒𝑟
𝐸𝑥𝑡

= {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙} conflicts 
with every other intention of the person.

The previous example presents two types of intention relations: a 
potential intention alignment and potential intention breakdowns due to 
conflict and partial alignment of We-intentions.

Definition 4 (Intention breakdown). Let 𝑖𝑎 ∈ 𝐼𝑎𝑔1
𝑊 𝑒

and 𝑖𝑏 ∈ 𝐼𝑎𝑔2
𝐼𝑛𝑡

, be two 

intentions from agents 𝑎𝑔1 and 𝑎𝑔2, we say that there is a breakdown 
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situation because 𝑖𝑎 is in conflict with 𝑖𝑏 if there is a semantic evaluation 
in which the set {𝑖𝑎, 𝑖𝑏} is inconsistent. Noted as BrkDwn(𝑖𝑎, 𝑖𝑏).

We define an alignment relationship between two intentions as:

Definition 5 (Aligned intention). Let 𝑖𝑎 ∈ 𝐼𝑎𝑔1
𝑊 𝑒

and 𝑖𝑏 ∈ 𝐼𝑎𝑔2
𝐼𝑛𝑡

be two in-
tentions, if the set {𝑖𝑎, 𝑖𝑏} is consistent, then we say that 𝑖𝑎 and 𝑖𝑏 are 
semantically aligned. Noted as ALIGN(𝑖𝑎, 𝑖𝑏).

These relationships have a semantic perspective, i.e. two intentions 
may or may not be in conflict if an interpretation of those intentions 
leads to a semantic disagreement if they belong to the same set of 
intentions. In this paper, we do not suggest any particular formal com-
putational mechanism for such semantic interpretation; however, we 
use techniques from natural language processing (NLP) in our implemen-
tation (see [117] for a review).

Agreeing and avoiding intentions for forming We-intentions

In Tuomela’s work [128], different requirements are necessary for 
a We-intention formation, such as a collective of agents and mecha-
nisms for sharing intentions, beliefs, and task distributions. However, 
in healthcare scenarios, the relationship between a social robot and a 
person is not symmetric, i.e. it is expected that the person’s intentions 
and desires have greater importance or relevance than a social robot’s. 
Therefore, we explore three types of intention acceptance during We-
intention breakdown situations:

Definition 6 (Agents intention acceptance types). Let 𝑎𝑔1 and 𝑎𝑔2 be two 
agents forming a We-intention, with 𝑖𝑎, 𝑖𝑐 ∈ 𝐼𝑎𝑔1

𝑊 𝑒
, 𝑖𝑏 ∈ 𝐼𝑎𝑔2

𝐼𝑛𝑡
, and 𝑖𝑎, 𝑖𝑏 have 

a breakdown BrkDwn(𝑖𝑎, 𝑖𝑏), and 𝐼𝑎𝑔2
𝐼𝑛𝑡

are preferred than 𝐼𝑎𝑔1
𝐼𝑛𝑡

. Then, 𝑎𝑔1
can be an:

– Agreeing agent, accepts an intention despite a potential internal 
conflict, by integrating the external intention into its own inten-
tions: 𝐼𝑎𝑔1

𝐼𝑛𝑡
∪ {𝑖𝑏}

– Avoidant agent that constraints (blocks) an external intention to 
avoid a breakdown due to an internal conflict: 𝐼𝑎𝑔1

𝐼𝑛𝑡
∪ {𝑖𝑏𝑙𝑜𝑞

𝑏
}

– Partial agreeing agent, which accepts part of the intentions of the 
other agent and blocks other intentions: 𝐼𝑎𝑔1

𝐼𝑛𝑡
∪ {𝑖𝑏𝑙𝑜𝑞

𝑏
} ∪ {𝑖𝑐}

where 𝑖𝑏𝑙𝑜𝑞
𝑏

symbolizes the generation of a constraint that disables the 
intention to be used by the agent when it is integrated into its knowl-
edge base.

In the next section, we will formalize the notions of the types of 
agents presented in Definition 6; we will use Answer set programming 
as a mechanism for representing the accepting and blocking intentions 
during We-intention breakdown situations.

2.2. Theoretical framework background

In this section, we introduce the necessary background to character-
ize We-intentions in a person-agent scenario.

Syntax

In this paper, we assume that every agent has a knowledge base en-
coded using an extended logic program (ELP) [56], which is a set of rules 
with the form: 𝐿1, … , 𝐿𝑙 � 𝐿𝑙+1, … , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, … , 𝑛𝑜𝑡 𝐿𝑛(𝑛 � 𝑚 � 𝑙 �
0) where each 𝐿𝑖 is a positive/negative literal. not is negation as failure

