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a b s t r a c t

The Smart Grid’s objective is to increase the electric grid’s dependability, security, and efficiency
through extensive digital information and control technology deployment. As a result, it is necessary
to apply real-time analysis and state estimation-based techniques to ensure efficient controls are
implemented correctly. These systems are vulnerable to cyber-attacks, posing significant risks to
the Smart Grid’s overall availability due to their reliance on communication technology. Therefore,
effective intrusion detection algorithms are required to mitigate such attacks. In dealing with these
uncertainties, we propose a hybrid deep learning algorithm that focuses on Distributed Denial of
Service attacks on the communication infrastructure of the Smart Grid. The proposed algorithm is
hybridized by the Convolutional Neural Network and the Gated Recurrent Unit algorithms. Simulations
are done using a benchmark cyber security dataset of the Canadian Institute of Cybersecurity Intrusion
Detection System. According to the simulation results, the proposed algorithm outperforms the current
intrusion detection algorithms, with an overall accuracy rate of 99.7%.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The modernized grid enables a two-way flow of electricity and
nformation while providing efficient, dependable, computerized,
nd decentralized energy distribution. The Supervisory Control
nd Data Acquisition (SCADA) Master Terminal Unit (MTU) and
he Intelligent Electronic Devices (IED) on the electric network es-
ablish communication. The Remote Terminal Units (RTUs), Pha-
or Measurement Unit (PMU), Micro Phasor Measurement Unit
µPMU), and Programmable Logic Controls (PLC) mounted at
arious locations on the electric network provide telemetry data
o the SCADA’s server (Oyewole & Jayaweera, 2020). Electric
utilities all around the world use various SCADA protocols to
communicate between IEDs on the network and control center
applications using different SCADA protocols, such as Interna-
tional Electrotechnical Commission (IEC) 61850, Modbus, and Dis-
tributed Network Protocol 3 (DNP3) (Mohan, Ravikumar, & Govin-
darasu, 2020). With these SCADA protocols, parameters are mea-
sured, processes are monitored, and operations are controlled us-
ing measurement and control systems (Yohanandhan, Elavarasan,
Manoharan, & Mihet-Popa, 2020), which are frequently utilized in
operational technology (OT) such as Smart Grid.

The SCADA system in the context of the electric network is
a crucial infrastructure made up of computer-based networked
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systems that exchange important data across networks. Such
systems are vulnerable to intrusion attacks owing to the ex-
tensive use of information technology (Liu, Li, Shuai, & Wen,
2017). Therefore, one crucial task is to evaluate the system se-
curity by considering the probable attack that could be launched
by network intruders from the communication network lateral.
Knowing the system security valuation would help maintain the
modern electric infrastructure’s security and operational stabil-
ity (Fu et al., 2019).

Intrusion detection is an approach to identifying attacks before
r after gaining access to a secure network. Incorporating this
pproach into the gateway is the quickest way to integrate it
ith an IEC61850-based network. Even though attack detection
nd self-healing are not specified in IEC 61850, a specific tech-
ique like Intrusion Detection System (IDS) may be employed
ithin the grid to support IEC 61850’s security (Elgargouri, Vir-
ankoski, & Elmusrati, 2015). As machine-to-machine (m2 m),
nd human-machine-interface (HMI) connectivity increases, the
otential hostile threats in the electric infrastructure become
revalent. The IDS is essential for monitoring Smart Grid security
nd situational awareness (Hu, Yan, & Liu, 2020; Ullah & Mah-
oud, 2017). Likewise, the transmission of data via the radio
edium which represents the fundamental pillar by which all
evices in the Smart Grid network communicate has become
rone to cyber-attack. Due to the interconnectivity (Chen, Zhang,
iu, & Tang, 2018) of the various technologies (Attia, Sedjelmaci,
enouci, & Aglzim, 2015) which was not historically known in the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Depicts a cyberattack on the smart grid.
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lectric networks. This makes the system vulnerable to intrusion
ttacks (Mahmud, Vallakati, Mukherjee, Ranganathan, & Nejad-
ak, 2015), which can result in significant financial losses (Gao,
i, Jiang, Li, & Quan, 2020; Jiang, Xu, Zhang, Hong, & Cai, 2020)
ut, more crucially, put public safety at risk. The risk is increased
hen new connections are added to such critical infrastructures.
herefore, a high-priority area of study in the realm of cyber
ecurity is intrusion detection in the SCADA network of a Smart
rid (Hosseinzadehtaher, Khan, Shadm, & Abu-Rub, 2020; Xu,
020) (see Fig. 1).
On the other hand, distributed generation (DG) has been the

means to shift toward renewable energy sources (RES). Estab-
lishing DG at various points of an existing network affects the
primary contour of the electric network. This causes alterations
in voltage and current at different nodal points and also increases
the points of entry into the electric network (de Figueiredo,
Ferst, & Denardin, 2019). The total Smart Grid’s communication
echnologies and supporting infrastructure are directly impacted
y the scale of the electrical network (Talha & Ray, 2016).
Looking at the shortcomings of the current Smart Grids com-

unication mechanisms has inspired several researchers to ex-
lore cyber risks to Smart Grids. We propose an algorithm for
etecting Distributed Denial of Service (DDoS) in Smart Grid in
esponse to the aforementioned facts. The DDoS includes bom-
arding a target with a large volume of data and internet traffic,
ypically with the aid of a network of compromised machines. The
ollowing summarizes this paper:

• To identify DDoS attacks we propose an algorithm hy-
bridized by a Convolutional Neural Network (CNN) and a
Gated Recurrent Unit (GRU) for DDoS attacks in the cyber–
physical system of the Smart Grid.

• Utilizing benchmark datasets from the Canadian Institute of
Cybersecurity Intrusion Detection System (CICIDS2017), in-
depth simulation studies are presented. Comparative analy-
ses are drawn and the proposed algorithm performed better
in comparison to other state-of-the-art algorithms with a
99.7% accuracy and 99.9% detection rate.

he remainder of the paper is organized as follows. A review of
he literature is in Section 2. Presenting the proposed hybrid algo-
rithm is given in Section 3. The proposed algorithm’s performance
is compared to current algorithms in simulations described in
Section 4. Finally, concluding observations are made in Section 5.

. Related studies

Communication networks’ reliability, confidentiality, and in-
egrity are just a few of the difficulties involved in protect-

ng sensitive infrastructure, such as Smart Grid. To protect this
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rucial infrastructure, the Smart Grid requires a security strat-
gy. It is necessary to meet requirements for data authentica-
ion, confidentiality and integrity assurance, and other security-
elated issues (Subasi et al., 2018). Owing to the above-stated
easons, researchers have evaluated intrusion detection in the
yber–physical of the Smart Grid from different perspectives. For
xample, Li et al. suggested various monitoring measures to track
uspicious branch flow changes and abnormal load deviations.
wo-stage approaches are suggested to identify false data in-
ection (FDI) attacks. The article introduces the FDI cyber-attack
o investigate the impact of FDI attacks on system reliability (Li
Hedman, 2020). The alert system with the developed unique
etrics serves as the foundation for the suggested FDI detection
pproach.
A customized firewall model SCADAWall was proposed to

