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ABSTRACT Fractal compression technique is a well-known technique that encodes an image by mapping
the image into itself and this requires performing a massive and repetitive search. Thus, the encoding time is
too long, which is the main problem of the fractal algorithm. To reduce the encoding time, several hardware
implementations have been developed. However, they are generally developed for grayscale images, and
using them to encode colour images leads to doubling the encoding time 3× at least. Therefore, in this
paper, new high-speed hardware architecture is proposed for encoding RGB images in a short time. Unlike
the conventional approach of encoding the colour components similarly and individually as a grayscale
image, the proposed method encodes two of the colour components by mapping them directly to the most
correlated component with a searchless encoding scheme, while the third component is encoded with a
search-based scheme. This results in reducing the encoding time and also in increasing the compression rate.
The parallel and deep-pipelining approaches have been utilized to improve the processing time significantly.
Furthermore, to reduce the memory access to the half, the image is partitioned in such a way that half of the
matching operations utilize the same data fetched for processing the other half of the matching operations.
Consequently, the proposed architecture can encode a 1024 × 1024 RGB image within a minimal time of
12.2 ms, and a compression ratio of 46.5. Accordingly, the proposed architecture is further superior to the
state-of-the-art architectures.

INDEX TERMS Digital circuits, field programmable gate arrays, fractal colour image compression, parallel
architectures, pipeline processing.

I. INTRODUCTION
In recent years, images are found everywhere and become
an essential element in our daily lives. Images are produced
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intensively every single day in various forms such as med-
ical images, personal images, social media images, surveil-
lance images, and graphics images. Storing these images or
transferring them through the network creates an unbearable
burden for memory devices and the network bandwidth too.
Taking this into account, compression is an indispensable tool
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for archiving images in fewer spaces of storage and also for
transferring images in less time of transmission.

Fractal image compression (FIC) is one of themost popular
techniques due to its distinctive way in compressing images.
This compression technique uses self-similarity features as
a means to compress an image [5]. It also offers a high
compression ratio (CR), especially when applied to a digital
image with a high degree of self-similarity like aerial photog-
raphy or satellite imagery [7]. Owing to its popularity in dig-
ital archiving, FIC has been found in numerous applications
such as character recognition [8], super-resolution [9], water-
marking [10], [11], and digital signature embedding [12]. FIC
also possesses other attractive features like good peak signal-
to-noise ratio (PSNR) performance and a simple decoding
method [13], [14], [15], [16], [17], [18]. However, FIC suffers
one major drawback arising from the computational com-
plexity of the algorithm. Typically, FIC requires a very large
number of searches to find excellent or good-enough maps
between image blocks. Theoretically, the time complexity
of the fractal compression algorithm approximately equals
to O

(
n4
)
for n × n size image [19], [20]. Owing to this,

the encoding time required for FIC is generally large and
not efficient for most real-time applications that require the
processing of 30 frames per second, or more.

To date, various methods have been proposed for acceler-
ating the fractal algorithm. These methods can be grouped
into two types: software- and hardware-based methods. The
software-based methods mainly focus on reducing the size
of the range and domain pool, adopting of classification
approach [21], restriction of search space [22], [23], combin-
ing of different code schemes [24], and applying of feature
vector approach [25]. For instance, Bani-Eqbal [26] arranged
the domain blocks in a tree structure to reduce the number
of candidate blocks for matching search. In an earlier study,
Saupe and Hamzaoui [27] discarded the domain blocks that
have low variance. Tong and Pi [28] presented an adaptive
search for excluding the domain blocks that do not satisfy
the necessary condition of better matching. Meanwhile, Tong
and Wong [29] converted the matching search problem to a
nearest neighbour search problem. Although these schemes
are successful in speeding up the FIC, the attained encod-
ing times are still too high and not adequate to deliver the
real-time requirement for the most time-sensitive applica-
tions. So far, this problem is still existing even when using
cutting-edge microprocessors and digital signal processors
(DSPs). This is because the processors architectures are still
sharing the same concept as the older processor, where a static
set of instructions is run in a static architecture. On the other
hand, the hardware-based methods execute FIC operations in
parallel, resulting in the enhancement of the encoding time
performance.

Some research works targeting hardware implementation
of FIC have been published recently [1], [2], [30], [31],
[32], [33]. These works exploit the inherent parallelism in
FIC as means of speed-up. Although these works reduce the
encoding time significantly, they are developed to encode

grayscale images only. However, most of the images existing
these days are colour images. This shortage of fractal-colour-
image-compression (FCIC) hardware implementation can be
attributed to the fact that designing a dedicated hardware to
process colour images is much more complicated compared
to designing a custom hardware for processing grayscale
images. Due to this, fractal coding designers were contented
with the straight-forward method (i.e., three-component Sep-
arated Fractal Coding (SFC)) which encodes colour images
using the grayscale-based methods. In this case, each colour
component in a colour image is treated as a single grayscale
image. As a result, the correlation among colour components
is not exploited which results in a relatively low compression
ratio and PSNR. Furthermore, the encoding time is increased
significantly.

To the best of our knowledge, there is no certain hard-
ware work developed for encoding colour images except
that proposed in [34]. According to [34], a soft-core proces-
sor designed for Xilinx FPGA has been used for coding a
64× 64 colour image. In the process, the RGB components
of the colour image are transformed into YUV components,
and then fractal coding is performed in different sampling
modes of 4:4:4, 4:2:2, 4:2:0, and 4:1:1 for attaining a higher
compression rate. The range and domain blocks for each
component are classified into a specific number of classes.
More specifically, Y’s blocks are classified into 72 classes
while U’s and V’s blocks are classified into 24 classes each.
The encoding process is performed so that each component
is encoded separately without exploiting the inter-colour-
component redundancy. Although the encoding time of this
implementation is not reported, the time can be estimated
by considering an almost similar implementation published
by the same authors Son, et al. [35], but applied for the
grayscale images. Based on this assumption, the encoding
time of colour image is approximately 33 s. This reported
time is large because this design lacks a hardware acceler-
ator unit and also because it still encodes colour components
individually.