(NAF) [56] (e.g. 𝑛𝑜𝑡 𝐴 represents uncertainty to draw a conclusion about 
atom 𝐴). ¬𝐴 represents negative information (w.r.t. A). The symbol “,” 
represents disjunction. The left-hand side of a rule is called the head, 
and the right-hand side is the body. A ℎ𝑒𝑎𝑑(𝑟), 𝑏𝑜𝑑𝑦+ and 𝑏𝑜𝑑𝑦− repre-
sent literals 𝐿1, ..., 𝐿𝑡, 𝐿𝑡+1, ..., 𝐿𝑚 and 𝐿𝑚+1, ..., 𝐿𝑛, respectively. A rule 𝑟
is a constraint if ℎ𝑒𝑎𝑑(𝑟) = ∅; and 𝑟 is a fact if 𝑏𝑜𝑑𝑦(𝑟) = ∅. A program 𝑃

is NAF-free if 𝑏𝑜𝑑𝑦−(𝑟) = ∅ for every rule 𝑟 in 𝑃 [110].
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Semantics

In this paper, we use answer set semantics [56], an extension of Stable 
model semantics (STB). For STB, if a 𝐿𝑖𝑡 is the set of all ground literals 
of an ELP, and a set 𝑆 ⊆ 𝐿𝑖𝑡, then given a ground rule 𝑟 if 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑆
and 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑆 = ∅, then implies that ℎ𝑒𝑎𝑑(𝑟) ∩ 𝑆 = ∅. In particular, 
𝑆 satisfies a ground integrity constraint 𝑟 with ℎ𝑒𝑎𝑑(𝑟) = ∅ if either 
𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑆 or 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑆 = ∅. 𝑆 satisfies a ground program 𝑃 if 𝑆
satisfies every rule in 𝑃 . When 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑆 (w.r.t. ℎ𝑒𝑎𝑑(𝑟) ∩𝑆 = ∅), it is 
also written as 𝑆 ⊧ 𝑏𝑜𝑑𝑦+(𝑟) (w.r.t. 𝑆 ⊧ ℎ𝑒𝑎𝑑(𝑟)).

Definition 7 (Answer set function AS). Let 𝑃 be a NAF-free ELP, a set 
𝑆 ⊆ 𝐿𝑖𝑡 is an answer set of 𝑃 if 𝑆 is a minimal set such that: 1) 𝑆
satisfies every rule from the ground instantiation of 𝑃 , and 2) 𝑆 = 𝐿𝑖𝑡
if 𝑆 contains a pair of complementary literals 𝐿 and ¬𝐿. The rule 𝑟𝑆 ∶
ℎ𝑒𝑎𝑑(𝑟) � 𝑏𝑜𝑑𝑦+(𝑟) is included in the 𝑟𝑒𝑑𝑢𝑐𝑡 𝑃 𝑆 if 𝑏𝑜𝑑𝑦−(𝑟)𝑐𝑎𝑝𝑆 = ∅. 
Then, 𝑆 is an answer set of 𝑃 if 𝑆 is an answer set of 𝑃𝑆 . In this paper, 
the set of all answer sets of P will be written as AS(𝑃 ).1

In this paper, the difference between 𝑛𝑜𝑡 𝑃 and ¬𝑃 is essential when-
ever we cannot assume that the available positive information about 𝑃
is complete, i.e. when the closed world assumption (CWA) does not apply 
to 𝑃 [56].

Definition 8 (CWA). Let 𝑥 ∈ 𝑃 be an atom 𝑥, we use CWA(𝑥) to denote 
the following operation to 𝑥: ¬𝑥 � 𝑛𝑜𝑡 𝑥

Example 2 (Applying CWA). Let 𝐼𝑟𝑜𝑏
𝐼𝑛𝑡

= {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙} be an internal inten-
tion of a social robot. Then, if we apply CWA to the atom 𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙, 
we will obtain CWA(𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙) = {¬𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙 � 𝑛𝑜𝑡 𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙}, 
which has the intuitive reading: “if there are no evidence that the pill 
was reminded, then it is assumed that the pill reminder was not given”.

We will use CWA as a mechanism for dealing with an agreeing agent 
behavior (Definition 6). In the same context, we can block a specific 
atom, for example, 𝑥, by adding the rule �� 𝑥 into the program.

Example 3 (Blocking an atom). Let 𝐼𝑟𝑜𝑏
𝐼𝑛𝑡

= {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙} and 𝐼𝑝𝑒𝑟
𝐼𝑛𝑡

=
{𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟} be two agents’ intentions, then if the social robot 
is forced to accept the external intention, having a consistent knowl-
edge base 𝑃 , it can block 𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟 as follows: 𝑃 ∪ {��
𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟′}.

2.3. Benchmark scenarios and people’s perception of breakdown situations

To address our second research question, we adopt three video-
recorded dialogue scenarios from previous work [120,121] to exemplify 
the formal computational mechanism directing the robot in human-
robot joint dialogue activities. The selected scenarios illustrate situa-
tions when We-intention breaks down (We-intention conflict and We-
intention partial alignment), and aligns (We-intention alignment). Fur-
thermore, the scenarios embed situations when the social robot and the 
person display agreeing, partially agreeing, and avoidant behavior. The 
collected data obtained through interviews with participants viewing 
reflecting on the recorded dialogues were analyzed with a particular 
focus on the three kinds of behavior (agreeing, partially agreeing, and 
avoidant behavior). The results were expected to illustrate a tentative 
user’s experience of We-intention alignment and breakdown situations.