ddress the limitations of the traditional firewall system in pro-
ecting the SCADA networks (Li, Guo, Zhou, Zhou, & Wong, 2019).
he traditional SCADA systems were working in the principle of
eep packet inspection that was designed to inspect the pay-
oad contents in the communication. A proprietary industrial
rotocols extension algorithm and an out-of-sequence detection
lgorithm were added to the SCADAWall to improve its abil-
ty to identify abnormal changes in industrial operations. The
xperimental analysis indicates that the SCADAWall framework
s effective in the detection process by maintaining the latency
arameters of the SCADA system (Li et al., 2019). A testbed model
as developed for SCADA systems (Almgren, 2018) to confirm
he effectiveness of the suggested algorithms in a real-time sce-
ario. The virtual model is equipped with an energy management
odel monitored by a SCADA system. The testbed was created

o give various real-world scenarios like attack generation and
efense algorithms. An anomaly-based method was created to
etect malicious packet movement in the SCADA network (Singh,
brahem, & Govindarasu, 2018). The experimental work indi-
ates a better latency and detection rate. The rule-based intru-
ion detection system presented in Yang et al. (2013) employs a
eep packet inspection technique and was designed specifically
or SCADA systems. It also contains signature-based and model-
ased techniques. The suggested signature-based rules are capa-
le of correctly identifying several known suspicious or malicious
ssaults.
An algorithm was made to address the SCADA system’s Dy-

amic Link Library (DLL) injection attack (Lee & Hong, 2020).
he model utilizes the Windows Application Programming In-
erface (API) function that verifies the changes in the DLL load
nd enables the diversion algorithm when an attack is detected.
security layer was structured between the physical and link

ayer of the SCADA system to overcome the issues observed from
he existing firewall and authentication mechanisms (Cherifi &
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amami, 2018). An IEC 60870−5−101 communication protocol
as employed in the work and that is un-routable by the intru-
ion algorithms. The simulation implementation of the security
ayer protection in an electrical substation testbed indicates a
atisfactory performance over the previous models.
An analysis was performed to identify the effectiveness of

rtificial intelligence (AI)-based techniques in detecting Denial
f Service (DoS) attacks in SCADA systems (Aldossary, Ali, &
lasaadi, 2021). The experimental result indicates that a model

developed as Bidirectional Long Short-Term Memory (Bi-LSTM)
was capable of detecting intrusions against the other methods. To
identify intrusion detection and DoS in the smart meter, a cyber–
physical monitoring system was proposed (Sun, Guan, Liu, & Liu,
013). The idea is predicated on the informational fusion of online
ccurrences and objective data. The test shows that by linking the
yber and physical signals, the model successfully detects threats.
A temporal pattern recognition technique was proposed to ob-

erve the cyber-attack intrusions in the SCADA systems (Kalech,
2019). The technique was also designed to monitor the abnormal
changes in the operation of the connected system. This was
achieved by implementing the model with a hidden Markov
model and the artificial neural network (ANN) algorithm. The ef-
fectiveness of the proposed model was verified with simulations
and real-time scenarios with five different feature extraction
strategies and the approach that was implemented with the time
feature extraction model was found satisfactory.

A C4.5 decision tree algorithm was proposed to give a secu-
rity model over the SCADA system implemented in gas and oil
plants. The performance analysis of the proposed model explores
a betterment in handling large-scale distributed attacks in the
SCADA setup (Yang, Liu, & Zhang, 2019). A SCADA network attack
detection technique was developed with a random forest algo-
rithm and its attainments were compared over the support vector
machine (SVM). It indicates a 96.47% of f1 score on detecting the
DoS attacks (Lopez Perez, Adamsky, Soua, & Engel, 2018). The per-
formances of the decision tree and K-nearest neighbor algorithms
(KNN) were analyzed on cyber security identification. The exper-
imental work was performed with three different cybersecurity
datasets. The work findings found satisfactory results with a fine
tree and weighted KNN (Ahakonye, Nwakanma, Lee, & Kim, 2021).
A DDoS attack detection approach on the SCADA system was
performed with J48, Naïve Bayes, and random forest algorithms.
The experimental work utilizes the KDDCUP99 dataset for the
analysis and was found satisfied with the accuracy rate of 99.99%
in the random forest algorithm (Alhaidari & AL-Dahasi, 2019).

For Software Defined Networking (SDN), the authors of
Fouladi, Ermiş, and Anarim (2022) provided a DDoS attack de-
tection and countermeasure technique based on discrete wavelet
transform and auto-encoder neural network. In the suggested
method, wavelet transform was used to extract statistical features
that are then processed by an auto-encoder neural network to
identify samples of DDoS attacks. In order to effectively resist
DDoS attacks, a novel feature selection-whale optimization al-
gorithm deep neural network approach is presented in Agarwal,
Khari, and Singh (2021). The usual data are homomorphically
encrypted and safely stored in the cloud to increase the security
of the proposed paradigm. A 95.35% accuracy in detecting DDoS
attacks was shown by simulation results. A swarm intelligence
technique was developed to identify the optimum features for
making a good accuracy rate in the intrusion detection system
process. An Aquila optimizer model was also employed in the
work after the feature selection process for assigning desirable
weights to the extracted features. The work offered a reasonable
result when implemented with a CNN classifier with a parti-
cle swarm optimization model (Fatani, Dahou, Al-qaness, Lu, &
Abd Elaziz, 2022).
177
Concerning internet-based computer network attacks, a neu-
ral network-based intrusion detection method is presented in
Shum and Malki (2008). IDS were developed to foresee and
stop potential attacks. To find and forecast anomalous system
behavior, neural networks were used. The study specifically used
feedforward neural networks with the back-propagation training
algorithm. The experimental outcomes utilizing real data demon-
strated positive outcomes for neural-network-based IDS. In Peng,
Kong, Peng, Li, and Wang (2019), a deep learning-based technique
for network intrusion detection is presented. In the model, net-
work monitoring data features are extracted using deep neural
networks, and intrusion types are classified at the top-level using
back propagation neural networks. The KDDCUP99 dataset from
the Massachusetts Institute of Technology’s Lincoln Laboratory
was used to validate the approach. The findings indicate that
the proposed method meaningfully outperforms the accuracy of
conventional machine learning. In Hai-He (2018) the authors
proposed an IDS based on the improved neural network where
feature extracting was carried out using the adaptive weighted
control method. The model showed higher accuracy using a back
propagation neural network for classification and detection. How-
ever, the back propagation neural network algorithm proposed in
Jaiganesh, Sumathi, and Mangayarkarasi (2013) with the primary
duty of detecting threats to the resources demonstrated a poor
attack detection rate.

To categorize network threats, the study in Lin, Lin, Wang,
Wu, and Tsai (2018) concentrated on network intrusion detec-
tion utilizing CNNs based on LeNet-5. The experiment’s find-
ings indicate that with samples larger than 10,000, intrusion
detection prediction accuracy increases and gains overall accu-
racy of 97.53%. The authors of Khan, Zhang, Alazab, and Ku-
mar (2019) offer a network intrusion detection approach using
CNN. The approach is intended to efficiently categorize intrusion
data by automatically extracting useful features from intrusion
samples. An automated vision-based android malware detection
algorithm was proposed with a fine-tuned CNN algorithm. The
byte codes extracted from the various malware devices are col-
lected in the work for training the classifiers. The experimental
work attains an accuracy of 99.4% and 98.05% on both balance
and imbalanced datasets (Almomani, Alkhayer, & El-Shafai, 2022).
In the blockchain-based energy network, Ferrag and Maglaras
(2019) presented a learning-based method to identify network
threats and fraudulent transactions. The suggested system gen-
erates blocks using short signatures and hash functions to thwart
Smart Grid attacks.