In this paper, a new high-speed pipelined parallelism archi-
tecture is proposed for coding a high-resolution colour image
of 1024× 1024 pixels size. Since Field-Programmable-Gate-
Arrays (FPGAs) have the advantage to feature dense fine
parallelism where hundreds of instructions can be executed
simultaneously, as well as be reprogrammable, therefore, the
proposed architecture is realised and developed on FPGA.
The proposed architecture is designed to exploit the cross-
correlation between colour components in order to achieve
higher CR and lower encoding time. Unlike YUV and other
colour spaces, the colour components in RGB space are rel-
atively more correlated and have a higher degree of similar-
ity [36]. Therefore, colour images are chosen to be encoded
in RGB space, and thus direct mapping between the colour
components is used to reduce the search process. By doing so,
one component is encoded with a search-basedmethod, while
the other two components are encoded with a searchless-
based method. As a result of encoding two of the three colour
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components using the searchless method, the runtime is
nearly one-third of that when using grayscale-based designs.
Furthermore, it provides relatively higher compression rate
and image quality compared to the conventional approach
that encodes colour components separately. The main two
contributions of this work are:

Develop a hardware-friendly fractal RGB image encod-
ing method with two encoding schemes, utilizing the
inter-correlation between the colour components in RGB
images to improve the encoding speed and the compres-
sion rate.
Design a high-speed hardware architecture of fractal-based
colour image compression with deep pipeline processing
and two parallel matching processors.

II. MATHEMATICAL BACKGROUND OF FRACTAL
ALGORITHM
In this section, the mathematical background of the frac-
tal algorithm is demonstrated and explained in detail. The
encoder and decoder parts of the fractal algorithm are elabo-
rated clearly in the following sub-sections.

A. ENCODING PROCEDURE
The idea of the fractal algorithm is to find a set of transfor-
mations that can map an image into itself. In other words, the
fractal algorithm attempts to find the local self-similarities
on the image and maps them together using affine transfor-
mation. Thus, to encode an image, the image needs to be
partitioned into a set of non-overlapping blocks referred to as
range blocks, Rs. Additionally, the image is also partitioned
into larger blocks called domain blocks and denoted as Ds.
Unlike the range blocks, the domain blocks can be overlapped
together and are generally 4× greater than the range blocks.
In the case that the range blocks have the size of α×α pixels,
the size of the domain blocks will be generally 2α × 2α.

In order to map the range and domain blocks together, the
encoder will search the domain pool for the acceptable or
the best matched-domain block for each range block on the
image. As said earlier, the affine transformation needs to be
applied to the candidate domain blocks in order to maximize
the matching degree between the matched blocks. Thus, the
values of the transformer’s coefficients for the best matches
are then stored as the fractal codes for the encoded image.
Typically, the affine transformer can be simplified to three
small basic functions. First, the scaling function is respon-
sible to contract the domain blocks to the size of the range
block. To do so, every 2 × 2 pixels in the respective domain
block is replaced by one pixel of their average value. Second,
the geometric function where the domain block can be rotated
and reflected by specified degrees to generate several symme-
tries of the domain block. Last is the massic function where
the intensity values of the candidate domain are adjusted
by two parameters; contrast scaling δ and brightness offset
ρ parameters. The scaling parameter is typically between
−1 and 1 [37].

B. DECODING PROCEDURE
In order to decode an image being encoded with the frac-
tal algorithm, the decoder requires to perform an iterative
reconstructing process. The first task of the decoder is to use
an arbitrary image and then update the image’s partitions as
follows:

R = δ × Dj + ρ × I (1)

where R represents the retrieved range block and Dj repre-
sents the mapped jth domain block. The δ, ρ and j coefficients
are the stored fractal codes for the corresponding range block.
Once it finishes retrieving all the range blocks on the image,
the produced image will be used as the domain image for
the next iteration. This process will continue till the encoded
image is retrieved. Typically, 10 to 20 iterations are enough
to reconstruct an image encoded by the fixed domain block
size approach [38]. To measure the image quality for the
reconstructed RGB images, the PSNR metric is usually used
and computed as follows:

PSNR = 10 log10
2552

1
M×N×3

∑
(ν − ν̃)2

(2)

where ν and ν̃ are, respectively, the original and retrieved
RGB images, andM×N is the height×width of the encoded
image, which is here 1024× 1024.

III. METHODOLOGY
A. PROPOSED FCIC ALGORITHM
In the proposed algorithm, the colour components of an RGB
image are processed with two different schemes, i.e., search
and searchless-based schemes. The search scheme is used to
encode the most-correlated component, while the searchless
scheme is used for encoding the remaining two components.
From [36], it can be found that R and B components are
highly correlated to the G component and consequently the
most-correlated component is G. Therefore, G-component
is denoted here as the primary component while R and B
components are denoted as the secondary components. In this
case, the primary component is processed with the search
scheme and the secondary components are processed with
the searchless scheme. The procedures for both encoding
schemes are discussed in the following sub-sections.

1) SEARCH SCHEME
As previously discussed in Section 2.1, the kernel of the frac-
tal method is to pair each range block with an appropriated
domain block. Thus, each range block in the G-component;
Rg; needs to be mapped to one domain block, Dg. The
selected domain block must have the minimum matching
error compared to others. In fact, searching the entire com-
ponent for the most matched block is a very time-consuming
operation as it requires performing a massive number of
matching operations. To reduce the required number of
matching operations, the searched blocks are restricted to
those that exist only in the area close to the corresponding
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FIGURE 1. Steps in partitioning G component.

range block. This generally will not cause noticeable degra-
dation in the quality of the decoded image as the correlation
among the adjacent blocks is generally high, specifically for
images captured from natural scenes [5], [39], [40]. There-
fore, in this work, each range block Rg in a 128×128 window
is compared with every domain blockDg in the samewindow.
With this selected window size, 1024 × 1024 G-component
would contain 64 non-overlapped windows. In this case,
G-component is firstly divided into non-overlapping sub-
images (denoted as sub-img) of 128 × 128 pixels size each.
This will result in 64 sub-imgk : k = 0 · · · 63. Then, each sub-
image is partitioned into range and domain blocks of 8 × 8
and 16 × 16 pixels size each, respectively. As a result, there
will be 64 non-overlapped domain blocks in each sub-image,
and they are denoted as Dgj , j = 0 · · · 63. These 64 domain
blocks constitute one search domain pool. In terms of the
range block, there are 256 blocks in each sub-image and these
blocks are grouped into 64 sets of four-adjacent range blocks
denoted as Rgi,p=0,1,2,3 : i = 0 · · · 63. As a result, every four
adjacent range blocks Rgi,p=0,1,2,3 will constitute a domain
block Dgj , where j = i. Fig. 1 illustrates the overall partition-
ing procedures for G-component.

