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A B S T R A C T   

This study explores the theoretical possibility of co-movement and causality between crude oil implied volatility 
(OVX) and financial stress in a wavelet framework. The paper contributes to the existing literature in at least 
three possible ways: (a) First, the study considers not only composite financial stress indicators but also uses the 
categorical stress components such as Credit, Equity Valuation, Funding, Safe Assets and Volatility. (b) Second, 
the study employs a wavelet-based approach in tracking the co-movement and causality between oil and 
financial stress in a continuous time-frequency space. Lastly, (c) while previous studies mainly use oil price 
changes to assess the relationship with financial stress, the present study evaluates the role of forward-looking 
(30-days ahead) oil price uncertainty (proxied by OVX). The findings indicate the existence of co-movement 
between oil volatility and financial stress, mainly around the phases of economic turbulence. The patterns and 
strength of such co-movements are time-variant. The direction of the relationship is mostly positive, and the lead- 
lag relationship reveals that OVX tends to drive the relationship. It is further observed that the causalities be
tween the variables are mostly bi-directional. However, relatively stronger causalities are transmitted from OVX 
towards FSI. Furthermore, the association between OVX and stress indicators is assessed in two different states of 
the economy, i.e., state of distress and tranquillity. The findings suggest that the causal co-movement intensifies 
majorly during the state of distress. Overall, the outcome of this study could be useful to policymakers and in
vestors to anticipate the impending changes in the relationship to mitigate its potential adverse impact.   

1. Introduction 

The impact of crude oil price changes on the global economic order 
and financial markets has been well documented. A plethora of prior 
studies have examined the transitive relationship between oil shocks 
and diverse financial market segments, including equity markets (Das 
and Kannadhasan, 2020; Ready, 2018), bond markets (Kang et al., 2014; 
Tule et al., 2017), precious metals (Das et al., 2020; Uddin et al., 2018), 
exchange rates (Atems et al., 2015; Basher et al., 2012), interest rates 
(Bodenstein et al., 2013; Ioannidis and Ka, 2018) and banking in
stitutions (Lee and Lee, 2019; Saif-Alyousfi et al., 2020). Interestingly, 
Chen et al. (2014) note that considering a single segment of the financial 
markets may not be a reliable indicator of the financial system’s sensi
tivity to oil shocks. However, if the other segments of financial markets 
are not considered to examine their exposure to oil shocks, it may result 

in ambiguous signals (Chen et al., 2014). Therefore, Chen et al. (2014) 
propose using the Financial Stress Index (FSI), a composite indicator of 
financial market instability. The FSI is a continuous variable with an 
annexing spectrum of values that depicts changing expectations of 
financial market losses induced by macroeconomic uncertainties (Illing 
and Liu, 2006). 

The theoretical linkages between oil and financial stress can be 
driven by at least two channels: (a) the potential influences on economic 
activity and (b) altering sentiments of the investor (Nazlioglu et al., 
2015). In the case of oil importers, the rising oil prices reduce economic 
activities and boost import bills, resulting in a current account deficit. 
The higher input cost of production with regard to higher oil prices 
would deplete corporate earnings and hence, falling stock prices (Wan 
and Kao, 2015). The expectation of a drop in oil prices, on the other 
hand, would upset the economic order in oil-exporting countries 
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(Hammoudeh, 1988). As a result, it is difficult for lenders to determine 
the genuine quality of borrowers in the face of future cash flow concerns. 
Furthermore, lower consumer demand due to increased pricing would 
discourage companies from expanding their operations. Thus, the 
aggregate demand for credit is likely to decline, affecting the perfor
mance of the banking and financial system (Nazlioglu et al., 2015). 

Another aspect of the relationship, one may argue, is that periods of 
financial stress are frequently connected with lower economic activity, 
which leads to lower energy consumption and, as a result, lower oil 
prices. Additionally, because oil is a marketable commodity, investors 
see oil-derived assets as a viable alternative to traditional financial 
markets. It’s worth noting that the financialization of the oil market has 
resulted in a close relationship between oil and finance. Hence, the price 
of oil is determined not only by supply and demand pressures of the 
market but also by financial market conditions (Bianchi et al., 2020; 
Wan and Kao, 2015). Thus, the investors’ portfolio adjustment pattern in 
response to the oil price movement is also an important part of the 
relationship. While oil prices are rising, Nazlioglu et al. (2015) believe 
that investors are fleeing traditional financial markets (such as shares) 
and flocking to the oil markets. Investors, on the other hand, tend to 
trade in financial markets when oil prices are down, further decreasing 
oil prices. As a result, the theoretical guidelines proposed by the previ
ous studies seemingly suggest a bidirectional relationship between oil 
and financial stress. 

This study explores the theoretical possibility of co-movement be
tween crude oil implied volatility (OVX) and financial stress. The paper 
contributes to the existing literature in at least three possible ways: (a) 
First, while the previous literature considers only a composite FSI (Das 
et al., 2018b; Nazlioglu et al., 2015; Wan and Kao, 2015), the current 
study uses the financial stress dataset provided by the Office of Financial 
Research (OFR), United States (US) Department of the Treasury. The 
OFR provides a composite FSI and categorical bifurcations of stress 
components. The bifurcation refers to the classification of stress based 
on the financial system categories, such as Credit, Equity Valuation, 
Funding, Safe Assets and Volatility. Thus, this study provides additional 
insights with respect to the interaction of oil prices with composite as 
well as categorical stress indicators. (b) Second, the relationship be
tween oil and financial stress may be characterized as a bilateral (Das 
et al., 2018b; Nazlioglu et al., 2015). Furthermore, depending on the 
nature of the event, the lead-lag mechanism between these variables can 
vary through time and frequency. In this case, using the wavelet 
coherence technique to follow the co-movement of oil and financial 
stress in a continuous time-frequency space is useful. The phase in
dicators in the wavelet coherence map can detect the lead-lag effects 
that change across time and frequency, which is an added benefit of 
employing this approach. Additionally, the causal transmission between 
the pair of variables is also studied in a wavelet framework. This helps to 
unravel the pairwise causalities across time and frequencies. Therefore, 
a wavelet-based technique can draw dynamic inferences, which is 
seldom in past literature. (c) Third, while previous studies mainly use oil 
price changes to assess the relationship with financial stress, the present 
study argues that it is equally critical to understand the role of forward- 
looking (30-days ahead) oil price uncertainty (proxied by OVX). The 
implied volatility indexes such as OVX not only contain historical in
formation but also comprise investors’ expectations about future 
changes in the oil market (Bouri, 2015a; Dutta, 2017; Liu et al., 2013). 
Hence, OVX is regarded as a better measure of oil market uncertainty 
(Dutta, 2017; Dutta et al., 2017; Xiao et al., 2019). In addition, the OVX 
also track the investor’s sentiments; thus, when the fear is high, the 
options are priced, keeping higher volatilities into consideration than 
otherwise (Maghyereh et al., 2016). The fear of impending oil market 
risks could lead to a state of caution in the economy and financial 
markets. Therefore, this study explores this aspect of the relationship, 
which is not investigated adequately in the past literature (with the 
limited knowledge of the authors). The findings of the study could be 
useful to the participants in the financial markets to derive implications 