Peng (2020) propose a hybrid CNN-based intrusion detection
approach. The hybrid deep learning network structure extracts
and encapsulates the features of unfamiliar malicious behavior
as well as more complex structure aspects of the full network
traffic matrix, in contrast to the typical machine learning ap-
proach. In the network traffic matrix, a CNN first extracts the
correlation between several features. Then, by using a Recurrent
Neural Network (RNN) to fully mine the temporal and spatial
features of the entire network traffic matrix, the accuracy of the
intrusion detection model is boosted. Al-Emadi, Al-Mohannadi,
and Al-Senaid (2020) developed an intelligent detection system
that can recognize various network intrusions using deep learning
approaches, specifically CNN and RNN. The authors compared the
results of the offered solution and evaluated the performance of
the proposed solution using several evaluation matrices to select
the best model for the network IDS. Koutsandria et al. suggested a
hybrid control paradigm that constantly tracks and examines the
network traffic that is transferred inside the physical system. It
detects communication patterns that diverge from expectations
or physical constraints that can put the system in a dangerous
mode of operation. The simulations show that, by utilizing data
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n the physical component of the power system, the paradigm is
apable of identifying a wide variety of attack scenarios intended
o compromise the physical process (Koutsandria et al., 2014).

In Vijayanand, Devaraj, and Kannapiran (2019) a unique attack
etection system that uses deep learning algorithms to detect
ttacks by carefully examining smart meter communications is
resented. To detect cyber-attacks accurately, the attack detec-
ion system uses several multi-layer deep algorithms that are
et up in a hierarchical order. In Farrukh, Ahmad, Khan, and
lavarasan (2021) the authors proposed a two-layer hierarchical

machine learning model with 95.44% accuracy in detecting cyber-
attacks. Using the model’s first layer, the two modes of operation,
normal state and cyberattack are identified. The authors of Zhao,
Chen, and Luo (2011) suggested a methodology incorporating
real-time neural network training and expert system detection to
improve detection accuracy. The model employs neural networks
to detect and converts pattern recognition into numerical calcula-
tion to speed up the detection rate. The state is divided into many
categories of cyberattacks using the second layer.

In our humble opinion, as so many articles have consisted
of IDS in power systems annals with little reference to the hy-
bridization milieu, a revisit of that background could yield a
novelty. This paper seeks to present one.

3. System model

Fig. 2 shows the proposed hybrid deep learning algorithm.
In our earlier study (Diaba, Shafie-khah, & Elmusrati, 2022), this
algorithm was tested using the Network Security Laboratory-
Knowledge Discovery and Data Mining (NSL-KDD99) dataset, and
the results were compared with CNN, GRU, and LSTM algorithms.
The algorithm performed better in terms of accuracy, detection
rate, precision, and force positive rate (FPR). However, Elmrabit,
Zhou, Li, and Zhou (2020) argued that the NSL-KDD99 dataset
had expired. Since the network traffic in that dataset was es-
tablished in 1998, the authors claimed that it is impossible for
it to accurately reflect the most recent network topologies and
attack dynamics. We, therefore, seek to apply the CICIDS2017
cyber security dataset to the algorithm because of the presence
of a large variety of up-to-date attack scenarios in the dataset,
which satisfy real-world requirements.

The proposed IDS integrates a CNN model and a GRU model.
It is believed that CNN is effective at capturing position-invariant
characteristics, thus the choice. The GRU module collects the
long-dependence features and uses memory cells to extract key
information from the previous data. The reset gate is employed
to erase or eliminate pointless data. These influenced the decision
to use the GRU model (Aldossary et al., 2021). Three GRU blocks
nd four CNN blocks are mounted in the algorithmic architecture
o deepen the network (Huang, Li, Deng, Yu, & Ma, 2022). The
urpose of the convolution layer is to produce a feature map by
eparating features from the input data. To capture the feature
apping, the input data are multiplied by the convolutional
ernel in the convolutional network, which is then activated by
nonlinear function. The convolution kernel randomly initializes
eights and biases (Liang, Ye, Zhou, & Yang, 2021). After each

CNN layer, a normalization layer and a max-pooling layer are
added. The procedure of obtaining the maximum or average value
for all features within the immediate area is referred to as a
‘‘pooling operation’’.

The concatenation layer, where the GRUs output and the CNN
outputs are combined, receives the flattened final output of the
CNN layers. Two completely connected layers are connected after
the concatenation layer. A dropout layer is used after the last fully
connected layer to prevent overfitting. The SoftMax layer con-
nects to the classification layer to map the output to a probability
distribution, which allows the classification layer to predict the
types of labels.
178
3.1. Deep neural network structure

Artificial neural networks were inspired by research on bio-
logical neural network processing, a type of computer structure.
An artificial neural network is a self-motivated system made up
of highly connected, parallel nonlinear processing components,
units, or nodes that exhibit extremely high levels of computation
efficiency. It can alternatively be viewed as versatile mathemat-
ical structures that can recognize intricate nonlinear correla-
tions between input and output datasets (Suppitaksakul & Saelee,
2009). A typical neural network comprises numerous small, in-
terconnected processes called neurons, each generating a string
of activations with real values. Environmental sensors activate
input neurons, and weighted connections from previously active
neurons excite more neurons (Komyakov, Erbes, & Ivanchenko,
2015; Liang et al., 2021; Schmidhuber, 2015) (see Fig. 3).

3.2. System description

The mathematical formulation of the proposed algorithm con-
siders a features vector ξ , given as

ξ = [ξ1, ξ2, . . . , ξn]
T (1)

as inputs to the proposed model. The GRU’s first layer processes
the data and generates the outputs. The first layer’s outputs are
fed into the second layer. Again, the outputs of the second layer
are inputted into the third layer. The final outputs of the GRU
model are achieved by using an activation function. We apply
the most used activation functions, the sigmoid, and the tanh,
respectively, given as in Ismail et al. (2022) and Valdes, Macwan,
and Backes (2016).

s (x) =
1

1 + e1−x (2)

tanh(x) =
2

1 + e−2x − 1 (3)

athematically, the GRU gate ∈{0,1} and thus, the model can be
ritten mathematically as

0 = σ
(
ω0

[
ξ̃ (t−1), x(t)

]
+ b0

)
(4)

1 = σ
(
ω1

[
ξ̃ (t−1), x(t)

]
+ b1

)
(5)

where, ς0, ς1 represent the update gate and the reset gate, re-
spectively. The ω0 and ω1 are weights functions representing the
update and reset gates in the order given. Correspondingly, the
b0 and b1 represents the bias vectors for reset and update gates.
Where ξ̃ (t−1) is the input of the current layer and the output of
the prior layer. The recurrent unit’s candidate activation function
is written as

ξ (t) = tanh
(
ω0

[
ς0 × ξ̃ (t−1), x(t)

]
+ b0

)
(6)

where, ξ̃ (t) represents the candidate activation function, ω0 is the
activation functions weight, the bias vector is b0 and x(t) is the
inputs of the training data. One GRU unit’s output is provided as

ξ (t) =
(
(1 − ζ1)× ξ̃ (t−1))

+
(
ζ1 × ξ (t)

)
(7)

where, ξ (t) is the output of a single GRU unit. The proposed
algorithm uses a single-dimensional layer with the convolution
operation represented as

h1 = convblock1 (ξ) (8)

h2 = convblock2 (h1) (9)

h = convblock3 h (10)
3 ( 2)
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Fig. 2. Process flow of proposed intrusion-detection system model.
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Fig. 3. Illustrations of a feed-forward multilayer perceptron.