To match Rgi,p with Dgj , the affine transform is used to
maximize the matching degree between the matched blocks.
For a simple implementation and fewer matching operations,
the geometric function involved in the affine transform is dis-
carded. In this case, the affine transformψ forDgj is computed
as:

ψ
(
Dgj
)
= δ × γ (Dgj )+ ρ × I (3)

where γ is the contract function returning the contracted
domain block of the size α × α, I is the identity matrix of
the size α × α where all entries are ones, and δ and ρ are,
respectively, the scaling and offset parameters.

Now, to measure the similarity between Rgi,p and the

obtained transform ofDgj (i.e.,ψ
(
Dgj
)
), the sum-of-absolute-

differences (SAD) metric is used. Among the common
metrics (e.g., the least-squared-error (LSE) and the mean-
squared-error (MSE)), SAD is more hardware-friendly as it
does not require multiplication operations. The formula for
computing SAD is as follows:

SAD
(
Rgi,p, ψ

(
Dgj
))
=

1
N

N∑
x=1

∣∣∣Rgi,p,x − ψ (Dgj )x ∣∣∣ (4)

where Rgi,p,x and ψ
(
Dgj
)
x
are, respectively, the xth intensity

values of the respected range and transformed domain blocks,
and N is the number of pixels in Rgi,p; i.e., N = 8 × 8 =
64. For getting less distortion and max matching degree, ρ is
computed as:

ρ = µ
(
Rgi,p

)
− δ × µ(Dgj ) (5)

where µ
(
Rgi,p

)
is the mean value for Rgi,p, µ(D

g
j ) is the mean

value for Dgj and δ is the contrast scaling parameter. To gain
a high compression rate, δ is chosen to be a 2-bit size and,
therefore, it has four possible values (i.e.,−0.5, 0.25, 0.5, 1).
In this case, each of these values must be tested in order to
select the one that produces less distortion.
For a given range block Rgi,p, the encoder will search the

domain pool Dgj , j = 0, . . . , 63 for the best-matched domain
block that produces the minimum SAD value. The corre-
sponding δ and ρ values which represent the fractal codes
require to be stored together with the spatial information of
the matched domain block. In this work, ρ and δ are of 7-bit
and 2-bit sizes, respectively.
From Fig. 1, it is clear that each domain block contains

four range blocks. Thus, reading four adjacent range blocks
Rgi,p=0,1,2,3 from memory will equal reading a domain block.
Likewise, reading one domain block will implicitly lead to
reading four range blocks. Therefore, when a domain block
is read from the memory for similarity check, the implicit
four range blocks can be utilised and processed at the same
time, resulting in reduced memory access. Consequently, the
compression time can be reduced effectively.

In the process, each four adjacent Rgi,p=0,1,2,3,
i = 0 · · · 63 is compared consecutively with all Dgj , j =
0 . . . 63 existing in the same sub-image. At each comparison
between Rgi,p=0,1,2,3 andD

g
j , the implicit blocks (i.e.,Dgj=i and

Rgi=j,p=0,1,2,3, respectively) are utilised to perform another
matching operation. Thus both matchings match(Rgi,p, D

g
j )

and match(Rgi=j,p, D
g
j=i) can be executed in parallel using

two matching processors and the results for the best-matched
blocks need to be stored. To avoid performing the same
matching twice, the match(Rgi,p, D

g
j ) is carried out in one

processor for j ≥ i while the match(Rgi=j,p, D
g
j=i) for j < i is

carried out in other one. For example, for i = 0, the four range
blocks Rg0,p=0,1,2,3 will be matched one-by-one with Dgj : j =
0 · · · 63 in the first processor, while the other processor will
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carry on the matching between Rgi=j,p : j = 1 · · · 63 and
Dgj=0. Next, for i = 1, the next 4-range block Rgi=1,p=0,1,2,3
will require to be compared with Dgj : j = 1 · · · 63 only
because the range blocks Rgi=1,p=0,1,2,3 have already been
compared withDgj=0 in the first cycle. Meanwhile, the match-
ing between Rgi=j,p : j = 2 · · · 63 and Dgj=1 will be carried out
on the second processor. Therefore, for each upcoming value
of i, the number of domain blocks that need to be matched is
64 − i as j = i, . . . , 63. As a result, the number of matching
operations is reduced when the value of i is increased. This
leads to a significant reduction in search time.

2) SEARCHLESS SCHEME
Within this scheme, the high degree of similarity between the
colour components is utilised to encode R and B components
in a significantly short time. Since the range blocks from G
component, Rg, are strongly correlated with the range blocks
from R and B components (Rr and Rb) when they are totally
overlapped, therefore, both Rr and Rb are mapped with its
overlapped Rg. For doing so, R and B components need to
be partitioned in a similar way that the G-component is parti-
tioned. One exception is that, unlike G-component that needs
to be partitioned into range and domain blocks for pairing
each range block with a particular domain block, R and B
components need to be partitioned only into range blocks
as they will be paired to the range blocks in G-component.
In this case, R and B components are partitioned into 64 sub-
images each and each of them is partitioned into 8 × 8 non-
overlapping sets of four range blocks called Rri,p=0,1,2,3 and
Rbi,p=01,2,3, respectively, where i = 0, . . . , 63. For each range
block in the secondary components, the affine transform of
the mapped block, say Rgi,p, is computed as follows:

ψ
(
Rgi,p

)
= δ × Rgi,p + ρ × I (6)

where here the contract function is removed as Rgi,p has the
same size as Rri,p and R

b
i,p. The two parameters, δ and ρ, are

defined in the same fashion as described in Section 3.1.1.
Thus, the values of these parameters are stored as the fractal
codes for each Rri,p and Rbi,p. The flowchart of the proposed
encoding method for RGB images is shown in Fig. 2.