for portfolio adjustments. 
Uncertainty in crude oil prices has a significant influence on the 

economy and financial markets (Gong and Lin, 2018a; Wang and Li, 
2021). Higher degrees of oil price uncertainty reflect intense or unstable 
oil markets. Under impending oil uncertainties, the economic agents are 
likely to postpone or terminate several decisions of economic interest, 
such as investment, production, and propensity to consume beyond 
others (Xie et al., 2021). Therefore, the instability in oil prices would 
invariably result in unfavourable economic or financial implications 
(You et al., 2017). Since oil uncertainty and financial stress tend to move 
in tandem, a positive relationship can be predicted.1 Traditionally, 
exploring the relationship between oil and financial market segments 
has been a matter of considerable interest. However, the oil un
certainties reaching a historical high during the COVID-19 episode have 
renewed the interest of scholars on this topic (Corbet et al., 2020; Dutta 
et al., 2021, 2020; Szczygielski et al., 2021; Xie et al., 2021). Despite 
this, few of this research look at the link between OVX and FSI. Further, 
deriving the historical and contemporaneous relationship between OVX 
and categorical stress indicators offers additional value to the existing 
literature and market participants in general. This serves as the prime 
motivation for this study. 

The findings indicate the existence of co-movement between oil 
volatility and financial stress, mainly around the phases of economic 
turbulence. The patterns and strength of such co-movements are time- 
variant. The direction of the relationship is mostly positive, and the 
lead-lag relationship reveals that OVX tends to drive the relationship. It 
is further observed that the causalities between the OVX and categorial 
FSIs are also mostly bi-directional. However, relatively stronger cau
salities are transmitted from OVX. Furthermore, the OVX and stress in
dicators are decomposed into two different states of the economy, i.e., 
the state of distress and the state of tranquillity. The results suggest that 
the causalities mainly exist in the state of distress. Thus, this relationship 
must be given due attention, especially during the phases of economic 
downturns. The rest of the paper is structured as follows: Section 2 re
views the relevant literature, Section 3 describes the data, Section 4 
discusses the methodology, Section 5 elaborates on the empirical find
ings, Section 6 scrutinizes the causal association among OVX and region- 
specific stress indexes, Section 7 reports the results of the robustness 
analysis, and Section 8 concludes. 

2. Literature review 

The instability of crude oil prices transmits financial market un
certainties and negative shocks to the global economy (Das and Kan
nadhasan, 2020; Dutta et al., 2017; Gong and Lin, 2018b, 2018a). Past 
studies that examine the impact of oil prices on different segments of the 
financial market (such as equities, bonds, precious metals, and other 
commodities, among others) are available in abundance. In the context 
of equity markets, Ma et al. (2019) contend that the theoretical associ
ation between oil and equity markets is backed by substantial empirical 
support worldwide. For instance, the pioneering study by Jones and 
Kaul (1996) found a negative impact of oil on the equity indexes of the 
developed country. Several subsequent research deliberations using 
methodological approaches such as quantile regression (QR), Vector 
Autoregression (VAR), and Capital Asset Pricing Model (CAPM) also 
support this claim (for instance, see Basher et al., 2012; Cunado and de 
Gracia, 2014; Lee and Zeng, 2011; Sadorsky, 1999). By contrast, some 
papers posit a positive association between oil and equity (Arouri and 
Rault, 2012; El-Sharif et al., 2005; Kilian and Park, 2009; Narayan and 
Narayan, 2010). Some studies further argue that the direction and 

1 Regarding the direction of relationship, Xiao et al., 2019 also find a 
significantly positive association between OVX and Chinese stock implied 
volatility index (VXFXI). Further, the preliminary tests such as ‘decile analysis’ 
in section 2, also affirm the positive OVX-FSI association. 
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nature of the oil-equity relationship depend upon whether the index 
belongs to an oil-importing or exporting country (Das et al., 2022b; 
Mokni, 2020) besides the sectoral variations are also relevant (Das and 
Kannadhasan, 2020; Tiwari et al., 2018b; Xiao et al., 2018). In addition, 

other studies different spheres of the financial market, such as for bond 
markets (Dai and Kang, 2021; Kang et al., 2014), precious metals 
(Charlot and Marimoutou, 2014; Das et al., 2020; Umar et al., 2021), 
exchange rates (Albulescu and Ajmi, 2021; Atems et al., 2015; Beck
mann et al., 2020), and other commodities (Ahmed and Huo, 2021; 
Maitra et al., 2021). 

The aforementioned studies majorly explore the relationship be
tween financial market segments with respect to changes in oil prices (or 
shocks based on structural VAR models). However, another strand of 
literature highlights the role of oil volatility on the financial market 
returns and volatility. For instance, using the Multivariate Generalized 
Autoregressive Conditional Heteroskedasticity (MGARCH) model, Malik 
and Hammoudeh (2007) report evidence of significant volatility spill
over between oil and equity markets in the US and Gulf region. In a 
similar context, using a bivariate GARCH approach, Malik and Ewing 
(2009) examine the volatility transmission across five different equity 
sectors in the US and report supporting evidence. Arouri et al. (2011) 
employ a generalized VAR-GARCH framework to study the volatility 
transmission between oil and sectoral-level equity indexes in the US and 
Europe. The authors conclude that the spillover is bidirectional in the 
case of equity markets in the US, however, only unidirectional spillover 
from oil markets is evident in the case of European markets. Bouri 
(2015b) also uses the VAR-GARCH model to disentangle the return and 
volatility spillover between oil and Lebanese equity markets and sug
gests intensified spillover from oil markets during the financial crisis of 
2007. Using realized volatility (RV) measure and the Diagonal-BEKK 
model, Boldanov et al. (2016) observe the correlation between oil and 
equity market volatility across oil-importing and exporting countries. 
Wang et al. (2018) use an RV and predictive regression-based design to 
explore whether the oil volatility predicts equity volatility. The authors 

Table 1 
Definition of categorical stress indicators given by the Office of Financial 
Research.  