4 = convblock4 (h3) (11)

he hidden vectors are h1, h2, h3, and h4 respectively. A normal-
ization layer is fixed next to the convolutional layer to speed up
training. By using the pooling layer, the features map is down-
sampled by summarizing the presence of features in patches of
the feature map, hence reducing the dimension of the features.
The main pooling techniques are average and max pooling. The
average pooling determines the average value of the patches of
the features map. The average pooling at the pooling layer is given
as

Ψ n
= Pavg

(
ψn−1) (12)

where ψn represents the pooling layers, and output and ψn−1

represent previously acquired values from the convolution layer.
The pooling layers are denoted by n and the flattening layer is
mounted to convert the data into a one-dimensional vector.

L = flatten (h4) (13)

c = concate K , L (14)
t ( )

179
Table 1
Dataset considered for the simulation.
Type Total Training set Test set Label

BENIGN 67,343 53874 13469 0
DDoS 45,927 36742 9185 1

The outputs from the GRU’s K , and the outputs from the CNN’s
L, are concatenated as written in Eq. (14). The normalized expo-
nential function (SoftMax) ŷ :Rct → {0, 1} is written when ct is
greater than 1 as

ŷ(z)i =
ezi∑ct
n=1 ezn

(15)

For i = 1, 2,. . . , ct and z = (z1, z2,. . . ,zc t) ∈ Rct . Where z is
the input vector taken from the ct . The loss function for the
proposed model assessment is the cross-entropy function (Graves
& Schmidhuber, 2005), which is given as

Ep (l) = −
1
b

n∑
i=1

yi log2 y′

i (16)

is for the batch size given, whilst n represents the training
ample size, the actual value is represented by yi and it is y′

i for
the predicted value.

3.3. Description of dataset

The simulation evaluation phase of our proposed model is
carried out using the CICIDS-2017 (Radoglou-Grammatikis & Sa-
rigiannidis, 2018) dataset, specifically, the Friday WorkingHours
Afternoon DDos dataset (Sharafaldin, Habibi, & Ghorbani, 2018)
which is publicly accessible and utilized by related studies in the
cyber security community. The benign and most recent common
attacks such as DDoS are included in the CICIDS-2017 dataset,
which closely reflects data from the actual world. Additionally, it
contains the outcomes of the CICFlowMeter network traffic anal-
ysis with flows categorized according to the source, timestamp,
destination IP addresses, destination ports, protocols, and attacks.
The features present there in the dataset are shown in Table 1.

Cleaning up the data and replacing not a number (NaN) and
infinite fields with the column’s mean value are the first steps in
the preprocessing stage. The features are converted to numerical
features and integrated with already-existing numerical features
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Fig. 4. The correlation heatmap for the employed dataset.
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n the dataset. Additionally, the labels in the dataset are numer-
cally processed so that the two labels in the dataset, benign is
represented by 0, and DDoS is represented by 1. The dataset is
equally mapped and normalized in order to lessen the feature
discrepancies. The uniform mapping interval range is [0, 1]. Since
there are no irrelevant characteristics in the dataset and the
dataset contains correlated features as shown in the correlation
matrix in Fig. 4, feature selection was not used in the study.
Therefore, the model’s decision-making was influenced by all of
the available features.

The list in Table 1 is the results after the normalization had
been performed on the data set and therefore all the character
features had been converted to their numerical values. Then, the
data set is split into a training set and a testing set in a 70:30
ratio. The training is done using 70 percent of the data, and the
validation and testing are done using the remaining 30 percent
of the data.

The four fundamental characters that make up the confusion
matrix are utilized to specify the classifier’s measurement pa-
rameters. They are as follows: True Positive (TP) describes an
algorithm’s accurate prediction that is accurate. Also, the True
Negative (TN) designates a truly negative prediction made by
the algorithm that is negative. False Positive (FP) describes sit-
uations where the algorithm predicted a positive class but the
actual class is negative. False Negative (FN) is a label that was
predicted by the algorithm to be negative but is actually posi-
tive. An algorithm’s performance measurements are its accuracy,
precision, recall, and f1-score. These scenarios are mathemat-
ically represented as in Albulayhi and Sheldon (2021), Khoei,
 a
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Aissou, Hu, and Kaabouch (2021), Peng et al. (2019), Radoglou-
Grammatikis and Sarigiannidis (2018), Sharafaldin et al. (2018)
and Siniosoglou, Radoglou-Grammatikis, Efstathopoulos, Fouliras,
and Sarigiannidis (2021) and written in subsequent equations as

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

recision =
TP

TP + FP
(18)

ecall =
TP

TP + FN
(19)

F1score =
2(precision × recall)
(precision × recall)

(20)

. Results and analysis

The simulation results of our proposed algorithm are all con-
ained in this section. Figures representing each outcome are
resented step-by-step along with explanations of the findings.
e give a succinct explanation of our proposed algorithm’s per-

ormance and comparisons to that of some of its main contestants
uch as CNN, GRU, and LSTM. The heatmap depicts the correla-
ion matrix between the target variable and the input features,
ncluding the destination port, flow bytes, forward header length,
ubflow forward packet, active mean, minimum packet length,
acket length mean, packet length variance, average packet size,
ctive max, ideal mean, ideal max, etc.
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Fig. 5. Convergence ability of the considered algorithms.
Fig. 6. The confusion matrices..
Table 2
The configuration of the hyperparameters.
Number Parametric Quantity

1. Input layer 78
2. Hidden layer 55
3. Activation function ReLU
4. Iteration limit 1000
5. Cost function Cross entropy
6. Batch size 128

A heat map is a graphic representation of a two-dimensional
abular representation of multivariate data that is set up as a
atrix. The heat map shows the relationships between several
umerical variables, which can be used to identify patterns and
nomalies. It helps to find characteristics that are best for devel-
ping machine learning models and transforms the correlation
atrix into a color designation. It generates color coding from

he correlation matrix and the correlation matrix shows the rela-
ionships between the variables on a scale from a perfect positive
orrelation to a perfect negative correlation with the perfect
ositive correlation showing the association between the vari-
bles. Each cell represents a square region of space in a certain
easuring distance, and the colors signify the intensity of the

nvestigated event that occurred on each mapping cell. A heat
ap provides a visual representation of data and facilitates the
nderstanding of large data sets. A range of values is represented
y various colors in a two-dimensional tabular depiction of the
ata.
Further simulations are run with the hyperparameters settings

n Table 2. The proposed algorithm’s convergence ability outper-
orms that of the other comparative algorithms. The algorithm’s
est validation performance is achieved at 0.018817 at epoch
21. The GRU is the next best-performing algorithm, with the
est validation performance at 0.024437 on the 158th epoch. The
NN algorithm also outperformed the LSTM algorithm, achiev-
ng the best validation performance of 0.029039 at the 174th
181
epoch, while the LSTM achieved its best validation performance
of 0.03596 at an epoch of 58 (see Fig. 5).

The confusion matrices of the performance of the algorithms
are depicted in Fig. 6a, b, c, and d. A confusion matrix is used to
evaluate the algorithms based on parameters such as accuracy,
precision, recall, and the false positive rate (Aldossary et al.,
2021).