In respect to the decoding process, the R and B components
are decoded in a different way compared to the G-component.
In fact, the G-component is decoded in a conventional manner
as described in Section 2.2. Unlike the G component which
is reconstructed from an arbitrary image with numerous iter-
ations, the R and B components are reconstructed from the
retrieved G component and only need one iteration to be
reconstructed. Consequently, the decoding time is effectively
decreased, and this is another advantage of the introduced
encoding approach.

B. FCIC ARCHITECTURE
To achieve a high-speed encoding using the proposed FCIC
algorithm, new hardware architecture is proposed as shown

FIGURE 2. Flowchart of the proposed FCIC algorithm.

in Fig. 3. The proposed architecture is designed carefully to
work at a higher clock speed and to provide larger through-
puts. To do so, each component of the proposed archi-
tecture is designed and developed to have lower latency.
Parallelism and pipelining approaches have been used widely
and efficiently in designing thewhole system in order to reach
optimal performance. Basically, the proposed architecture
comprises (i) Memory-Control (MemCtrl) unit, (ii) Memory-
Addresses-Generator (MemAddrG) unit, (iii) Mean-and-
Contraction Computing (MCC) unit, (iv) two matching
processors (PU1 and PU2), and several control units.
Examples of the developed control units are (i) the Storing-
Control-unit (SCtrl), (ii) MCC-Ctrl unit and (iii) the Fractal
Codes and SAD Storing-Control-unit (FC-SAD SCtrl). Each
matching processor in the system contains RAMs, registers,

110448 VOLUME 10, 2022



A.-M. H. Y. Saad et al.: Deep Pipeline Architecture for Fast Fractal Color Image Compression Utilizing Inter-Color Correlation

FIGURE 3. Overall hardware architecture for encoding colour RGB images with fractal compression technique.

anOffset-Computation-Unit (OCU), and a SAD-Computation
(SADC) unit with its control unit (SADC-Ctrl).

In operation, the MemAddrG unit is designed to generate
the required addresses in order to fetch the image blocks as
described in Section 3.1., while the MemCtrl unit is designed
to control the main memory. The MCC unit is used to com-
pute themean values for the fetched range and domain blocks.
Besides, it is responsible to contract the domain blocks’ size
to 8 × 8 pixels. The computation of the offset parameter
and the sum of absolute differences for each mapping is
performed on OCU and SADC units, respectively. These
units are controlled by MCC-Ctrl and SADC-Ctrl modules,
respectively. Last but not least, SCtrl unit is to control the
storing of the fetched range and domain blocks in the internal
memory for computing SAD values, while FC-SAD SCtrl is
to store the best fractal codes. For a clear understanding of the
encoding process, thememory organisation, and thememory-
addresses-generator unit MemAddrG are demonstrated first.

1) MEMORY ORGANISATION
A 1024 × 1024 RGB image of 24-bit pixel size requires
3 megabytes of memory in order to be fully stored in the

system. With a memory word size of 64-bit, the encoded
image requires 3 × 217 memory words or locations.
The image’s pixels are buffered in a row-wise order, where the
colours components are buffered one after another. Thus, the
address bus width is 19-bit. As shown earlier that the encoded
image comprises three components, where each component
is subdivided into 64 sub-images and each is further divided
into 64 domain and/or 256 range blocks. To read a partic-
ular Ri,p or Dj block from a certain sub-image sub-imgk
in one of the colour components, altogether the block, the
sub-image and the component spatial information (i.e., i, j
and k) are required to generate the memory addresses. In this
case, two bits are required to address the colour compo-
nents, six bits to address the sub-images, six bits to address
the domain/4-adjacent-range blocks, and five bits to address
the pixels in the respective image block. Thus, the 19-bit
long address Addr18...0 is constructed as: Addr18,17 is con-
structed from the colour component index (i.e., 00, 01 and
10 for G, R, and B components, respectively), Addr16...14 and
Addr13...11 are constructed from the three most-significant
bits of the sub-image and domain block indices respectively
(i.e., k and j), Addr6...4 and Addr3...1 are constructed from the
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FIGURE 4. MemAddrG unit.

remaining three least-significant bits of the sub-image and
domain block indices respectively, Addr10...7 and Addr0 are
to read the domain/4-adjacent-range block’s pixels. Corre-
spondingly, the base addresses of each sub-image and image
block are in the form of ‘‘xx-xxx-000-0000-xxx-000-0’’ and
‘‘xx-xxx-xxx-0000-xxx-xxx-0’’.

2) MEMORY-ADDRESSES-GENERATOR UNIT
To generate the required addresses for fetching the image
blocks as described earlier, we designed a MemAddrG unit
as shown in Fig. 4. From this figure, it is clear that the unit
is equipped with five counters, a flip-flop, an adder, and sev-
eral logic gates. The counters are component counter c-Cr,
sub-image counter k-Cr, 4-range block counter i-Cr, block
counter j-Cr, and block’s pixels counter p-Cr. All counters
are of 6-bit size except c-Cr and p-Cr which are 2-bit and
5-bit sizes, respectively.

Referring to Fig. 4, the p-Cr is enabled whenever the
signal MemAddrG_En is in HIGH state. This leads to gen-
erating the addresses required for reading all pixels in the
desired domain or 4-range blocks. Since these blocks are of
16×16 pixels size and stored in 32 memory words of 8-byte,
the addresses for the left 16 × 8 pixels are generated first,
followed by the addresses of the right 16 × 8 pixels. As a
result, the range blocks are read in the right sequence, i.e.,
Ri,0, Ri,1,Ri,2 and Ri,3. The counters i-Cr, j-Cr, and k-Cr
are responsible to provide the right indices for the desired
read block based on the flowchart shown in Fig. 2, while
the counter c-Cr is used to select the colour component to be
read (i.e., 00, 01 and 10 for reading G, R and B components,
respectively).