Category Definition 

Credit “Contains measures of credit spreads, which represent the 
difference in borrowing costs for firms of different 
creditworthiness. In times of stress, credit spreads may widen when 
default risk increases or credit market functioning is disrupted. 
Wider spreads may indicate that investors are less willing to hold 
debt, increasing costs for borrowers to get funding.” 
Variables used: BaML Corporate Master, BaML High Yield 
Corporate Master, BaML Euro Area Corp Bond Index, BaML Euro 
Area High Yield Bond Index, JP Morgan CEMBI Strip Spread, JP 
Morgan EMBI Global Strip Spread. 

Equity 
Valuation 

“Contains stock valuations from several stock market indexes, 
which reflect investor confidence and risk appetite. In times of 
stress, stock values may fall if investors become less willing to hold 
risky assets.” 
Variables used: MSCI Emerging Markets Index, MSCI Europe Index, 
NIKKEI 225 Index, S&P 500 Index. 

Funding “Contains measures related to how easily financial institutions can 
fund their activities. In times of stress, funding markets can freeze if 
participants perceive greater counterparty credit risk or liquidity 
risk.” 
Variables used: 2-Year EUR/USD Cross-Currency Swap Spread, 2- 
Year US Swap Spread, 2-Year USD/JPY Cross-Currency Swap 
Spread, 3-Month EURIBOR-EONIA, 3-Month Japanese LIBOR-OIS, 
3-Month LIBOR-OIS. 

Safe Asset “Contains valuation measures of assets that are considered stores of 
value or have stable and predictable cash flows. In times of stress, 
higher valuations of safe assets may indicate that investors are 
migrating from risky or illiquid assets into safer holdings.” 
Variables used: 4-Week US Treasury Bill, 10-Year US Treasury 
Note, 10-Year German Bond, US Term Spread, US Dollar Index, 
Gold/USD Real Spot Exchange Rate. 

Volatility “Contains measures of implied and realized volatility from equity, 
credit, currency, and commodity markets. In times of stress, rising 
uncertainty about asset values or investor behaviour can lead to 
higher volatility.” 
Variables used: CBOE S&P 500 Volatility Index, Dow Jones EURO 
STOXX 50 Volatility Index, ICE Brent Crude Oil Futures, Implied 
Volatility on 6-Month EUR/USD Options, Implied Volatility on 6- 
Month USD/JPY Options, JP Morgan Emerging Market Volatility 
Index, Merrill Lynch Euro Swaptions Volatility Estimate, Merrill 
Lynch US Swaptions Volatility Estimate, NIKKEI Volatility Index. 

The Table defines the categorical stress indicators given by the Office of 
Financial Research. 
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Fig. 1. Crude oil implied volatility and composite financial stress index. 
The figure plots the historical data for crude oil implied volatility index (OVX) 
and the composite financial stress index (FSI) provided by the OFR for the 
period starting from May 10, 2007 to September 28, 2021. The grey shaded 
areas are the recessionary phases determined by NBER. The first phase spans 
from December 2007 till June 2009 which relates to the period of US subprime 
crisis. COVID-19 determines the second recessionary phase spanning from 
February to April 2020.   

Table 2 
Unconditional correlation of financial stress indexes with OVX.   

a. Full sample b. GFC 2007–09 c. COVID-19 

FSI 0.2710 0.3264 0.6837 
Credit 0.1945 0.2240 0.6296 
EV 0.2541 0.3146 0.6211 
SA 0.1260 0.1463 0.4995 
Funding 0.0767 0.1066 0.5016 
Volatility 0.2842 0.3761 0.6121 
Observations 3622 397 42 

The table reports the results for the unconditional (Pearson) correlation between 
OVX and stress indexes for the full sample and two recession-affected sub- 
samples: (a) US subprime crisis dating from December 2007 till June 2009, and 
(b) COVID-19 covering from February to April 2020. 
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report that oil volatilities encompass additional information to tradi
tional macroeconomic variables and can predict equity market volatil
ities. Gong et al. (2021) recently evaluated spillover of oil volatility to 
natural gas futures markets by applying the time-varying-parameter 
VAR model with stochastic volatility (TVP-VAR-SV) and Diebold- 
Yilmaz spillover (Diebold and Yilmaz, 2012, 2009) approach. The 
paper finds evidence of spillover from the oil markets; however, the 
spillover reduces sharply onset of the shale oil revolution. 

While these mentioned studies mainly derive the volatility of oil 
prices using GARCH-based or RV models, an emerging stream of 
contemporaneous research promulgates the use of OVX. The GARCH- 
based or RV models provide volatilities obtained from past price data, 
thus, contain only historical information and limited implications for 
impending market risks. A forward-looking index like OVX comprise 

higher information content in terms of both historical and futuristic 
market expectations (Bouri et al., 2018; Dutta, 2017; Liu et al., 2013). 
Therefore, scholars are increasingly embracing its relevance in the 
sphere of financial/economic research (Dutta et al., 2017; Xiao et al., 
2019, 2018). For instance, employing the Autoregressive Distribution 
Lag (ARDL) model Liu et al. (2013) study the transmission of implied 
volatility across oil (OVX), exchange rates (EVZ), gold (GVZ) and equity 
markets (VIX) and suggest significant spillover in the short-run. Simi
larly, Maghyereh et al. (2016) using the spillover directional measure 
propounded by Diebold and Yilmaz examine transmission of volatility 
between OVX and implied volatility of 11 equity markets. The results 
suggest that spillover is largely transmitted from oil to equity markets. 
Bouri et al. (2017) study the cointegration and non-linear causality 
between OVX, GVZ and the implied volatility index of the Indian equity 

Table 3 
Decile-based analysis.  