Selected scenarios

The first scenario illustrates We-intention alignment where a social 
robot and a person begin the day by interacting about how the person 
is feeling and what can be done about it if they are not feeling well. 
1 In this paper we use the ASP solver DLV system [82].
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The social robot adapts its behavior to the human’s suggested topic (see 
Fig. 3). The second scenario illustrates the We-intention breakdown

presented in Fig. 4, where the social robot and person talk about the 
person not sleeping well because of pain. The dialogue leads to the per-
son rejecting the social robot’s proposal to address the pain issue, thus 
causing a breakdown of We-intention. In the third scenario embedding
We-intention partial alignment exemplified in Fig. 5, the person and 
the social robot talk about pain, and the person again rejects the robot’s 
suggestion. Still, when the social robot provides a supporting argument, 
the person accepts the robot’s proposal, thus, resulting in a partially 
aligning of We-intentions.

Study setup, data selection, and analysis

We refer to the two persons who acted in the WoZ setup as volun-
teers and people who participated in the study, viewing the recorded 
scenarios as participants.

20 participants in the age range of (23 − 72) were recruited for the 
study. For analysis purposes, we categorize the participants aged 23-40 
as younger participants (YA) and those between 41-72 as older partic-
ipants (OA). Each group has 10 participants, with six women and four 
men each.

The study was conducted remotely, where the participants watched 
audio and video recordings and participated in a semi-structured inter-
view. The recordings were constructed in a Wizard of Oz (WoZ) setup 
with two volunteers interacting separately with a Nao robot. The joint 
activities were authored dialogues on daily living healthcare situations 
and were performed in a lab turned into a home environment.

The interview contained the following questions: (1) What goal did 
the social robot and volunteer have in this dialogue? (1.2) Did you no-
tice any mismatch between those goals? (2) What sort of behavior did 
the social robot display? and (3) What kind of behavior did the volun-
teers display?

The analysis focused on whether the agents’ (volunteers and social 
robot) goals matched or mismatched and whether we could categorize 
the social robot’s and volunteer’s behavior as agreeing, partially agree-
ing, or avoidant.

Data were analyzed qualitatively using Thematic Analysis (TA). TA 
is a qualitative method used to derive “patterns of meaning” referred to 
as themes in a data set. TA is considered a rigorous, systematic, and 
accessible approach to coding and theme development [23]. To ap-
ply TA, we followed the following steps: (1) familiarization with the 
transcribed data with research questions in mind. (2) Identification of 
codes corresponding to participants´ perception of the person and the 
social robot’s ‘intention’ and ‘behavior’ aspects. The codes were based 
on keywords such as ‘conflict,’ ‘ignored,’ ‘intention,’ ‘goal,’ ‘behavior,’ 
etc. (3) The codes were categorized into agreeing, partially agreeing, or 
avoidant behavior; and when there was a breakdown or alignment of 
We-intention. TA was performed by one of the authors using Taguette 
software [104].

3. Results

The results include a novel formal computational mechanism en-
abling agents to deal with We-intention formation under uncertainty 
(Subsection 3.1) and exemplifications of the framework based on a user 
study of human-robot dialogues (Subsection 3.2).

3.1. Theoretical results - the adjustable intentionality framework

In this paper, we characterize an agent as an entity with beliefs, 
desires, and intentions [105,16]. As a shortcut notation, we will use �
to note the intentions of any agent, instead of �𝑎𝑔 as a mechanism for 
generalization; we will use the specific notation �𝑎𝑔, �𝑝𝑒𝑟, 𝐼𝑎𝑔, 𝐼𝑝𝑒𝑟 when 
we describe joint activities.

Definition 9 (Joint belief-desire-intention framework). Let � be a set of 

agents’ beliefs, � be a set of desires, and � be the joint intentions of 
�&�R�P�S�X�W�H�U �0�H�W�K�R�G�V �D�Q�G �3�U�R�J�U�D�P�V �L�Q �%�L

an agent 𝐴𝑔. Then, a joint BDI framework is a tuple 𝐽𝐵𝐷𝐼 = ��, �, ��, 
where � = 𝐼𝐼𝑛𝑡 ∪ 𝐼𝐸𝑥𝑡.

In this setting, a We-intention is the set � = 𝐼𝐼𝑛𝑡 ∪ 𝐼𝐸𝑥𝑡, and an agent 
uses 𝐽𝐵𝐷𝐼 framework to generate consistent plans considering their 
and the intentions of other agents, commit to one of them, and execute 
it. Such procedure is performed by a control loop in Algorithm 1, which 
iterates until the agent is active.