For encoding the image as described in 3.1, the MemAd-
drG unit first generates the 32 addresses for reading
RG0,p=0,1,2,3 by enabling the counter p-Cr, resulting in count-
ing from ‘‘00000’’ . . . ‘‘11111’’. Meanwhile, the remaining
counters are all having zeros values. Once p-Cr reaches the
final count (p-Cr = ‘‘11111’’), c-Cr is enabled to allow
generating the base addresses of the overlapped range blocks
on R and B components. Consequently, the first four range
blocks of all colour components are read in the following sub-
sequence: Rg0,p=0,1,2,3, R

r
0,p=0,1,2,3, R

b
0,p=0,1,2,3. In this case,

both Rr0,p=0,1,2,3 and Rb0,p=0,1,2,3 can be encoded with the
proposed searchless scheme by mapping them to Rg0,p=0,1,2,3.
At the end of generating the required addresses for reading

Rb0,p=0,12,3, the values of the counters p-Cr and c-Cr are equal
to ‘‘11111’’ and ‘‘10’’, respectively. For the next cycle, c-Cr is
cleared, and j-Cr is enabled in order to generate the addresses
for reading the next block at the G component, i.e., Dg1. This
allows comparing Rg0,p=0,1,2,3 with Dg1. Since R

g
0 needs also

to be compared with another 62 domain blocks (i.e., Dg1 to
Dg63), j-Cr is enabled for one clock cycle at the end of fetching
each domain block, resulting in to increment j. To prevent
c-Cr be enabled at the same time, a flip-flop (FF) is used.
Accordingly, c-Cr can be only enabled when the FF output,
Q, is zero, while j-Cr can be enabled when Q is one. In this
case, the FF is set when the unit starts generatingRb0 addresses
and reset when it completes generating the addresses of the
last domain block Dg63 (j-Cr= 63).
Once the values of the counters j-Cr and p-Cr reach the

maximum value, j-Cr is loaded with i-Cr + 1, which leads
to fetching the subsequent 4-range block, Rg1,p=0,1,2,3. At the
same time, the counter i-Cr is also enabled. When the coun-
ters altogether i-Cr, j-Cr and p-Cr reach their final counts, this
means that the current sub-image is completely read and the
MemAddrG unit needs to start generating the addresses for
fetching the next sub-image, sub-imgk=1. Thus, the counter
k-Cr is enabled for one clock cycle to generate the base
address of the next sub-image. Then the counters c-Cr,
i-Cr, j-Cr and p-Cr are enabled in the same manner as for
the previous sub-image. This process continues until all sub-
images are read and encoded.

3) ENCODING PROCESS DATAFLOW
To let the system starts the encoding process, the signal Start
needs to be asserted. At this time, the MemCtrl unit enables
the MemAddrG unit by asserting the control signal,MemAd-
drG_En. This control signal MemAddrG_En and some oth-
ers such as PG-DataReady, SG-DataReady are also provided
byMemCtrl unit. PG-DataReady and SG-DataReady control
signals are asserted to indicate that the pixels values to be read
from the primary component or from the secondary compo-
nents, respectively, are available on the data bus. Thus, they
give an indication to other units to start processing the data
with the corresponding encoding scheme.

The implementation of each encoding scheme requires
fetching different blocks as described previously. According
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to MemAddrG, in every cycle, four range blocks of every
colour component (Rgi ,R

r
i , R

b
i ) are read first, followed by

reading the domain blocks from the G component. Since
Rri and Rbi need only Rgi to be encoded with the proposed
searchless scheme, therefore, the searchless scheme is carried
out first. Then, the proposed search scheme is executed for
encoding RGi .
As stated previously, Rgi , R

r
i and Rbi are consecutively

fetched for encoding Rri and R
b
i with the searchless scheme.

At the time of reading Rgi,p=0,1,2,3, MCC computes the mean
value of each range block. Simultaneously, StrCtrl stores
Rgi,p=0,1,2,3 and their computed mean values in the dual-port
RAM 4-R and µ

(
R0,1,2,3

)
registers, respectively. As shown

in Fig. 3, these memory elements are available in the pro-
cessor PU1. On the other hand, Rri and R

b
i range blocks and

their mean values are stored in the internal memory of PU2,
which are respectively 64 12-bit shift register and µ (RD)
register. For each range block of Rri and Rbi , the matching
process is performed once its mean value is available in
µ (RD). As MCC is designed to compute the mean value with
3 pipelining stages as shown in Fig. 5, the mean value needs
three clock cycles to be computed and one additional cycle
to be stored in the respective register µ (RD). Thus, after four
clock cycles of reading Rri or Rbi , the processor PU2 starts
the matching process by computing the offset value g. When
computing ρ using OCU in PU2, the two multiplexers, mux1
andmux2, select the correspondingµ

(
Rgi,p

)
value to be fed to

the OCUµ(D) input. For each scaling value δ, OCU produces
one value of ρ which is stored in the corresponding register
at the 5th clock cycle. At this stage, the PU2 starts computing
the SAD value for each set of δ and ρ using its SADC unit.
To do so, the corresponding Rgi,p block needs to be provided
to SADC unit. Since Rgi,p is currently available in the internal
dual-port RAM 4-R, therefore, Rgi,p is provided to SADC unit
from this internal RAM. On the other hand, the 12-bit shift
register would provide the processed range block (i.e., Rri,p
or Rbi,p) to SADC at the required time. For each set of δ and
ρ, SADC computes the SAD value, and these computed val-
ues are then compared together to select the minimum SAD,
MinSAD. The SADC unit is designed to do the given task
in 4-pipeline stages. The encoding set corresponding to the
minimum SAD is stored for decoding purpose. Thus, these
operations are repeated for each range block of Rri and R

b
i in

the secondary components. Fig. 6 demonstrates the pipeline
processing for encoding the range blocks of the secondary
components (Rri,p and R

b
i,p) by the proposed architecture.