Decile OVX FSI Credit EV SA Funding Volatility 

1st 19.5592 − 3.886 − 0.8077 − 0.845 − 0.3878 − 0.8502 − 2.1177 
2nd 25.4551 − 3.3192 − 0.5837 − 0.4966 − 0.2435 − 0.6051 − 1.7584 
3rd 28.5116 − 2.8274 − 0.4302 − 0.3894 − 0.1596 − 0.4806 − 1.4492 
4th 30.9623 − 2.2489 − 0.2832 − 0.3035 − 0.1102 − 0.3667 − 1.1753 
5th 33.1073 − 1.6434 − 0.1531 − 0.2249 − 0.0479 − 0.2756 − 0.8828 
6th 35.6083 − 0.8613 0.0304 − 0.1353 0.0269 − 0.1365 − 0.6039 
7th 39.0688 0.1084 0.208 − 0.0107 0.0948 0.113 − 0.2739 
8th 42.9183 1.18 0.5462 0.1641 0.1769 0.4844 0.1969 
9th 48.4559 3.9486 1.2567 0.4416 0.2722 1.1688 0.9228 
10th 77.4254 11.9766 4.2129 1.2679 0.4995 3.4996 3.4494 
Decile 10th -1st 57.8662 15.8626 5.0206 2.1129 0.8873 4.3498 5.5671 
Decile 9th -2nd 23.0008 7.2678 1.8404 0.9382 0.5157 1.7739 2.6812 

In the table OVX is sorted into ten deciles. 1st decile denotes low oil volatility, whereas, the 10th decile corresponds to high volatility. For each of the OVX deciles, the 
corresponding averages of stress indexes are reported. The negative values of stress indexes (FSI < 0) represent relatively stable financial market conditions. The table 
shows that the lower (higher) values of OVX correspond to lower (higher) values of stress indexes implying a positive association. The last two rows show the dif
ferences between decile 10–1 and 9–2, respectively. 

Table 4 
Descriptive statistics.   

ΔOVX ΔFSI ΔCredit ΔEV ΔSA ΔFunding ΔVolatility 

Mean (×100) 0.2488 0.0305 0.0237 0.0017 − 0.0073 − 0.0019 0.0235 
Median − 0.1100 − 0.0230 − 0.0030 − 0.0030 0.0000 − 0.0010 − 0.0100 
Maximum 130.2200 3.4540 0.7310 0.6340 0.1840 1.5000 2.1780 
Minimum − 90.6100 − 2.8400 − 0.5400 − 0.5570 − 0.2250 − 1.1020 − 1.4910 
Std. Dev. 4.4183 0.3197 0.0505 0.0684 0.0279 0.0816 0.1749 
Skewness 5.9603 1.6839 2.4869 0.3618 − 0.1151 2.2566 2.0834 
Kurtosis 381.4166 27.4494 44.9532 15.2876 8.0321 90.5775 27.9665 
Jarque-Bera 21,632,574.00 91,925.53 269,356.80 22,865.28 3829.52 1,160,578.00 96,690.36 
Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Observations 3622 3622 3622 3622 3622 3622 3622 

The table reports the summary statistics of all the variables considered in the study at their respective first-differences. The critical value of Jarque–Bera test at 5% level 
is 5.99. The Jarque–Bera test statistic confirms that the underlying characteristics of these variables depart from the assumption of normality. 

Table 5 
Unit root tests.  

Variables at the first difference (I (1))      

Intercept  

ADF t-statistics Critical value at 5% PP Adj. t-statistics Critical value at 5% KPSS LM-statistics Critical value at 5% 

OVX − 9.7699*** − 2.8621 − 66.4116*** − 2.8621 0.0156 0.4630 
FSI − 15.5793*** − 2.8621 − 51.0696*** − 2.8621 0.0763 0.4630 
Credit − 11.7771*** − 2.8621 − 53.3576*** − 2.8621 0.1143 0.4630 
EV − 52.8640*** − 2.8621 − 52.6308*** − 2.8621 0.0202 0.4630 
SA − 60.5385*** − 2.8621 − 60.5374*** − 2.8621 0.0267 0.4630 
Funding − 14.3688*** − 2.8621 − 46.5227*** − 2.8621 0.0516 0.4630 
Volatility − 53.9815*** − 2.8621 − 53.9517*** − 2.8621 0.0413 0.4630 

***denotes statistical significance at 1% level. The null hypothesis for ADF and PP test assume that the underlying time series has a unit root against the alternative 
hypothesis of stationarity. In the case for KPSS test, the null hypothesis is the underlying variable is stationary. Thus, when the LM-statistic of KPSS does not reject the 
null hypothesis, it means the series is stationary. 
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market (Indian VIX) using ARDL bound and Kyrtsou-Labys nonlinear 
symmetric and asymmetric non-causality test. The findings suggest a 
significant positive impact of OVX, and GVZ on the Indian VIX. Bašta 
and Molnár (2018) detect the time-frequency co-movement by applying 
wavelet analysis between oil and equity markets using their corre
sponding implied and realized volatilities. The study reports conclusive 
evidence in the case of implied volatility co-movement, which is time- 
varying and strongly varies in timescale. Dutta (2018) finds evidence 
of both long and short-run association between OVX and US energy 
sector implied equity volatility index (VXXLE) employing ARDL bound 
tests. Xiao et al. (2019) examine the asymmetric and lagged impacts of 
OVX on the Chinese equity market implied volatility index (VXFXI) 
using the QR technique and assert standing evidence for the same. Lu 
et al. (2020) evaluate the forecasting ability of OVX to predict the Chi
nese crude oil futures market volatility utilising the Markov-regime 
mixed data sampling (MS-MIDAS) model. The findings confirm the 
predictive ability of OVX towards the Chinese crude oil futures market 
volatility, especially in the mid and long-term horizons. 

Though a sizeable amount of recent literature focuses on the asso
ciation between OVX and volatility in the financial market segments, 
none of the studies focuses on the relationship of OVX with composite 
and categorical FSI. In general, the literature concerning crude oil and 
financial stress is nascent since financial stress is a relatively new 
concept. Nevertheless, few studies in the last decade have indicated the 
relevance of understanding the oil and FSI relationship. Chen et al. 
(2014) study the relationship between structural oil shocks and Kansas 
City FSI using the SVAR framework initially suggested by Kilian (2009). 
The results show that financial shock is a crucial factor in determining 
oil prices, and it varies across time horizons. Hence, the authors posit 
that policymakers must consider the existent financial condition while 
understanding the influences of the oil shocks. Nazlioglu et al. (2015) 
study the volatility spillover between oil and the FSI provided by the 
Federal Reserve of Cleveland using the causality-in-variance and VAR 
research design. The authors conclude the existence of volatility trans
mission among the variables, mainly in the long-term time horizon. Wan 
and Kao (2015) explore the role of financial stress in mediating the 
relationship between oil and different financial variables using the 
structural threshold VAR (STVAR) model. The study finds that the 
interaction between oil and financial markets intensifies during the 
stress regime, further, the relationship is also nonlinear. Applying the 
QR technique, Reboredo and Uddin (2016) assess the impacts of FSI 
(proxied by St. Louis FED FSI) and economic policy uncertainty (EPU) on 
the energy and metal commodity futures and report a statistically sig
nificant lagged relationship in the intermediate and upper quantiles. Das 
et al. (2018b) explore the dependence structure of stocks, gold and crude 
oil with financial stress (St. Louis FED FSI) using the causality-in- 
quantile technique. The results of the study confirm bilateral causality 