Control loop specification

In this loop, functions such as intend(), cooperate(), or plan() (lines 
12, 18, and 20 respectively) among others, are formally implemented 
and described in terms of logic programming procedures, as is pre-
sented in Table 1. The control loop starts (lines 1, 2, and 6) with the 
initialization of atoms and sets of atoms. The iterative reasoning pro-
cess initiates with a fact-obtaining phase (line 9), where 𝐹 is a set of 
facts (𝑏𝑜𝑑𝑦(𝑟) = ∅, of a given rule 𝑟), which are joined to the set of initial 
beliefs �0 to update them (line 10), and generate a new set of desires 
based on the initial set of intentions. Then, the loop starts with the 
manipulation of intentions (highlighted lines in blue in Algorithm 1), 
which is the core of our contributions.

Table 1 provides a simplified explanation of important functions for 
intention management (first column) that are used in the presented con-
trol loop. The second column is the actual formalism in terms of Answer 
set programming.

Intention generation and reparation

In line 12 of Algorithm 1, intend is the process for generating the 
intentions of the agent. In this paper, the answer sets obtained from 
function AS are considered potential intentions. In line 13, the agent ob-
tains the intentions that other agents share.

The line 14 of our control loop is the primary evaluation procedure 
for intention reparation, which is when an external intention is not part 
of the agent’s internal intention set, and at the same time, the external 
intention has a full or partial conflict with the existent intentions, then, 
a reparation intention process starts (repairCooperation()) with three 
alternatives (options OP) for repairing the We-intention breakdown:

OP1 Agreeing scenario: the agent applies CWA for every atom that is 
not congruent with its internal intentions. For example, an atom 
𝑥 ∈ 𝐼𝐸𝑥𝑡 that is 𝑥 ∉ 𝐼𝐼𝑛𝑡, then the agreeing agent accepts the new 
intention atom without making inconsistent its already defined 
intentions. It adds the following sets of rules: { 𝑥 � 𝑛𝑜𝑡 ¬𝑥, ¬𝑥 �
𝑛𝑜𝑡 𝑥}.

OP2 Avoidant scenario: the agent creates constraints for every atom 
that is not congruent with its intentions. Continuing with the ex-
ample in OP1, an avoidant agent adds the following rule �� 𝑥 for 
every 𝑥 ∈ 𝐼𝐸𝑥𝑡, 𝑥 ∉ 𝐼𝐼𝑛𝑡.

OP3 Partial agreeing scenario: the agent accepts and constrains parts 
of the external intention set. For example, let 𝑥, 𝑦 ∈ 𝐼𝐸𝑥𝑡 and 
BrkDwn({𝑥, 𝑦}, 𝐼𝐼𝑛𝑡), then it can be the case that 𝐼𝐼𝑛𝑡 ∪ {�� 𝑥} ∪
{¬𝑦 � 𝑛𝑜𝑡 𝑦}, blocking 𝑥 and using CWA with 𝑦.

In this paper, we call cooperate (line 18) the process of adoption 
of external intentions. This mechanism consolidates a set of potential 
intentions that always is consistent (see properties in the next section), 
whether other agents’ intentions were repaired or not in a previous step. 
Such a consolidated set of intentions is shared by the agent (line 21), 
and finally, the control loop ends with a selection of one intention that 
the agent is committed to (line 20), which will be executed (line 22).

In the following, we present novel formal properties of our control 
loop based on answer sets.

Properties of an answer set-based control loop

In the previous section, we present an extension of a “classic” BDI 

control loop with novel characteristics using the Answer set program-
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Algorithm 1: Adjustable intention control loop. Highlighted lines from 12 to 18 are the main focus of this paper.
Table 1

Map of mental state functions of an agent’s control loop (Algorithm 1), and 
formal procedures in Answer set programming.

Control loop function LP procedure

getFacts() 𝐹 ⊆� = {𝑥,… , 𝑦} where 𝑥,… , 𝑦 are facts

update(𝑥,𝐵) 𝐵 � 𝑥′ ∪ 𝑥 | 𝑥′ ∈ 𝐵,𝑥 ∉𝐵
wish(�, 𝐼0) 𝑃 ⊆ 𝐹 ∪𝑅
intend(�,𝐷, 𝐼𝐼 𝑛𝑡) AS(𝑃 )
getJointIntent() 𝐹 ∪ 𝐹 ′�𝐹 ′ = 𝐼𝐸𝑥𝑡

repairCooperation(𝐼𝐸𝑥𝑡)

OP1. 𝐼𝑟
𝐸𝑥𝑡

∪ {¬𝑥� 𝑛𝑜𝑡 𝑥} | ∀𝑥 ∈ 𝐼𝐸𝑥𝑡, 𝑥 ∉ 𝐼𝐼𝑛𝑡
OP2. 𝐼𝑟

𝐸𝑥𝑡
∪ {�� 𝑥} | ∀𝑥 ∈ 𝐼𝐸𝑥𝑡, 𝑥 ∉ 𝐼𝐼𝑛𝑡

OP3. 𝐼𝑟
𝐸𝑥𝑡

∪ {�� 𝑥} ∪ {¬𝑦� 𝑛𝑜𝑡 𝑦} | 𝑥, 𝑦 ∈ 𝐼𝐸𝑥𝑡, 𝑥, 𝑦 ∉ 𝐼𝐼𝑛𝑡
and BrkDwn({𝑥, 𝑦}, 𝐼𝐼𝑛𝑡) for OP1,OP2 and OP3