The error histograms are depicted in Fig. 7 to determine the
error between the predicted and target values. Bins are the ver-
tical bars seen on the graph. The total error range is divided into
20 smaller bins on the x-axis. The Y-axis represents the number
of samples from the input dataset that fall into a given bin. On
the plot, the midpoint bin corresponds to an error of 0.01599, the
height of the bin for the training dataset is below 2 × 104 and the
height of the bin for validation is between a little below 2 × 104

and halfway above 2 × 104. The test dataset is halfway between
2.5×104 and 2 × 105.

In terms of overall accuracy, precision, recall, and f1-score,
Fig. 8 shows how well the proposed algorithm performed against
the other algorithms Simulation results show that the proposed
algorithm achieves accuracy, precision, recall, and f1-score, of
99.7%, 98.1%, 99.9%, and 98.9%, respectively. The GRU achieves an
accuracy of 98.6%, precision of 99.5%, recall of 97.4%, and an f1-
score of 98.5. The accuracy of the CNN is 98.5%, the precision is
99.8, the recall is 97.3% and the f1-score is 98.5%. The LSTM ob-
tains 98.5% accuracy, 99.9% precision, 97% recall, and an f1-score
of 98% FPR. The proposed model outperformed the comparative
algorithms in all categories except the recall category. This is
a result of the algorithm’s high value of the false positive (FP).
Since the FP is a denominative factor in determining the recall,
its higher value caused the recall of the proposed algorithm to
drop (see Table 3).

5. Conclusion

Finding vulnerabilities in SCADA networks used by Smart
Grids is a top research objective in the field of cyber secu-
rity. However, it is very challenging to choose an efficient deep
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Table 3
Comparison of algorithms.
The proposed algorithm is compared to the existing algorithms altogether

Algorithms Detection rate % Precision % F1-score Accuracy % Data Year Reference

ANN 96.18 96.9 96.94 Simulated data 2018 Subasi et al. (2018)
SVM 97.25 97.8 97.8 Simulated data 2018 Subasi et al. (2018)
K-NN 98.05 98.4 98.44 Simulated data 2018 Subasi et al. (2018)
Randon forest 98.67 0.98 98.94 Simulated data 2018 Subasi et al. (2018)
Feed-forward neural
network

90.13 88 87.4 88.2 Power system attack 2021 Aldossary et al. (2021)

Hybrid Deep belief
network GRU

93.5 93.57 93.68 94.14 Power system attack 2021 Aldossary et al. (2021)

Recommended
Bi-LSTMIDS

99.89 95.89 95.94 95.93 Power system attack 2021 Aldossary et al. (2021)

Random forest 99.9 KDDCup’99 2019 Alhaidari and AL-Dahasi (2019)
Naïve Bayes 97.74 KDDCup’99 2019 Alhaidari and AL-Dahasi (2019)
Proposed scheme 100 99.9 99.9 99.9 MAWI and world cup

traffic dataset
2022 Fouladi et al. (2022)

Random forest 94 94 CICDDoS 2019 2021 Khoei et al. (2021)
Naïve Bayes 87 77.1 CICDDoS 2019 2021 Khoei et al. (2021)
KNN 94.4 94.6 CICDDoS 2019 2021 Khoei et al. (2021)
Stacking 96 97.3 CICDDoS 2019 2021 Khoei et al. (2021)
Logistic regression 72.2 72.2 90.7 Distribution substation

operational dataset
2021 Siniosoglou et al. (2021)

Decision tree 99.1 99.1 97.7 Distribution substation
operational dataset

2021 Siniosoglou et al. (2021)

Multi-layer perceptron 73.3 73.3 91.1 Distribution substation
operational dataset

2021 Siniosoglou et al. (2021)

Proposed algorithm 99.9 98.1 98.9 99.7 CICIDSS2017 2022
Fig. 7. Error histograms.
Fig. 8. Overall performance comparison of the considered algorithms.

earning-based intrusion detection algorithm. As a result, we
roposed an algorithm for intrusion detection in Smart Grid, by
ybridizing CNN and GRU algorithms. In evaluating the efficacy
182
of our proposed algorithm, the accuracy, precision, recall, and f1-
score, are evaluated to strengthen the SCADA system’s security
framework and make it more resistant to DDoS attacks. Using the
CICIDSS2017 dataset, we carried out a thorough systematic sim-
ulation using MATLAB 2021a. We used the supervised machine
learning approach after normalizing the data. Results demon-
strate that the proposed algorithm can classify cyberattacks with
a 99.7% accuracy and a detection rate of 99.9%, outperforming the
accuracy and the detection rate of the comparative existing intru-
sion detection techniques. In general, the proposed algorithm can
improve network intrusion detection performance.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Agarwal, A., Khari, M., & Singh, R. (2021). Detection of DDOS attack using deep
learning model in cloud storage application. Wireless Personal Communication,

http://dx.doi.org/10.1007/s11277-021-08271-z.

http://dx.doi.org/10.1007/s11277-021-08271-z


S.Y. Diaba and M. Elmusrati Neural Networks 159 (2023) 175–184

A
hakonye, L. A. C., Nwakanma, C. I., Lee, J. M., & Kim, D. S. (2021). Efficient
classification of enciphered SCADA network traffic in smart factory using
decision tree algorithm. IEEE Access, 9, 154892–154901. http://dx.doi.org/10.
1109/ACCESS.2021.3127560.

Al-Emadi, S., Al-Mohannadi, A., & Al-Senaid, F. (2020). Using deep learning
techniques for network intrusion detection. In 2020 IEEE international con-
ference on informatics, IoT, and enabling technologies (ICIoT) (pp. 171–176).
http://dx.doi.org/10.1109/ICIoT48696.2020.9089524.

Albulayhi, K., & Sheldon, F. T. (2021). An adaptive deep-ensemble anomaly-based
intrusion detection system for the internet of things. http://dx.doi.org/10.
1109/AIIoT52608.2021.9454168, 0187-0196.

Aldossary, L. A., Ali, M., & Alasaadi, A. (2021). Securing SCADA systems against
cyber-attacks using artificial intelligence. In 2021 international conference on
innovation and intelligence for informatics, computing, and technologies (3ICT)
(pp. 739–745). http://dx.doi.org/10.1109/3ICT53449.2021.9581394.

Alhaidari, F. A., & AL-Dahasi, E. M. (2019). New approach to determine ddos
attack patterns on SCADA system using machine learning. In 2019 inter-
national conference on computer and information sciences (pp. 1–6). http:
//dx.doi.org/10.1109/ICCISci.2019.8716432.

Almgren, M. (2018). Building a national testbed for research and training on
SCADA security (short paper). In 13th international conference, CRITIS 2018,
Kaunas, Lithuania. Springer.

Almomani, I., Alkhayer, A., & El-Shafai, W. (2022). An automated vision-based
deep learning model for efficient detection of android malware attacks. IEEE
Access, 10, 2700–2720. http://dx.doi.org/10.1109/ACCESS.2022.3140341.

Attia, M., Sedjelmaci, H., Senouci, S. M., & Aglzim, E.-H. (2015). A new
intrusion detection approach against lethal attacks in the smart grid: tem-
poral and spatial based detections. In 2015 global information infrastructure
and networking symposium (pp. 1–3). http://dx.doi.org/10.1109/GIIS.2015.
7347186.

Chen, X., Zhang, L., Liu, Y., & Tang, C. (2018). Ensemble learning methods
for power system cyber-attack detection. In 2018 IEEE 3rd international
conference on cloud computing and big data analysis (pp. 613–616). http:
//dx.doi.org/10.1109/ICCCBDA.2018.8386588.