between oil, gold, and crude oil. Gupta et al. (2019) use a news-based 
indicator of financial stress developed by Püttmann (2018) and 
examine its role in predicting oil market movements considering the 
DCC-MGARCH model. The study finds evidence of strong predictability 
from FSI to oil returns and volatility. Gkillas et al. (2020) analyse the 
predictive ability of FSI provided by OFR for the US, emerging and other 
advanced economies towards the oil price volatility by employing the 
Heterogeneous Autoregressive-RV (HAR-RV) model. The results estab
lish that the FSI improves the oil market volatility forecasts and high
lights the contextual relevance of FSI under different forecaster’s loss 
functions. Liu et al. (2021) decompose the oil price returns into struc
tural shocks following the process of Ready (2018) and observe its 
impact on the Chinese financial stress index constructed by the authors. 
Applying the Markov Regime-Switching (MRS) model, the authors posit 
that supply-side shock is the driver of Chinese financial stress in the low- 
volatility regime. Pang et al. (2021) study whether the world or US- 
specific FSI given by the OFR can predict the oil realized volatility 
employing the MS-MIDAS model. The study concludes that the US- 
specific FSI is more efficient in predicting oil volatility than the world 
FSI. Recently, Apostolakis et al. (2021) studied the connectedness of 
financial stress of G7 countries considering stress indexes created by 
authors using different financial variables with EPU and Brent oil market 
applying the Diebold Yilmaz (2014, 2012) framework. The findings 
suggest that oil uncertainty is mainly linked with the financial stress in 
some G7 countries rather than the EPU. Further, the spillover is stronger 
in the phases of turbulences, such as the Global Financial Crisis (GFC) 
and the COVID-19 pandemic. More recently, Das et al., 2022a examined 
the role of OVX in predicting financial stress in emerging markets and 
found that there is a positive association between them. Further, the 
relationship intensifies during the phases of economic turbulence. 

3. Data 

The association between OVX and FSI is studied for the period 
commencing from May 10, 2007, through September 28, 2021. The 
starting point of the data is determined by the oldest availability of OVX 
values. The OVX data is published by Chicago Board Options Exchange 
(CBOE) and is availed from St. Louis FRED database. The financial 
stress-related indexes are sourced from the website of the OFR, U.S. 
Department of the Treasury, Washington DC. The study uses data at the 
daily frequency to captivate dynamic interactions between OVX and FSI. 
Considering daily data is an appropriate choice as the study aims to 
examine the contagious behaviour among the variables. Contagion due 
to exogenous shocks lasts for a short span of time, and the correlation 
withers away in a matter of days (Gallegati, 2012; Reboredo and Rivera- 
Castro, 2014). Thus, daily data seems pertinent in this research setup 
where the relationship is transient. 

While previous research has primarily focused on the relationship 
between crude oil and the aggregate financial stress index, one of the 
most important advantages of using the OFR stress index is that it pro
vides categorical stress indicators. In addition to the aggregate financial 
stress index, OFR decomposes the composite index into five sub-indexes: 
(a) Credit, (b) Equity valuation (EV), (c) Safe assets (SA), (d) Funding, 
and (e) Volatility. Therefore, in addition to the headline index, the study 
also examines the relationship between OVX and categorical stress in
dexes. The stress indexes are constructed considering relevant financial/ 
economic variables that were chosen based on an academic literature 
survey. After balancing the selected variables across the markets, asset 
classes and economy types, quantitative tests are conducted to filter 
redundant information. The first loading vector is then estimated using 
historical data from the previous 500 days and constrained Principal 
Component Analysis (PCA). Furthermore, the most recent data is stan
dardized compared to all previous data. Finally, FSI is derived as the 

Table 6 
VAR Granger-causality test.  

Null hypothesis (H0) MWALD statistics Decision 

FSI does not Granger cause OVX 55.3886*** Reject H0 

OVX does not Granger cause FSI 26.2216*** Reject H0 

Credit does not Granger cause OVX 55.4636*** Reject H0 

OVX does not Granger cause Credit 25.2959*** Reject H0 

EV does not Granger cause OVX 45.6846*** Reject H0 

OVX does not Granger cause EV 42.3621*** Reject H0 

SA does not Granger cause OVX 5.8524 Accept H0 

OVX does not Granger cause SA 10.0468 Accept H0 

Funding does not Granger cause OVX 16.5004** Reject H0 

OVX does not Granger cause Funding 8.5511 Accept H0 

Volatility does not Granger cause OVX 73.115*** Reject H0 

OVX does not Granger cause Volatility 35.8109*** Reject H0 

***, ** denote statistical significance at 1% and 5% level, respectively. 
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scalar projection of standardized data onto the first loading vector.2 The 
representative value of the indexes are the marginal contributions of 
each variable that characterize the current state of market shocks and 
contemporary within-variable interactions. The indexes depict a posi
tive value when the positive contributions to the condition of financial 
stress exceed negative contributions and vice-versa. The indexes tend to 

zero when the market variables strike at their respective long-run av
erages. The official definition of the categorical stress indicators and the 
variables used to construct these indexes is exhibited in Table 1. 