After reading the range blocksRri andR
b
i for encoding them

by the searchless scheme as shown in Fig. 6, MemCtrl starts
immediately reading the domain blocks from the primary
component in order to encode Rgi with the search scheme.
Unlike Rri and Rbi , R

g
i is encoded using both PU1 and PU2

processors. In this case, PU1 executes the matching opera-
tions between each four-range block Rgi,p=0,1,2,3 and domain
blocks Dgj : j = i · · · 63. On the other hand, PU2 executes the
matching operations between each domain block Dgj=i with

FIGURE 5. MCC unit.

every four-range block Rgi=j : j = i + 1 · · · 63. As mentioned
previously, Dgj=i and R

g
i=j are constructed, respectively, from

the four-range-block Rgi,p=0,1,2,3 and the domain block Dgj ,
which are matched in PU1. Dgj=i and R

g
i=j are, respectively,

denoted as DR and RD in the architecture diagram shown
in Fig. 3. Accordingly, the performed matching operations
on PU2 do not need any access to the memory and hence
the overall memory access is reduced effectively. For each
matching, the corresponding processor calculates, for each
defined δ value, ρ and SAD.The coefficients corresponding to
the lowest SAD value are stored on FC-SAD RAM for further
processing.

In order to match Rgi,p=0,1,2,3 with Dgj=i···63 in PU1, the
domain blocksDgj=i···63 need to be fetched consecutively from
the main memory. However, as the first domain block that
needs to be matched (i.e., Dgj=i) can be constructed from the
range blocks Rgi,p=0,1,2,3 which are fetched for encoding Rri
and Rbi , therefore there is no need to fetch it again. Thus,
MemCtrl fetches only the remaining domain blocks starting
from Dgj=i+1. In this case, the domain block Dgj=i is con-
structed by the MCCmodule at the time of fetching the range
blocks Rgi,p=0,1,2,3 and the results (d0, d1, d2 and d3 shown
in Fig 5 represent four constructed pixels produced every two
clock cycles from two consecutive reads, i.e., 2 × 8 pixel)
are stored on the internal RAM D at PU1 processor. Simi-
larly, the mean value of Dgj=i is computed at the same time
of computing the mean values of Rgi and the result is stored
in µ (D) register. Thus, both Rgi,p=0,1,2,3 and Dgj=i blocks,
and their corresponding mean values are obtained during the
encoding process of Rri and Rbi as shown in Fig 6. In this
case, the matching process between Rgi,p=0,1,2,3 and Dgj=i is
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FIGURE 6. The pipeline processing for encoding the range blocks of the secondary components using the proposed architecture with the searchless
scheme.

performed directly after the searchless encoding stage is com-
pleted. To be more specific, the matching process starts once
RAM 4-R is ready to provide the required range blocks for
the PU1 processor. Since RAM 4-R is still in used by PU2 for
twelve clock cycles after fetching the last range block from
the main memory (see Fig. 6), therefore, this number of clock
cycles are required before starting the matching operation
(i.e., computing SAD with SADC unit) between Rgi,p=0,1,2,3
and Dgj=i in PU1. As ρ is required in the matching operation,

therefore, it is computed one clock cycle earlier (clock cycle
#108). Thus, for preparing the next domain block Dgi+1 for
the next matching operation, Dgi+1 needs to be fetched four
clock cycles earlier (i.e., clock cycle #105). This number of
clock cycles is required to compute µ

(
Dgi+1

)
and g values

for the next matching operation and consequently allows to
perform the next matching exactly after the previous one is
finished. In this case, Dgi+1 is fetched eight clock cycles after
completely fetching the range block Rbi and accordingly the
search-based encoding stage is considered to start at this time.
As a result, the searchless encoding phase needs eight clock
cycles along with the clock cycles required for fetching the
range blocks Rgi , R

r
i and R

b
i (i.e., 96 clock cycles), altogether

are 104 clock cycles.
At the clock cycle #105, the processor PU1 starts encod-

ing Rgi,p=0,1,2,3 by the proposed search scheme as shown in
Fig. 7. At this time, the MemCtrl starts fetching the domain
blocks Dgj=i+1,...,63 for determining the most matched block
for each Rgi,p. To do so, MCC computes the mean value
for each domain block Dgj and stores the result in µ (D)

register. On the same time,MCC contracts the fetched domain
block to the size of the range block and stores the results on
RAM D. Since the contracted Dgi needs to be read four times
from RAM D for computing SAD(Rgi,0,D

g
i ), SAD(R

g
i,1,D

g
i ),

SAD(Rgi,2,D
g
i ), and SAD(Rgi,3,D

g
i ) sequentially, while the

domain block Dgi+1 is being written on it, therefore, RAM D
is designed to buffer two consecutive and contracted domain
blocks. Thus, the size of RAM D is 16 × 8-byte. The com-
puting of SAD values starts on the clock cycle #110 once
Rgi,0 and Dgi are fetched from the dual-port RAMs 4-R and
D, respectively. Once the SAD values for the predefined four
scale coefficients δ are computed, SADC then selects the
lowest SAD value, MinSAD. The MinSAD value with the
corresponding fractal codes are stored in two registers, i.e.,
SAD1 and FC1, respectively. The SAD1 value is then com-
paredwith the previously stored SAD, i.e., theminimumSAD
value obtained from the previous matching operations for the
same range block. The result from this comparison is written
into FC-SAD RAM of size 256 29-bit by FC-SAD SCtrl unit.
The other three range blocks of Rgi (Rgi,1, R

g
i,2 and Rgi,3) are

matched consecutively and similarly as Rgi,0. The number of
cycles per each matching is 8 as shown in Fig. 7. This process
is repeated for each domain block Dgj=i+1,...63.

While PU1 is carrying out the assigned matching opera-
tions, the matching operations between Rgi=j,p=0,1,2,3 : j =
i + 1 · · · 63 and Dgj=i are carried out on PU2, utilising

the same data fetched for PU1. In the process, µ
(
Rgi=j,p

)
and µ

(
Dgj=i

)
are computed at the same time of computing
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FIGURE 7. Pipelining execution time for encoding the range blocks of the primary component in the processor
PU1 using the search scheme.