cooperate(𝐼𝐼𝑛𝑡, 𝐼𝐸𝑥𝑡) or

cooperate(𝐼𝐼𝑛𝑡, 𝐼𝑟𝐸𝑥𝑡)
AS(𝑃 ) ∪ 𝐼𝐸𝑥𝑡 or AS(𝑃 ) ∪ 𝐼𝑟

𝐸𝑥𝑡

plan(�,�) SEL𝑥, 𝛼(AS(𝑃 ) ∪ 𝐼𝐸𝑥𝑡) or SEL𝑥, 𝛼(AS(𝑃 ) ∪ 𝐼𝑟
𝐸𝑥𝑡

)

ming approach. In this section, we present the formal properties of our 
framework. We start with a set of fundamental axioms defining key re-

lationships in the We-intention formation.

Proposition 1 (Axioms of person-agent We-intention formation). Let 𝑎𝑔
and 𝑝𝑒𝑟 be two agents where 𝑝𝑒𝑟 represents a person, with sets of intentions 
�𝑎𝑔 and 𝐼𝑝𝑒𝑟 ⊆ �𝑝𝑒𝑟. The following axioms define We-intentions relations:

– �𝑎𝑔 � ∅, Intentional agent

– �𝑎𝑔 ∩ �𝑝𝑒𝑟 = ∅, Breakdown scenario

– 𝐼𝑝𝑒𝑟 ∩ �𝑎𝑔 � ∅, Partial We-mode

– 𝐼𝑝𝑒𝑟 � �𝑎𝑔 , Full We-mode

– �𝑝𝑒𝑟 ∩ (�𝑎𝑔 ∪ 𝐼𝑝𝑒𝑟 ∗) � ∅, Person’s intention adaptation (CWA applica-

tion)

– �𝑝𝑒𝑟 ∩ (�𝑎𝑔 � 𝐼𝑝𝑒𝑟 ∗) � ∅, Person’s intention inhibition

Proposition 1 establishes the initial conditions for a We-intention 
formation. The first axiom defines a desirable characteristic of an in-

tentional agent, where the set of intentions of an agent should not be 
empty. The rest of the axioms are consequences of considering break-

downs and agreements among intentions, which is the key characteris-
tic for decision-making in Algorithm 1.
Consistent mental states using answer sets approach:

We start by showing a key property in the process of intention shar-
ing from the perspective of an agent that receives an intention (not the 
initiator of the joint intention).

Proposition 2 (Consistent shared intentions). Let 𝐴𝑔1 and 𝐴𝑔2 be two 
agents with knowledge bases encoded in logic programs 𝑃1 and 𝑃2, respec-

tively. If each agent uses an answer set approach to generate their intentions 
(Algorithm 1), then every set of the shared intentions (partial intentions) is 
consistent.

See Proof A in Appendix section A.

The importance of Proposition 2 lies in the fact that when sets of 
a stable model are used in shared mental states such as intentions or 
partial intentions, they are always consistent, meaning that under our 
approach, two agents cannot have uncertain atoms that may generate 
misinterpretations.

Theorem 1 (Consistently shared states). Let 𝐴𝑔1 be an agent with encoded 
information in a program 𝑃1. If an answer set process is used for interpret-

ing any mental state (w.r.t. BDI), then such mental state representation is 
consistent.

See proofs in Appendix A.

Generalizing from Proposition 2, Theorem 1 establishes a clear dif-
ference between our answer set approach and previous approaches. 
Unlike other contemporaneous control loops for rational agents, Algo-
rithm 1 guarantees consistency when used to encode mental states.

Repairing shared intentions

In Algorithm 1 line 15, we presented a mechanism of shared in-
formation manipulation that an agent can use when there is a partial 
convergence among internal and shared intentions.

Proposition 3 (Incompatible atom elimination using CWA). Let 𝑃1 and 𝑃2
be two encoded knowledge bases of two agents. If ∃𝑥 ∈ 𝑃2 and 𝑥 ∉ 𝑃1, we 
say that 𝑥 is incompatible w.r.t. 𝑃1. Then, by adding the rules: 𝑥 � 𝑛𝑜𝑡 ¬𝑥
and ¬𝑥 � 𝑛𝑜𝑡 𝑥 into 𝑃1, the incompatible atom 𝑥 is eliminated, being 𝑃1∪

{𝑥 � 𝑛𝑜𝑡 ¬𝑥} ∪ {¬𝑥 � 𝑛𝑜𝑡 𝑥} consistent.
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There is the practical importance of Proposition 3, which is when an 
agent needs to “adopt” an external atom as part of its knowledge base 
(see OP1 in Table 1), maintaining at the same time its knowledge base 
consistency. The proposed method for repairing incompatibilities de-
fines an agreeing behavior of such an agent, meaning that agents using 
this strategy will always accept a shared atom. From the perspective of 
We-intentions in [128], Proposition 2 i.e. OP1 process in Algorithm 1, 
is a necessary condition to establish a full-blown joint intention, which 
is the case of every participant symmetrically having the same relevant 
We-intention [128]. On the other hand, if an agent restricts a shared 
atom instead of adopting it, then it creates a logic programming con-
straint, which makes such an atom impossible to be true.