Fig. 1 depicts the historical evolution of OVX and FSI during the 
sample interval. A visual interpretation of these indexes suggests that 
OVX and FSI tend to move in tandem conventionally. The grey-shaded 
zones indicate the recession cycles identified by the National Bureau 
of Economic Research (NBER). The full sample is affected by two 
recessionary phases. The first phase covers the period from December 
2007 to June 2009, corresponding to the GFC. In contrast, the economic 
slowdown due to COVID-19 determines the second recessionary phase in 
the sample spanning from February to April 2020. It is worth noting that 

Fig. 2. Wavelet power spectrum. 
The figures above represent the WPS plots for all the variables under consideration. The cone-of-influence (COI) is depicted by the black funnel-shaped line, which 
demarcates the zones affected by edge effects. The bold black contours on the maps denote the significant zones at 5% level. The horizontal axis determines the 
timeline and the vertical axis represent the frequencies in number of days. The colour bar denotes the strength of the power ranging from low to high indicated by 
blue to red colours, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

2 Description on the construction of the stress indexes is available at: https 
://www.financialresearch.gov/working-papers/2017/10/25/the-ofr-financi 
al-stability-index/. Interested readers are requested to follow the aforemen
tioned link for a detailed discussion. 
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the two series appear to co-move strongly during the phases of uncer
tainty. Interestingly, the sharpest peak for FSI is observed around GFC 
2007–09, as the crisis typically involved fluctuations in the financial 
sector. The historical volatility peak for crude oil is observed during the 
phase of COVID-19. The attributable underlying reasons are nationwide 
lockdowns in many countries, travel bans and intermittent industrial 
shutdowns as safety measures. 

Table 2 reports the unconditional correlations between OVX and 
stress indexes. The results for the full sample are reported in the first 
column. The weakest correlation is observed in the case of funding- 
related stress. Whereas the strongest correlation is observed for Vola
tility stress of the currency, equity, credit, and commodity markets with 
OVX. The second and third column of Table 1 suggests that the corre
lations intensify during GFC 2007–09 and intensifies further during 
COVID-19, respectively. The phenomenon of higher correlations be
tween markets during the crisis periods is consistent with the ‘contagion’ 
hypothesis, which is well documented in the extant literature (see 
Bekaert et al., 2014; Kiviaho et al., 2014). 

Table 3 reports the results of decile-based analysis for OVX, FSI and 
the categorical stress indexes. In this table, the OVX is segregated into 
ten deciles. The lower deciles determine the periods of low oil volatility, 
while the higher deciles indicate the phases of high oil volatility. The 
corresponding columns exhibit deciles of the composite FSI and 

categorical stress indicators. The table reveals that the lower (higher) 
values of OVX correspond to lower (higher) values of stress indexes. 
Therefore, values of the stress indexes mapped with respect to OVX 
follow an ascending order implying a positive association between them. 
This is in concurrence with the theoretical guideline that suggests a 
positive relationship between oil prices and the financial stress (Chen 
et al., 2014; Das et al., 2018b; Nazlioglu et al., 2015). Thus, the study 
finds some preliminary support for the theoretical connotation. 

The statistical properties of all the variables at their first differences 
are reported in Table 4. The average value (mean) of changes in OVX is 
higher than the changes in the headline FSI and categorical indexes 
thereof. The average volatility in oil prices is higher than the average 
changes in financial stress. Within the categorical stress indexes, the 
Credit sector shows highest positive value implying maximum origina
tion of stress in this sector. The sectors SA and Funding show negative 
average stress values indicating the persistence of low-stress periods in 
these sectors. The standard deviation of OVX is the highest of all vari
ables signifying a wavering nature of this index. The variables under 
consideration mostly show a positive skewness depicting more frequent 
occurrences of positive values, with SA being the only exception. The 
negative skewness of SA denotes subdued stress in this sector. Further, 
the kurtosis coefficient shows excess kurtosis than desired for normal 
distribution. Lastly, the Jarque-Bera statistic illustrates the non- 

Fig. 3. Wavelet coherence maps. 
The figures above represent the wavelet coherence maps for all the stress indexes paired with OVX. The COI is depicted by the black funnel-shaped line, which 
demarcates the zones affected by edge effects. The bold black contours on the maps denote the significant zones at 5% level. The horizontal axis determines the 
timeline and the vertical axis represent the frequencies in number of days. The colour bar denotes the strength of the power ranging from low to high indicated by 
blue to red colours, respectively. The phases are indicted by arrows. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 4. a. Continuous wavelet transform plot of causality between OVX and composite FSI. 
b. Continuous wavelet transform plot of causality between OVX and Credit. 
c. Continuous wavelet transform plot of causality between OVX and EV. 
d. Continuous wavelet transform plot of causality between OVX and Funding. 
e. Continuous wavelet transform plot of causality between OVX and SA. 
f. Continuous wavelet transform plot of causality between OVX and Volatility. 
Note: The White and Yellow contours in sub-figures (a) and (b) represent the statistical significance at 5% and 10%, respectively. The significance levels are derived on 
3000 Monte-Carlo simulation draws estimated on ARMA (1,1) null of no statistical significance. The COI is depicted by the green line, which demarcates the zones 
affected by edge effects. The scale has been transformed to a period for the Morlet wavelet function. Using ω0 = 6 for the optimal balance (Torrence and Compo, 
1998), we have Ft = 1.033. s. 
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normality of all the indexes. 
Table 5 exhibits the unit root tests for OVX and stress indexes. The 

unit root tests conducted in this study include the Augmented Dickey- 
Fuller (ADF) test (Dickey and Fuller, 1979), Phillips Perron (PP) test 
(Phillips and Perron, 1988), and Kwiatkowski, Phillips, Schmidt and 
Shin (KPSS) test (Kwiatkowski et al., 1992). While the null hypothesis 

for ADF and PP test assumes that the underlying time series has a unit 
root against the alternative hypothesis of stationarity, the reverse is the 
case for the KPSS test. The lag length for the test is selected with 
reference to the Schwarz Information Criterion (SIC). The results suggest 
that the null hypothesis of unit root is rejected for ADF and PP test, and 
the alternative hypothesis stationarity is accepted. Corollary to ADF and 

Fig. 4. (continued). 
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PP test results, the KPSS test fails to reject the null hypothesis of sta
tionarity. Thus, all the variables used in the empirical analysis are sta
tionary in nature. 

4. Methodological approach 

The wavelet-based analysis processes signal by taking reference from 
Fourier analysis and filtering methods. However, wavelets overcome the 
majority of the limitation of these methods (Percival and Mofjeld, 1997; 
Percival and Walden, 2000). One of the prime advantages of wavelets 

Fig. 4. (continued). 
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that it conveys information in both the time and frequency domain. In 
addition, it relaxes any requirement of rigid assumptions concerning the 
data-generating process of the underlying series. The superior ability of 
wavelets to continuously resize its window makes it more useful and 
interesting. While the finer features of the data can be observed by 
processing the signal at a smaller window, whereas the coarse features 
are detected with the signal at a larger window (Torrence and Compo, 
1998). In other words, short-term (long-term) dynamics of the data is 

observed considering at high-frequency (low-frequency) components. 
Thus, the lower scales determine the short-term OVX-FSI association, by 
contrast the long-term association is denoted at higher scales. 