Cherifi, T., & Hamami, L. (2018). A practical implementation of unconditional
security for the IEC 60780 − 5 − 101 SCADA protocol. International Journal
of Critical Infrastructure Protection, 20, 68–84.

de Figueiredo, H. F. M., Ferst, M. K., & Denardin, G. W. (2019). An overview
about detection of cyber-attacks on power SCADA systems. In 2019 IEEE
15th Brazilian power electronics conference and 5th IEEE southern power elec-
tronics conference (COBEP/SPEC) (pp. 1–6). http://dx.doi.org/10.1109/COBEP/
SPEC44138.2019.9065353.

Diaba, S. Y., Shafie-khah, M., & Elmusrati, M. (2022). On the performance
metrics for cyber–physical attack detection in smart grid. Soft Computing,
http://dx.doi.org/10.1007/s00500-022-06761-1.

Elgargouri, A., Virrankoski, R., & Elmusrati, M. (2015). IEC 61850 based smart
grid security. In 2015 IEEE international conference on industrial technology
(pp. 2461–2465). http://dx.doi.org/10.1109/ICIT.2015.7125460.

Elmrabit, N., Zhou, F., Li, F., & Zhou, H. (2020). Evaluation of machine learning
algorithms for anomaly detection. In 2020 international conference on cyber
security and protection of digital services (cyber security) (pp. 1–8). http:
//dx.doi.org/10.1109/CyberSecurity49315.2020.9138871.

Farrukh, Y. A., Ahmad, Z., Khan, I., & Elavarasan, R. M. (2021). A sequential
supervised machine learning approach for cyber attack detection in a smart
grid system. In 2021 north American power symposium (pp. 1–6). http://dx.
doi.org/10.1109/NAPS52732.2021.9654767.

Fatani, A., Dahou, A., Al-qaness, M. A. A., Lu, S., & Abd Elaziz, M. (2022).
Advanced feature extraction and selection approach using deep learning
and aquila optimizer for IoT intrusion detection system. Sensors, 22, 140.
http://dx.doi.org/10.3390/s22010140.

Ferrag, M. A., & Maglaras, L. (2019). DeepCoin: A novel deep learning
and blockchain-based energy exchange framework for smart grids. IEEE
Transactions on Engineering Management, 67(4), 1285–1297.

Fouladi, R. F., Ermiş, O., & Anarim, E. (2022). A ddos attack detection and
countermeasure scheme based on DWT and auto-encoder neural network
for SDN. Computer Networks, 214, Article 109140.

Fu, R., Huang, X., Xue, Y., Wu, Y., Tang, Y., & Yue, D. (2019). Security assessment
for cyber physical distribution power system under intrusion attacks. IEEE
Access, 7, 75615–75628. http://dx.doi.org/10.1109/ACCESS.2018.2855752.

Gao, J., Li, J., Jiang, H., Li, Y., & Quan, H. (2020). A new detection approach against
attack/intrusion in measurement and control system with fins protocol. In
2020 Chinese automation congress (pp. 3691–3696). http://dx.doi.org/10.1109/
CAC51589.2020.9327136.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks,
18, 5–6.

Hai-He, T. (2018). Intrusion detection method based on improved neural net-
work. In 2018 international conference on smart grid and electrical automation
(pp. 151–154). http://dx.doi.org/10.1109/ICSGEA.2018.00045.
183
Hosseinzadehtaher, M., Khan, A., Shadm, M. B., & Abu-Rub, H. (2020). Anomaly
detection in distribution power system based on a condition monitoring vec-
tor and ultra- short demand forecasting. In 2020 IEEE CyberPELS (CyberPELS)
(pp. 1–6). http://dx.doi.org/10.1109/CyberPELS49534.2020.9311534.

Hu, C., Yan, J., & Liu, X. (2020). Adaptive feature boosting of multi-sourced deep
autoencoders for smart grid intrusion detection. In 2020 IEEE power & energy
society general meeting (pp. 1–5). http://dx.doi.org/10.1109/PESGM41954.
2020.9281934.

Huang, K., Li, S., Deng, W., Yu, Z., & Ma, L. (2022). Structure inference of
networked system with the synergy of deep residual network and fully
connected layer network. Neural Networks, 145.

Ismail, et al. (2022). A machine learning-based classification and prediction
technique for DDoS attacks. IEEE Access, 10, 21443–21454. http://dx.doi.org/
10.1109/ACCESS.2022.3152577.

Jaiganesh, V., Sumathi, P., & Mangayarkarasi, S. (2013). An analysis of intrusion
detection system using back propagation neural network. In 2013 interna-
tional conference on information communication and embedded systems (pp.
232–236). http://dx.doi.org/10.1109/ICICES.2013.6508202.

Jiang, Y., Xu, A., Zhang, Y., Hong, C., & Cai, X. (2020). Anticipate fault sets
generation methods for cyber physical power system considering cyber-
attacks. In 2020 12th IEEE PES Asia-Pacific power and energy engineering
conference (pp. 1–5). http://dx.doi.org/10.1109/APPEEC48164.2020.9220404.

Kalech, M. (2019). Cyber-attack detection in SCADA systems using temporal
pattern recognition techniques. Computers & Security, 84, 225–238.

Khan, R. U., Zhang, X., Alazab, M., & Kumar, R. (2019). An improved convolu-
tional neural network model for intrusion detection in networks. In 2019
cybersecurity and cyberforensics conference (pp. 74–77). http://dx.doi.org/10.
1109/CCC.2019.000-6.

Khoei, T. T., Aissou, G., Hu, W. C., & Kaabouch, N. (2021). Ensemble learning
methods for anomaly intrusion detection system in smart grid. In 2021 IEEE
international conference on electro information technology (pp. 129–135). IEEE.

Komyakov, A. A., Erbes, V. V., & Ivanchenko, V. I. (2015). Application of artificial
neural networks for electric load forecasting on railway transport. In 2015
IEEE 15th international conference on environment and electrical engineering
(pp. 43–46). http://dx.doi.org/10.1109/EEEIC.2015.7165296.

Koutsandria, G., Muthukumar, V., Parvania, M., Peisert, S., McParl, C., &
Scaglione, A. (2014). A hybrid network IDS for protective digital relays in the
power transmission grid. In 2014 IEEE international conference on smart grid
communications (SmartGridComm) (pp. 908–913). http://dx.doi.org/10.1109/
SmartGridComm.2014.7007764.

Lee, J. M., & Hong, S. (2020). Keeping host sanity for security of the SCADA
systems. IEEE Access, 8, 62954–62968. http://dx.doi.org/10.1109/ACCESS.2020.
2983179.

Li, D., Guo, H., Zhou, J., Zhou, L., & Wong, J. W. (2019). SCADAWall: A CPI-enabled
firewall model for SCADA security. Computers & Security, [ISSN: 0167-4048]
80, 134–154.

Li, X., & Hedman, K. W. (2020). Enhancing power system cyber-security with
systematic two-stage detection strategy. IEEE Transactions on Power Systems,
35(2), 1549–1561. http://dx.doi.org/10.1109/TPWRS.2019.2942333.

Liang, H., Ye, C., Zhou, Y., & Yang, H. (2021). Anomaly detection based on
edge computing framework for AMI. In 2021 IEEE international conference
on electrical engineering and mechatronics technology (pp. 385–390). http:
//dx.doi.org/10.1109/ICEEMT52412.2021.9601888.