µ
(
Dgj
)
andµ

(
Rgi,p

)
, respectively. The results forµ

(
Rgi=j,p

)
and µ

(
Dgj=i

)
are stored in µ (RD) and µ (DR), respectively.

All the mean computations are carried out on the MCC unit.
However, unlike the situation in PU1, the mean values of the
range blocks µ

(
Rgi=j,p

)
are calculated after the calculation

of the mean value of the domain block µ
(
Dgj=i

)
. Therefore,

PU2 starts the matching process once µ
(
Rgi=j,p

)
is available

in µ (RD) register. In this case, the first matching of PU2 is
performed after fetching the first range block Rgi=j,0 : j =

i + 1 and computing its mean value µ
(
Rgi+1,0

)
. This is

corresponding to twelve clock cycles from the beginning of
the search encoding stage. Thus, PU2 computes δu of R

g
i+1,0

and Dgj=i using its own OCU unit (i.e., OCU2), and stores
the results in their respective register in the following cycle.
Following this process, the SADC2 is enabled to calculate
the SAD values and needs to be fed with the corresponding
range and domain block, i.e.,Rgi+1,0 andD

g
j=i. To do so,R

g
i+1,0

and the contracted Dgj=i are stored in the internal RAMs (i.e.,
64 12-bit shift register and dual-port RAM DR of the size
8 × 64 bits) to be utilised by SADC2. The outputs from
SADC2 are stored on SAD2 and FC2 registers. The SAD2
value is then compared with the minimum SAD value that
is already obtained from the previously performed matching
operations and stored in FC-SAD RAM. Thus, SAD2 and
FC2 values are stored in FC_SAD RAM if and only if the
SAD2 value is smaller than the previously stored SAD value.
These operations are repeated for eachRgi=j,p : j = i+1 · · · 63.

Fig. 8 demonstrates the pipelining execution time for encod-
ing the primary range blocks in the processor PU2.
In conclusion, the range blocks (Rri,p=0,1,2,3 and

Rbi,p=0,1,2,3) of the secondary components are encoded first,
followed by encoding the range blocks Rgi,p=0,1,2,3 of the pri-
mary component. At the end of encoding these range blocks
with the proposed encoding schemes, the next blocks are
fetched and processed in the same manner. This process is
repeated until encoding the entire image blocks.

IV. RESULTS AND DISCUSSION
The proposed FCIC architecture, depicted in Fig 3, has
been synthesised and implemented on Altera DE4 board.
This architecture utilises the inherent correlation between the
colour components to compress 1024× 1024 RGB image in
an efficient short time. The design characteristics are given
in Table 1. From this table, it can be seen that the num-
ber of logic elements (LEs) utilised for the proposed FCIC
design is 4973 LEs, which represents around 2% only of the
total available LEs. In respect to the memory requirement,
this design needs 13403 bits of memory size. Finally, this
design can successfully operate at a maximum frequency
of 380 MHz.

Meanwhile, the runtime or the encoding time can be cal-
culated also by computing the time needed to encode each
component individually and adding up the results. Since the
colour components are processed in two different groups
(i.e., primary, and secondary groups), the total encoding time
equals the sum of the encoding time for each group. Here, the
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FIGURE 8. Pipelining execution time for encoding the range blocks of the primary component in the processor PU2 using the
search scheme.

TABLE 1. FCIC performance.

processing time of each group is obtained by computing the
total number of clock cycles that are required to execute the
whole process.

Referring to Section 3.2.3, every set of eight 8 × 8
range blocks in the secondary group (i.e., Rri,p=0,1,2,3 and
Rbi,p=0,1,2,3) needs 104 clock cycles to be processed by the
proposed searchless encoding scheme. As the two-colour
components of the secondary group have 4096 sets of eight
range blocks (4096 = 2×1024×1024

8×8×8 ), hence, the total number
of clock cycles required for encoding these colour compo-
nents is 4096× 104 = 425984 cycles. As a result, the encod-
ing time for the secondary group equals 425984× 1

380 MHz =

1.121ms. For the other group referred to as the primary com-
ponent, where the G component is encoded by the introduced
search scheme, every four range blocks Rgi,p=0,1,2,3 need to
be matched with 64 domain blocks. As given also in the same
section, the matching operations are carried out on two pro-
cessors in parallel. Thus, each Rgi,p=0,1,2,3 is matched with the
domain blocks Dgj : j = i, . . . , 63 in the first processor PU1

and with Dgj : j = 0, . . . , i − 1 in the second processor PU2.
On general, each processor carries out half of the matching
numbers for each range block, i.e., 32 matching operations
per each processor. Referring to Figs. 7 and 8, it can be
seen that each matching of Rgi,p=0,1,2,3 and Dgj is executed
in 32 clock cycles. Therefore, the number of clock cycles
for encoding each Rgi,p=0,1,2,3 is equal to 32 (the number
of matching operations per processor) ×32 (the number of
clock cycles per each matching) = 1024 cycles. Two addi-
tional clock cycles were required at the end of the match-
ing operations before it can move to the searchless phase.
Consequently, each Rgi,p=0,1,2,3 requires 1026 clock cycles to
be encoded. Thus the primary component requires 4096 (the
total number of Rgi for the entire image) ×1026(the number
of clock cycles for each Rgi ) clock cycles. This corresponds
to the encoding time of 11.059 ms for fmax = 380 MHz.
Thus, the total time for compressing the entire image is
12.2 ms = 11.059 ms (the primary component’s encod-
ing time) + 1.121 ms (the secondary components’ encoding
time).