4.1. Continuous wavelet framework 

This study uses a continuous wavelet transformation (CWT) frame
work to analyse the OVX-FSI association in time-frequency domain. The 

Fig. 5. a. In-phase and out-of-phase plots of causality between OVX and FSI. 
b. In-phase and out-of-phase plots of causality between OVX and Credit. 
c. In-phase and out-of-phase plots of causality between OVX and EV. 
d. In-phase and out-of-phase plots of causality between OVX and Funding. 
e. In-phase and out-of-phase plots of causality between OVX and SA. 
f. In-phase and out-of-phase plots of causality between OVX and Volatility. 
Note: The White and Yellow contours in sub-figures (a) and (b) represent the statistical significance at 5% and 10%, respectively. The significance levels are derived on 
3000 Monte-Carlo simulation draws estimated on ARMA (1,1) null of no statistical significance. The COI is depicted by the green line, which demarcates the zones 
affected by edge effects. The scale has been transformed to a period for the Morlet wavelet function. Using ω0 = 6 for the optimal balance (Torrence and Compo, 
1998), we have Ft = 1.033. s. 

D. Das et al.                                                                                                                                                                                                                                      



Energy Economics 115 (2022) 106388

12

underlying data is decomposed up to level 10.3 The term Wavelet is a 
technical nomenclature referring to a ‘small wave’.4 The functions of 
wavelet are constructed depending on scale and location parameters in 
addition to a mother wavelet function5: 

Ws,t =
1
̅̅
s

√ ф
(t − τ

s

)
(1) 

Put it differently, the CWT with respect to wavelet φ, is essentially a 
function Wx(s,τ), which is mathematically expressed as: 

Wx(s, τ) =
∫+∞

− ∞

x(t)
1
̅̅
s

√ ф*
(t − τ

s

)
dt (2)  

where, the complex conjugate form is denoted by *. In order to generate 
the other window function, the mother wavelet ф(t) assists as a proto
type. The location of the window that indicates the position of the 
wavelet is given by the translation parameter, τ. The embedded infor
mation regarding time in the transform domain is obtained as the win
dow shifts through the signal. The checks on the length of the wavelet i. 
e., the dilation (if |s| > 1) or the compression (if |s| < 1), is given by the 
scaling parameter s. The wavelet transformation Wx, will be complex if 
the corresponding wavelet function ф(t) is complex. To disentangle the 
frequency-based information, dilation or compression of the mother 

Fig. 5. (continued). 

3 Level 1 (D1) represents 2–4 days, D2 from 4 to 8 days, D3 from 8 to 16 days, 
D4 from 16 to 32 days, D5 from 32 to 64 days, D6 from 64 to 128 days, D7 from 
128 to 256 days, D8 from 256 to 512 days, D9 from 512 to 1024 days, D10 
>1024 days (up to 2.81 years), considering civil year. The representation of 
scales follow Madaleno and Pinho (2014). 

4 It is attributed as small because the function of wavelet is compactly sup
ported (non-zero over a finite length of time). Further, the function is oscilla
tory, hence referred as wave.  

5 The mother wavelet function is denoted by ф(t) and it is defined on the real- 

axis. It must satisfy the following conditions: (a) 
∫+∞

− ∞

φ(t) = 0 and (b) 
∫+∞

− ∞ 

|φ(t) |2 = 1. These conditions potentially imply that at the least some co
efficients derived of the wavelet function must stand different from zero. 
Further, these departures from zero must cancel out. 
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wavelet correspond to the cycles of different frequencies. However, the 
extent to which the mother wavelet is dilated or compressed depends on 
the scaling parameter s. The wavelets constructed over the horizon of 
short timescales tend to incorporate sharp and high-frequency volatility. 
The shorter timescales ensure better time resolution, however, poorer 
scale resolution. By contrast, the wavelets structured over long-scales 
tend to integrate low-frequency volatility. Hence, they have relatively 
poorer time resolution and better scale resolution. Furthermore, wavelet 
transformations can be used where the time series contain non- 
stationary power at various intervals (Percival and Walden, 2000). 
The coefficients of wavelet transformation Wx(s,τ), engulf both ana
lysing wavelet ф(t) and the function x(t). The choice of wavelet for the 
purpose of analysis is a significant consideration (Percival and Walden, 
2000). This study uses the ‘Morlet’ wavelet as a basis for wavelet 

transformation given its rich applicability in the areas of economics and 
finance (Das et al., 2018a; Das and Kumar, 2018; Madaleno and Pinho, 
2014). 

4.2. The Morlet wavelet; power spectrum; cross-wavelet and coherence 

Proper isolation of periodic signals and a good identification is 
allowed by the Morlet wavelet, as it strikes an optimum balance between 
time and frequency-localization. This is a form of complex wavelet 
transformation with information on both phase and amplitude, which is 
essential to decipher the synchronous behaviour between time series 
(Aguiar-Conraria et al., 2008; Torrence and Compo, 1998). The central 
frequency of the Morlet wavelet for analysing the data is set to ten (W0 
= 10). Thus, the special characteristics of the signals can be estimated as      

Fig. 5. (continued). 
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a function of time. In addition, the wavelet-based analysis not only 
provide the time-varying power spectrum, but for the computation of 
coherence phase spectrum is also required. 

The association between two time series is expressed by correlation, 
so that one can affirm the highly correlated series as coherent.6 The 
measure of how two variables x and y are associated by a linear trans
formation is expressed by the degree of coherence. If the degree of 
coherence between a set of variables is tending to the maximum value of 
unity, only then the variable set may be related closely in a linear 
transformation. Thus, a pair of random variables is assumed to be 
coherent if and only if |ρ| = 1, and incoherent if and only if |ρ| = 0, 
where the correlation coefficient is given by ρ. Nevertheless, it is 
essential to note that the correlation may not be contemporaneous in all 

the cases. It may also involve a lead-lag behaviour. Phases are used to 
determine the magnitude of lead or lag characteristics. 