Lin, W. H., Lin, H. C., Wang, P., Wu, B. H., & Tsai, J. Y. (2018). Using convolutional
neural networks to network intrusion detection for cyber threats. In 2018
IEEE international conference on applied system invention (pp. 1107–1110).
http://dx.doi.org/10.1109/ICASI.2018.8394474.

Liu, X., Li, Z., Shuai, Z., & Wen, Y. (2017). Cyber attacks against the economic
operation of power systems: A fast solution. IEEE Transactions on Smart Grid,
8(2), 1023–1025. http://dx.doi.org/10.1109/TSG.2016.2623983.

Lopez Perez, R., Adamsky, F., Soua, R., & Engel, T. (2018). Machine learning
for reliable network attack detection in SCADA systems. In 2018 17th
IEEE international conference on trust, security and privacy in computing and
communications/ 12th IEEE international conference on big data science and
engineering (TrustCom/BigDataSE) (pp. 633–638). http://dx.doi.org/10.1109/
TrustCom/BigDataSE.2018.00094.A.

Mahmud, R., Vallakati, R., Mukherjee, A., Ranganathan, P., & Nejadpak, A. (2015).
A survey on smart grid metering infrastructures: Threats and solutions.
In 2015 IEEE international conference on electro/information technology (pp.
386–391). http://dx.doi.org/10.1109/EIT.2015.7293374.

Mohan, S. N., Ravikumar, G., & Govindarasu, M. (2020). Distributed intrusion
detection system using semantic-based rules for SCADA in smart grid. In
2020 IEEE/PES transmission and distribution conference and exposition (T & D)
(pp. 1–5). http://dx.doi.org/10.1109/TD39804.2020.9299960.

Oyewole, P. A., & Jayaweera, D. (2020). Power system security with cyber-
physical power system operation. IEEE Access, 8, 179970–179982. http://dx.
doi.org/10.1109/ACCESS.2020.3028222.

Peng, Y. (2020). Application of convolutional neural network in intrusion de-
tection. In 2020 international conference on advance in ambient computing
and intelligence (pp. 169–172). http://dx.doi.org/10.1109/ICAACI50733.2020.
00043.

http://dx.doi.org/10.1109/ACCESS.2021.3127560
http://dx.doi.org/10.1109/ACCESS.2021.3127560
http://dx.doi.org/10.1109/ACCESS.2021.3127560
http://dx.doi.org/10.1109/ICIoT48696.2020.9089524
http://dx.doi.org/10.1109/AIIoT52608.2021.9454168
http://dx.doi.org/10.1109/AIIoT52608.2021.9454168
http://dx.doi.org/10.1109/AIIoT52608.2021.9454168
http://dx.doi.org/10.1109/3ICT53449.2021.9581394
http://dx.doi.org/10.1109/ICCISci.2019.8716432
http://dx.doi.org/10.1109/ICCISci.2019.8716432
http://dx.doi.org/10.1109/ICCISci.2019.8716432
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb7
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb7
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb7
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb7
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb7
http://dx.doi.org/10.1109/ACCESS.2022.3140341
http://dx.doi.org/10.1109/GIIS.2015.7347186
http://dx.doi.org/10.1109/GIIS.2015.7347186
http://dx.doi.org/10.1109/GIIS.2015.7347186
http://dx.doi.org/10.1109/ICCCBDA.2018.8386588
http://dx.doi.org/10.1109/ICCCBDA.2018.8386588
http://dx.doi.org/10.1109/ICCCBDA.2018.8386588
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb11
http://dx.doi.org/10.1109/COBEP/SPEC44138.2019.9065353
http://dx.doi.org/10.1109/COBEP/SPEC44138.2019.9065353
http://dx.doi.org/10.1109/COBEP/SPEC44138.2019.9065353
http://dx.doi.org/10.1007/s00500-022-06761-1
http://dx.doi.org/10.1109/ICIT.2015.7125460
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138871
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138871
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138871
http://dx.doi.org/10.1109/NAPS52732.2021.9654767
http://dx.doi.org/10.1109/NAPS52732.2021.9654767
http://dx.doi.org/10.1109/NAPS52732.2021.9654767
http://dx.doi.org/10.3390/s22010140
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb19
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb19
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb19
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb19
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb19
http://dx.doi.org/10.1109/ACCESS.2018.2855752
http://dx.doi.org/10.1109/CAC51589.2020.9327136
http://dx.doi.org/10.1109/CAC51589.2020.9327136
http://dx.doi.org/10.1109/CAC51589.2020.9327136
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb22
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb22
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb22
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb22
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb22
http://dx.doi.org/10.1109/ICSGEA.2018.00045
http://dx.doi.org/10.1109/CyberPELS49534.2020.9311534
http://dx.doi.org/10.1109/PESGM41954.2020.9281934
http://dx.doi.org/10.1109/PESGM41954.2020.9281934
http://dx.doi.org/10.1109/PESGM41954.2020.9281934
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb26
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb26
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb26
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb26
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb26
http://dx.doi.org/10.1109/ACCESS.2022.3152577
http://dx.doi.org/10.1109/ACCESS.2022.3152577
http://dx.doi.org/10.1109/ACCESS.2022.3152577
http://dx.doi.org/10.1109/ICICES.2013.6508202
http://dx.doi.org/10.1109/APPEEC48164.2020.9220404
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb30
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb30
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb30
http://dx.doi.org/10.1109/CCC.2019.000-6
http://dx.doi.org/10.1109/CCC.2019.000-6
http://dx.doi.org/10.1109/CCC.2019.000-6
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb32
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb32
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb32
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb32
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb32
http://dx.doi.org/10.1109/EEEIC.2015.7165296
http://dx.doi.org/10.1109/SmartGridComm.2014.7007764
http://dx.doi.org/10.1109/SmartGridComm.2014.7007764
http://dx.doi.org/10.1109/SmartGridComm.2014.7007764
http://dx.doi.org/10.1109/ACCESS.2020.2983179
http://dx.doi.org/10.1109/ACCESS.2020.2983179
http://dx.doi.org/10.1109/ACCESS.2020.2983179
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb36
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb36
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb36
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb36
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb36
http://dx.doi.org/10.1109/TPWRS.2019.2942333
http://dx.doi.org/10.1109/ICEEMT52412.2021.9601888
http://dx.doi.org/10.1109/ICEEMT52412.2021.9601888
http://dx.doi.org/10.1109/ICEEMT52412.2021.9601888
http://dx.doi.org/10.1109/ICASI.2018.8394474
http://dx.doi.org/10.1109/TSG.2016.2623983
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00094.A
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00094.A
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00094.A
http://dx.doi.org/10.1109/EIT.2015.7293374
http://dx.doi.org/10.1109/TD39804.2020.9299960
http://dx.doi.org/10.1109/ACCESS.2020.3028222
http://dx.doi.org/10.1109/ACCESS.2020.3028222
http://dx.doi.org/10.1109/ACCESS.2020.3028222
http://dx.doi.org/10.1109/ICAACI50733.2020.00043
http://dx.doi.org/10.1109/ICAACI50733.2020.00043
http://dx.doi.org/10.1109/ICAACI50733.2020.00043


S.Y. Diaba and M. Elmusrati Neural Networks 159 (2023) 175–184

P

R

V

Z

eng, W., Kong, X., Peng, G., Li, X., & Wang, Z. (2019). Network intrusion
detection based on deep learning. In 2019 international conference on com-
munications, information system and computer engineering (pp. 431–435).
http://dx.doi.org/10.1109/CISCE.2019.00102.

adoglou-Grammatikis, P. I., & Sarigiannidis, P. G. (2018). An anomaly-based
intrusion detection system for the smart grid based on CART decision tree.
In 2018 global information infrastructure and networking symposium (pp. 1–5).
http://dx.doi.org/10.1109/GIIS.2018.8635743.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61.