Similarly, the CR can be also calculated based on the sizes
of the fractal codes of both the primary and the secondary
groups. Since they are encoded with different bit sizes, the
CR needs to be computed individually. For the primary group,
the fractal code size is 15 bits for each range block (i.e.,
2-bit for δ, 7-bit for ρ and 6-bit for the spatial information
of the corresponding matched domain block). In this case,
the compressed size of the primary group is 1024×1024

8×8 ×

15 = 245760 bits. Unlike the primary group whose range
blocks are encoded with three parameters, the secondary

110454 VOLUME 10, 2022



A.-M. H. Y. Saad et al.: Deep Pipeline Architecture for Fast Fractal Color Image Compression Utilizing Inter-Color Correlation

FIGURE 9. Decompression results of four well-known RGB images
encoded with (a) the proposed approach and (b) the conventional
approach.

group’s range blocks are encoded with only two parameters
(i.e., δ and ρ). In this case, each 8 × 8 range block in the
secondary group is encoded by 9 bits (i.e., 2-bit for δ and 7-bit
for ρ). Thus, the compressed size of the secondary group is
equal to the total number of range blocks multiplied by 9,
which is 2×1024×1024

8×8 ×9 = 294912 bits. As a result, the total
CR of the image is equal to the ratio between the original
image size and the total compressed size of both the groups,
which is 3×1024×1024×8

245760+294912 = 46.5.

FIGURE 10. PSNRs of four decoded well-known RGB images encoded by
the proposed and the conventional approach.

TABLE 2. Comparison of the performance of the introduced design with
the proposed approach vs the conventional approach.

In order to obviously see the advantages of utilising the
correlation between the colour components when encoding
colour images as in the presented design, the result from the
introduced design needs to be compared with a similar design
but using the conventional approach that encodes each colour
component individually. To do so, the presented design has
been modified to encode each colour component separately
with the introduced search scheme (the searchless encoding
scheme is disabled as it cannot be used to encode all the
colour components in the image). Thus, all colour compo-
nents of the RGB image are encoded as similar as theG colour
component encoded. By doing so, we can fairly compare
the proposed design and see the disadvantages of encoding
colour images individually as this is the case for nearly all
designs available in the literature. Table 2 shows the compar-
isons for both approaches. It is clear that the design with the
proposed approach is nearly threefold faster than the same
design without utilising the correlation among the colour
components. With the proposed approach, R and B compo-
nents are encoded in 0.56 ms each, compared to 11.4 ms
when encoded individually by the search scheme. Thus, the
proposed approach reduces the compression time to one third
of the conventional approach. Furthermore, the compression
rate of the proposed approach is also increased by 36 %
over the conventional approach as the spatial information for
the mapped blocks are not required to be stored when the
searchless scheme is used. Although the CR for the proposed
approach is increased, the PSNR is also improved by 0.7 dB
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TABLE 3. Comparison between the proposed and selected designs.

on average. The decompressed images for both approaches
are shown in Fig. 9 for subjective assessment. For further
clarity, PSNR results for the four tested images are shown
in Fig. 10. From the illustrated results, it is clear that the
introduced design with the proposed approach outperforms
the conventional approach significantly.

The achieved performance has also been compared with
the performances of the available grayscale-based implemen-
tations. The decision to compare with the grayscale-based
designs rather than the colour-based designs is due to there
is no such appreciated hardware implementation in the liter-
ature for encoding colour images, while there are many for
encoding grayscale images. One reason for this lack in the
colour hardware implementations is that the colour images
can be encoded by the one developed for grayscale image
too. Thus, several well-known grayscale-based designs and
implementations from the literature have been compared and
reviewed in Table 3. In this comparison, their reported encod-
ing times for grayscale images have been multiplied by three
to obtain the encoding times for RGB images, as each of the
three colour components is assumed to be encoded separately
as the grayscale image.

From the table, it can be seen that the encoding time of the
proposed architecture is the lowest compared to others, which
corresponds to 2×, 133×, 11250×, 2125× and 116× less
than [1], [2], [3], [4], and [6], respectively. If the image size
is taken into account and knowing that the proposed design
can encode 512 × 512 × 3 and 256 × 256 × 3 images in
3 ms and 0.75 ms, respectively, the proposed design exhibits
8×, 2133×, 11250×, 8500× and 1866× faster than [1],
[2], [3], [4], and [6], respectively. From these figures, it is
clear that the proposed architecture is significantly superior
to others. Among the targeted platforms, FPGA shows the
lowest running times compared to CPU and GPU platforms,
even though it runs at a relatively lower clock speed. This is
because the hardware solutions are dedicated and optimised
for a specific application (fractal-image-compression here)
and they process the data in massive processing units in paral-
lel. The high speed in the introduced architecture is attributed
to several factors mentioned earlier, including the process-
ing of the image blocks in parallel and in several stages of

pipeline. The later strategy allows to increase the running
clock speed to 380MHz, which in turn leads achieving high
encoding speed.

In terms of the compression ratio metric, the presented
architecture is also superior to others. One of the reasons is
the encoding of two-colour components by direct mapping,
which results in saving bits allocated for the spatial informa-
tion. Another reason is the encoding of the image blocks at the
size of 8× 8 pixels, rather than 4× 4 pixels. Although using
this block size leads to higher compression rate, it generally
causes lower quality in the decompressed images. However,
by looking at Fig. 9, it can be seen that the quality of the
decompressed images encoded by the proposed approach are
clearly good and the PSNRS achieved are above 34 dB for all
four tested images.

V. CONCLUSION
As the colour images can be processed by the designs devel-
oped for the grayscale images— where each colour com-
ponent is dealt as a grayscale image and hence is encoded
individually— the hardware developers have mainly focused
on developing hardware solutions for grayscale images. How-
ever, encoding colour images by such a way causes to dou-
ble the encoding time by n folds, where n is the number
of the colour components in the image. To overcome this
encoding time problem, it has been developed in this arti-
cle a high-speed architecture for encoding colour images
with fractal technique. The developed architecture utilizes the
correlation between the colour components in RGB image
in order to encode R and B colour components by direct
mapping to G-component (searchless scheme). Thus, only
the G component is encoded by the time-consuming search-
based scheme. The presented architecture comprises two
matching processors. Deep pipeline processing technique
with 12 stages is also utilised in developing both processors
and results in improving the throughput and the encoding time
significantly. The introduced architecture showed the ability
to encode 1024× 1024 RGB image in 12 ms; where R and B
components require only 0.56 ms each compared to 11.06 ms
for G component. The proposed design clearly showed the
efficiency of utilising inter-colour correlation in developing
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a specific architecture for encoding colour image by fractal
algorithm. As a future work, the inter-frame correlation will
be utilized in developing fractal video coding system.
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