Proposition 4 (Restricting atoms with constraints). Let 𝑃1, 𝑃2 be two en-

coded knowledge bases of two agents 𝐴𝑔1, 𝐴𝑔2. If ∃𝑥 ∈ 𝑃2 and 𝑃1 ∪ {�� 𝑥}, 
then 𝑥 will not be true in 𝐴𝑔1.

The previous proposition is a strong restriction for accepting any 
atom. The procedure presented in Table 1 as OP2 is for agents that 
reduce the margin of cooperation.

Computational complexity of the framework

In this section, we address the computational complexity of the pro-
posed framework, mainly the associated costs of different parts of Algo-
rithm 1. To this end, we present the approximate computational cost 
of intention generation considering well-established asymptotic upper 
bounds. In this context, we are not interested in the specific compu-
tational cost (time) that a function or the entire Algorithm 1 has in a 
given programming implementation. Instead, we are focused on delin-
eating approximate upper boundaries, which is a more general exercise 
with practical implications. Finally, we summarize a set of heuristics 
that can be used to cope with “costly” functions in our framework.
Notation We use standardized computational complexity notation [69]. 
Appendix B introduces a background of computational complexity the-
ory in logic programming and the corresponding notation.
Approximate computational cost analysis of functions in our con-

trol loop

– getFacts() (Line 9). Perception of facts can be considered as a non-
complex task in the Algorithm 1 setting, i.e. its cost is linear (𝑂(𝑛)) 
and dependent on the environment. The rationale for this assump-
tion is that obtaining facts from the environment does not imply 
search or more computationally complex tasks. However, since the 
late 1990s, it has been well-known that the (time) cost of sensing

in social robots depends on the type of environment (see the work 
of Kinny, Georgeff, and Henlder in [73] to assess optimal sensing 
considering static and dynamic worlds).

– update() (Line 10). The LP procedure of the beliefs update func-
tion 𝐵 � 𝑥′ ∪ 𝑥 | 𝑥′ ∈ 𝐵, 𝑥 ∉ 𝐵 can be considered a belief revision

procedure in the logic programming literature [2,4,35,66]. In that 
context, the computational cost depends on the associated tasks to 
the update operator (∪ in Line 10) and the type of modification that 
such operation implies, for example, in [9,34,66] (among others), 
a comparison between answer set models [86] is performed to eval-
uate the equivalence of programs (in the sense of strong equivalence

[87]). Which is a decision problem of the form: given 𝐵 and 𝑥′, is 𝑥′

true in all answer sets of 𝐵? which is the decision whether to update 
𝐵 with 𝑥′ or not. In [48] was identified that using cautious reason-

ing, the complexity of aggregate operators (functions) brings the cost 
to 𝛱𝑃

2 considering disjunctive programs. Other updating/aggregate 
operators and their complexity analysis using different underlying 
representations and semantics have been reported in [31,44]. This 
in-depth analysis of the update operator will be part of our future 
work.

– wish() (Line 11). This procedure is oriented to bring about a 

relevant desire (or goal) from a defined set of goals (following 
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the “standard” BDI model [18]). There are several mechanisms 
how wish could be practically implemented, as a search process 
and preference-elicitation mechanism. These can be considered 
polynomial-time algorithms, or at least there are polynomial-time 
reductions of such problems. However, regarding search mecha-

nisms, the existence of polynomial-time decision algorithms alone 
does not ensure that a corresponding search problem can be solved 
efficiently or correctly [50]. Other non-monotonic reasoning mech-

anisms for implementing a wish function have been proposed in 
[59] using formal argumentation theory, which, under the stable 
argumentation semantics [41] and under a credulous perspective is 
non-deterministic 𝑁𝑃 (see technical details in [42]).

– intend() (Line 12). In Algorithm 1, the intention generation is per-

formed by a function AS(), which is the generation of answer sets 
(stable model [56,86]). Such operations are NP-hard problems with 
several variants and reductions. Moreover, it has been proved that 
other less costly mechanisms can generate equivalent answer sets 
under certain underlying representation restrictions (see [38,39]).

– getJointIntent() (Line 13). This function integrates the internal in-

tentions of the agent with the external intentions of other agents. In 
this context, the computational cost is not significant, considering 
the cost of other functions.

– repairCooperation() (Line 15). A key part of the paper is the re-

pairing options OP1-OP3. In any of these options, the suggested 
functions can be considered as logic program updates, more specif-

ically as ASP model updates, in which, as it was mentioned in 
update(), the upper boundary can be 𝛱𝑃

2 for certain underlying 
knowledge representations. However, despite the apparent high 
cost, a simple addition of a rule to an ASP model is not a com-

plex process that can be performed in polynomial time, given that 
it does not imply equivalence verification as in “standard updates” 
of logic programs e.g. [66].