Sharafaldin, I., Habibi, A. L., & Ghorbani, A. A. (2018). Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In ICISSP.

Shum, J., & Malki, H. A. (2008). Network intrusion detection system using neural
networks. In 2008 fourth international conference on natural computation (pp.
242–246). http://dx.doi.org/10.1109/ICNC.2008.900.

Singh, V. K., Ebrahem, H., & Govindarasu, M. (2018). Security evaluation of two
intrusion detection systems in smart grid SCADA environment. In 2018 north
American power symposium (pp. 1–6). http://dx.doi.org/10.1109/NAPS.2018.
8600548.

Siniosoglou, I., Radoglou-Grammatikis, P., Efstathopoulos, G., Fouliras, P., &
Sarigiannidis, P. (2021). A unified deep learning anomaly detection and
classification approach for smart grid environments. IEEE Transactions on
Network and Service Management, 18(2), 1137–1151. http://dx.doi.org/10.
1109/TNSM.2021.3078381.

Subasi, A., et al. (2018). Intrusion detection in smart grid using data mining
techniques. In 2018 21st Saudi computer society national computer conference
(pp. 1–6). http://dx.doi.org/10.1109/NCG.2018.8593124.

Sun, Y., Guan, X., Liu, T., & Liu, Y. (2013). A cyber–physical monitoring system
for attack detection in smart grid. In 2013 IEEE conference on computer
communications workshops (INFOCOM WKSHPS) (pp. 33–34). http://dx.doi.org/
10.1109/INFCOMW.2013.6970712.

Suppitaksakul, C., & Saelee, V. (2009). Application of artificial neural networks
for electrical losses estimation in three-phase transformer. In 2009 6th
international conference on electrical engineering/electronics, computer, telecom-
munications and information technology (pp. 248–251). http://dx.doi.org/10.
1109/ECTICON.2009.5137002.
184
Talha, B., & Ray, A. (2016). A framework for MAC layer wireless intrusion detec-
tion & response for smart grid applications. In 2016 IEEE 14th international
conference on industrial informatics (pp. 598–605). http://dx.doi.org/10.1109/
INDIN.2016.7819232.

Ullah, I., & Mahmoud, Q. H. (2017). An intrusion detection framework for the
smart grid. In 2017 IEEE 30th Canadian conference on electrical and computer
engineering (pp. 1–5). http://dx.doi.org/10.1109/CCECE.2017.7946654.

Valdes, A., Macwan, R., & Backes, M. (2016). Anomaly detection in electrical
substation circuits via unsupervised machine learning. In 2016 IEEE 17th
international conference on information reuse and integration (pp. 500–505).
http://dx.doi.org/10.1109/IRI.2016.74.

ijayanand, R., Devaraj, D., & Kannapiran, B. (2019). A novel deep learning based
intrusion detection system for smart meter communication network. In 2019
IEEE international conference on intelligent techniques in control, optimization
and signal processing (pp. 1–3). http://dx.doi.org/10.1109/INCOS45849.2019.
8951344.

Xu, Y. (2020). A review of cyber security risks of power systems: from static to
dynamic false data attacks. Protection and Control of Modern Power Systems,
5, 19. http://dx.doi.org/10.1186/s41601-020-00164-w.

Yang, L., Liu, J., & Zhang, Y. (2019). An intelligent security defensive model
of SCADA based on multi-agent in oil and gas fields. International Journal
of Pattern Recognition and Artificial Intelligence, 34, http://dx.doi.org/10.1142/
S021800142059003X.

Yang, Y., McLaughlin, K., Littler, T., Sezer, S., Pranggono, B., & Wang, H. F.
(2013). Intrusion detection system for IEC 60870 − 5 − 104 based SCADA
networks. In 2013 IEEE power & energy society general meeting (pp. 1–5).
http://dx.doi.org/10.1109/PESMG.2013.6672100.

Yohanandhan, R. V., Elavarasan, R. M., Manoharan, P., & Mihet-Popa, L. (2020).
Cyber-physical power system (CPPS): A review on modeling, simulation, and
analysis with cyber security applications. IEEE Access, 8, 151019–151064.
http://dx.doi.org/10.1109/ACCESS.2020.3016826.

hao, J., Chen, M., & Luo, Q. (2011). Research of intrusion detection system
based on neural networks. In 2011 IEEE 3rd international conference on
communication software and networks (pp. 174–178). http://dx.doi.org/10.
1109/ICCSN.2011.6013688.

http://dx.doi.org/10.1109/CISCE.2019.00102
http://dx.doi.org/10.1109/GIIS.2018.8635743
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb48
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb48
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb48
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb49
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb49
http://refhub.elsevier.com/S0893-6080(22)00503-2/sb49
http://dx.doi.org/10.1109/ICNC.2008.900
http://dx.doi.org/10.1109/NAPS.2018.8600548
http://dx.doi.org/10.1109/NAPS.2018.8600548
http://dx.doi.org/10.1109/NAPS.2018.8600548
http://dx.doi.org/10.1109/TNSM.2021.3078381
http://dx.doi.org/10.1109/TNSM.2021.3078381
http://dx.doi.org/10.1109/TNSM.2021.3078381
http://dx.doi.org/10.1109/NCG.2018.8593124
http://dx.doi.org/10.1109/INFCOMW.2013.6970712
http://dx.doi.org/10.1109/INFCOMW.2013.6970712
http://dx.doi.org/10.1109/INFCOMW.2013.6970712
http://dx.doi.org/10.1109/ECTICON.2009.5137002
http://dx.doi.org/10.1109/ECTICON.2009.5137002
http://dx.doi.org/10.1109/ECTICON.2009.5137002
http://dx.doi.org/10.1109/INDIN.2016.7819232
http://dx.doi.org/10.1109/INDIN.2016.7819232
http://dx.doi.org/10.1109/INDIN.2016.7819232
http://dx.doi.org/10.1109/CCECE.2017.7946654
http://dx.doi.org/10.1109/IRI.2016.74
http://dx.doi.org/10.1109/INCOS45849.2019.8951344
http://dx.doi.org/10.1109/INCOS45849.2019.8951344
http://dx.doi.org/10.1109/INCOS45849.2019.8951344
http://dx.doi.org/10.1186/s41601-020-00164-w
http://dx.doi.org/10.1142/S021800142059003X
http://dx.doi.org/10.1142/S021800142059003X
http://dx.doi.org/10.1142/S021800142059003X
http://dx.doi.org/10.1109/PESMG.2013.6672100
http://dx.doi.org/10.1109/ACCESS.2020.3016826
http://dx.doi.org/10.1109/ICCSN.2011.6013688
http://dx.doi.org/10.1109/ICCSN.2011.6013688
http://dx.doi.org/10.1109/ICCSN.2011.6013688

	Proposed algorithm for smart grid DDoS detection based on deep learning
	Introduction
	Related studies
	System model
	Deep Neural Network Structure
	System Description
	Description of dataset

	Results and analysis
	Conclusion
	Declaration of Competing Interest
	Data availability
	References