– cooperate() (Line 18). This function is a joining programs mecha-

nism that can be performed in linear time, depending on the size of 
the added set i.e. the intention to be assimilated.

– plan() (Line 20). This function is performed for an answer set plan-

ning mechanism, which differs from satisfiability planning in that 
it uses logic programming rules instead of propositional formu-

las [86], then, the answer sets for that program represent differ-

ent possible evolution or scenarios. In [124], a review of answer 
set planning mechanisms, the authors compile several ASP-related 
mechanisms for planning, showing several heuristics are used to 
reduce the computational cost of the planning task. We also ac-

knowledge that some ASP planning mechanisms have been used to 
model the behavior of agents and multi-agents in a review article 
[43]. Then, in general, plan as an ASP planning mechanism can be 
considered NP-hard in the worst-case scenario.

In summary, the computational cost of Algorithm 1 can be reduced 
to the intention generation cost (intend() - Line 12) and the cost of plan-

ning (Line 20). If cost(𝑥) is a function that retrieves the approximate 
computational cost (time) of every procedure in Algorithm 1, the total 
cost (𝑇𝑂𝑇𝐴𝐿) can be approximated to the following expression:

𝑇𝑂𝑇𝐴𝐿 =𝑂(getFacts(𝑛),update(𝑛),wish(𝑛),

intend(𝑛), repairCooperation(𝑛),cooperate(𝑛),

plan(𝑛)) �𝑂(intend(𝑛))

=𝑂(𝑛𝑘)𝑘 � 1

(1)

The strength of the BDI models lies in their use of heuristics, which 
attacks the complexity of the problem with domain-independent strate-

gies that allow it to make decisions with as much information as 
possible given the resources that are available [116]. In this sense, dif-

ferent heuristics have been proposed to reduce the computational cost 

of specific procedures inside BDI-like control loops. In Appendix B.2, 
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Table 2

Results of the We-intention alignment scenario. In the left column are presented some lines 
in Algorithm 1, and the right column shows the output of selected functions in the control 
loop.

Line Output of Algorithm 1 for the agreeable robot scenario

9-13

𝐹 =
�

morning;in_kitchen;says_wants_breakfast
�

𝐼𝐼𝑛𝑡 =

�
�
�
	
�
�



take_breakfast :- says_wants_breakfast .

take_breakfast :- in_kitchen, morning, not breakfast_taken.
read :- in_kitchen, has_newspaper.

read :- says_wants_read.

�
�
�
�
�
�


𝐼𝐸𝑥𝑡 =
�

remind_pill :- morning, not pill_taken.
advise_breakfast :- in_kitchen, morning.

�

14 BrkDwn({remind_pill},{read})

18
� =

�
�
	
�



take_breakfast :- says_wants_breakfast .

take_breakfast :- in_kitchen, morning, not breakfast_taken.
advise_breakfast :- in_kitchen, morning.

�
�
�
�


� =
�

morning;in_kitchen;says_wants_breakfast.
�

20 � =
�
𝜋 = {advise_breakfast}

�

Fig. 3. Scenario 1, depicting We-intention alignment, i.e. the agreeing robot 
(based on Figure 3 in [121]).

we present a non-exhaustive list of computational heuristics that can be 
(re)used in Algorithm 1 to build potentially less costly implementations.

3.2. Application and perception of intention control loop

In this section, the intention control loop is exemplified using three 
scenarios embedding We-intention alignment, breakdown, and partial 
alignment in dialogues between a social robot and volunteers. Further-

more, Algorithm 1 is applied to the three scenarios, and study partici-

pants’ experiences and perceptions about them are summarized.

Scenario 1 (We-intention alignment - the agreeing robot). Preconditions:

– The volunteer (person) is unaware of the social robot’s dialogue or 
intention.

– The social robot is unaware of the volunteer’s intention.

– The environment is static. There are no changes in the kitchen that 
affects the location of the social robot.

– The social robot has pre-defined programs capturing a common 

health and well-being scenario.
The social robot is situated in a corner near the breakfast table. In 
the morning, the volunteer arrives in the kitchen to have breakfast. The 
social robot greets and asks how the volunteer is feeling. The volunteer 
indicates that they are not feeling well. The volunteer says that having 
breakfast could improve their health situation. The social robot agrees 
and aligns itself to support the breakfast preparation. The social robot 
presents some (We-intentions) alternatives. The volunteer responds, and 
the social robot selects the joint activity. The social robot concludes the 
dialogue after the volunteer responds to the breakfast selection (Fig. 3
illustrates the unfolding of the dialogue).

Post-conditions:

– The volunteer changed the topic of the dialogue.
– The social robot adapted and ends the dialogue.
– The environment remains static.

In Table 2, we present the results of using Algorithm 1 in Scenario 1. 
We limit our attention to specific lines of the control loop, which repre-
sents the person’s perspective of the scenario, i.e. we interpret internal 
intentions from the perspective of the person, then, 𝐼𝐼𝑛𝑡 represents in-
tentions of the person, 𝐼𝐸𝑥𝑡 the agent’s intentions, and 𝐹 the perceived 
information from the social robot’s sensors. In line 14, we highlight the 
potential semantic breakdown between internal and external intentions, 
and lines 18 and 20 show the intentions’ alignment output.

Participant’s potential perception of We-intention alignment 
and agreeing behavior: Half of the participants observed and com-
mented on the volunteer’s and robot’s agreeing behavior.

Older participants described the social robot’s agreeing behavior by 
characterizing it as being cooperative and displaying care towards the 
human: “Cooperative and efficient. We can’t expect more from the robot.”

Another older participant described the social robot’s interaction as be-
ing soft and appropriately situated: “The interaction with the people was 
very soft. He reacts, turns around, and comes back in a polite way. The 
time-lapse was good, and it was not right away.”

The young participants describe the social robot displaying empa-
thy, positivity, and care for the person participant, “...robot seems to 
have a little bit of empathy.” Half of the younger participants commented 
on how the volunteers in the scenario overall displayed agreeing be-
havior by recognizing the social robot’s presence and by adapting their 
dialogue towards it: “I guess they were being kind of polite to it. They said 
thank you, it’s a good idea like they were almost in on it...”.

However, the participants noted that the older volunteer was accept-
ing, paid attention, and treated the social robot almost like a person 
compared to the young man; “older lady was perfect she knew when was 
her turn.” and “the lady behaved more normal compared to the younger 

person.”
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Fig. 4. Scenario depicting intention breakdown between the person and a social robot (based on Figure 5 in [121]).
Scenario 2 (We-intention breakdown - the avoidant robot). Precondi-

tions:

– The volunteer (person) is unaware of the social robot’s dialogue or 
intention.

– The social robot is unaware of the volunteer’s intention.
– The environment is static. No changes in the kitchen affect the lo-

cation of the social robot.
– The social robot has pre-defined programs capturing a common 

health and well-being scenario.

The volunteer is reading newspaper in the kitchen. The social robot fol-
lows up on why the volunteer did not feel well in the morning. The 
volunteer responds that they did not feel well in the morning because 
of sleep issues due to back pain. The social robot asks to estimate the 
pain level. The volunteer indicates that the pain is high. Then, the so-
cial robot suggests doing something about it. The volunteer rejects it 
and asks the social robot to leave and let them continue reading their 
newspaper in peace (refer to Fig. 4 for details about the scenario).

Post-conditions:

– The volunteer rejects continuing with the topic of the dialogue.
– The social robot apologizes and ends the dialogue.
– The environment remains static.

In Table3 are presented selected lines of Algorithm 1 applied to the 
avoidant robot scenario. The pre- and postconditions show a breakdown 
scenario.

Participant’s potential perception of We-intention breakdown and 
avoidant behavior:

A majority of the participants (n=14) commented on how the vol-
unteers caused We-intention breakdown such as being bothered or indi-

cating they wanted to be left alone while watching TV or reading their 
newspaper; “the man is a little upset.. he is upset because he wants to stay 
alone and watch his TV...”. This breakdown situation was caused by the 
volunteers when telling the social robot to leave them alone (Fig. 4): 
“at some point, they feel that it has been becoming too intrusive ah just ask-

ing too many questions... so they just ask it to leave them alone.” See also 
Table 3.

Most of the We-intentions breakdowns were observed in relation to 
the volunteers in the recordings, while only three participants observed 
a breakdown in the robot’s We-intention. This was in the situation when 
it kept talking about sleep and pain while the volunteers were doing 
their daily activities, such as reading or listening to the TV news: “When 
they say let me read in peace or just watch TV, and the robot ask questions 
that are not relevant of this situation.” Furthermore, one older participant 
suggested that even though the volunteers were annoyed about the so-

cial robot’s continued talking, they should listen to it in order to solve 
their ongoing problems: “maybe the robot reminded them about what they 
should do try to solve it even though they were annoyed.”

More than half (seven) of the young participants reflected on how 
the volunteers displayed avoidant behavior towards the social robot 
in different ways. Participants noticed the volunteers did not just avoid 
the social robot when they were occupied with other activities, but they 
also did not talk directly to it even when they were not busy, as illus-

trated by the following comments: “You know when they were standing 
for breakfast in both the cases the robot was ignored.”; “I think that they did 
not look the robot in the eyes... And did not talk directly to it. Sometimes, 
they looked at the newspaper, just did not look the robot in the eyes.”

On the other hand, only one older participant found the volun-

teers or the social robot displaying avoidant behavior. By contrast, six 
younger participants expressed how the social robot ignored the vol-

unteer by either not responding to their introduced topic, avoiding the 
volunteer’s requests illustrated by the comment: “I have my pain here can 
you see?’ But he never answered to that, never acknowledged that it could 
see or not, just keep going with the conversation.”, or persisting on its own 

topic: “He was too persistent in describing the pain.”
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