While considering discrete underlying time series {xn,n = 0,…,N −
1} of observation N featuring a uniform time step δt, the integral 
expression in eq. (14) is to be discretized, hence the CWT of time series 
{xn} is revised as: 

Wx
m(s) =

δt̅
̅
s

√
∑N− 1

n=0
xnф*

(
(n − m)

δt
s

)
,m = 0, 1,…,N − 1 (3) 

Suffering from the border distortions is inevitable while applying the 
CWT to a time series of finite length. The primary cause being the values 
of the transform are always imprecisely computed at the end and the 
beginning of the series. It encompasses missing values of the series 
which are then set synthetically. Further, it is important to note that the 
effective support of the wavelet at scale s stands proportional to s, hence 
the edge effects also enhance with s. The area in which the trans
formation is plagued by those edge effects are referred as the cone of 
influence. This region falls beyond the statistical significance and hence 
must be interpreted carefully (Torrence and Compo, 1998). 

The wavelet power spectrum (WPS) is denoted by |Wn
x|2. WPS typi

cally exemplifies the spectral density (distribution of energy) of a 
designated time series in the time-scale plane. The cross-wavelet 

Fig. 5. (continued). 

6 The coherence is often considered equivalent to the measure of correlation. 
However, there exist some differences between them. In the computation of 
coherence, the signal is squared and thus it produces value ranging from 0 to 1. 
In this case the information related to polarity is lost. In contrast, the correla
tion is polarity-sensitive and its value ranges typically from − 1 to 1. Hence, 
coherence unearths information pertaining to the stability of relationship be
tween two signals with respect to phase relationship and power asymmetry. 

D. Das et al.                                                                                                                                                                                                                                      



Energy Economics 115 (2022) 106388

15

transform (XWT) of a pair of time series xn and yn is defined as Wn
xy =

Wn
xWn

y*, where the complex conjugate is denoted by *, and the wavelet 
transformation of the series xn and yn is given by Wn

x and Wn
y, respec

tively. While the WPS exhibit the local variance of a single time series, 
the XWT depicts co-variance of the pair of time series at each frequency 
or scale. Any lead or lag relationship between the components are 
identified by phases of the wavelet, which is defined as: 

фx,y = tan− 1 I
{

Wxy
n

}

R
{

Wxy
n

},фx,y ∈ [ − π, π] (4)  

where the real and imaginary parts of the smooth power spectrum are 
denoted by I and R, respectively. The phase relationship between two 
variables can be characterized by phase differences. In the coherence 
map, the phase differences are indicated by arrows. Whether the time 
series are in-phase or anti-phase, are indicated by left-tailed (→) or right- 
tailed (←) arrows, respectively. In-phase time series depict positive co- 
movement, whereas the anti-phase behaviour denote negative co- 
movement. The arrows pointed upwards (↑), right-upward (↗) and 

left-downward (↙) indicate the first time series is leading the second. 
Similarly, the downward (↓), right-downward (↘) and left-upward (↖) 
pointed arrows show the second time series tend to lead of the first. 

The wavelet-based coherency of a pair of time series, following 
Torrence and Compo (1998), may be defined as: 

R2
n(s) =

⃒
⃒S
(
s− 1Wxy

n (s)
) ⃒
⃒2

S
(

s− 1
⃒
⃒Wx

n(s)
⃒
⃒2
)
.S
(

s− 1
⃒
⃒Wy

n(s)
⃒
⃒2
) (5)  

where the smoothing operator in both time and scale is represented by S. 
The definition closely characterizes the traditional connotation of a 
correlation coefficient. The wavelet coherence may be thought as 
localized correlation in frequency space. The XWT coherence indicates 
coherence between the rotary components. The coherency of 1 denote 
stronger co-movement indicated by hot red zones on the coherence 
maps. Lower coherency of (or tending to) 0 denote weaker co- 
movement, indicated by cold blue zones. In other words, the local cor
relation between CWT can be defined as the cross-spectrum ratio to the 
product of the spectrum of each series. 

Fig. 5. (continued). 

D. Das et al.                                                                                                                                                                                                                                      



Energy Economics 115 (2022) 106388

16

4.3. Causality in continuous wavelet transformation 

The conceptualization of causal association between a pair of vari
ables is perhaps one of the well-appreciated econometric ideas. The 
traditional method to estimate causality such as the Granger causality 
approach (Granger, 1969) has a rich applicability in the areas of eco
nomics and finance beside others. One of the shortcomings of this 
method pertains to its inability to distinguish the causality in the long- 
run from causality in the short-run. To address this issue, Geweke 
(1982) conceived the idea of detecting causality in the frequency 
domain, which is deliberated by subsequent scholars. Later, Olayeni 
(2016)7 proposes Granger-causality in a CWT framework that depends 
upon the wavelet-based correlation measure of Rua (2013), which is 
given by: 

GY→X(s, τ) =
ζ
{

s− 1
⃒
⃒R
(
Wm

XY(s, τ)
)
IY→X(s, τ)

⃒
⃒
}

ζ
{

s− 1
⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒Wm

X(s, τ)
⃒
⃒2

√ }

.ζ
{

s− 1
⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒Wm

Y(s, τ)
⃒
⃒2

√ } (6)  

where, the wavelet-based transformations are given by WX
m(s,τ), 

WY
m(s,τ) and WXY

m (s,τ). The indicator function is given by IY→X(s,τ), 
which is defined by Olayeni (2016) as: 

IY→X(s, τ) =
{

1, if фx,y(s, τ) ∈
(

0,
π
2

)
∪
(
− π, π

2

)
; 0, otherwise (7) 

This method is supposedly useful in the case of this paper as it can 
detect bidirectional causality between OVX and stress indexes in a time- 
frequency domain. Further, this method is also useful to detect causal
ities during the periods of high and low oil volatility and financial stress. 
Several studies in the past use this methodological approach in the 
context of energy, equity and metals market to detect causality in CWT 
framework (for instance, Alam et al., 2019; Kang et al., 2019; Tiwari 

Fig. 5. (continued). 

7 The methodological modification suggested by Olayeni (2016) is described 
briefly. The interested readers are requested to refer Olayeni (2016) for a 
detailed discussion on evolution of spectral causality techniques. 
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Fig. 6. a Continuous wavelet transform plot of causality between OVX and US stress. 
b. Continuous wavelet transform plot of causality between OVX and Other Advanced Economies stress. 
c. Continuous wavelet transform plot of causality between OVX and Emerging Market stress. 
Note: The White and Yellow contours in sub-figures (a) and (b) represent the statistical significance at 5% and 10%, respectively. The significance levels are derived on 
3000 Monte-Carlo simulation draws estimated on ARMA (1,1) null of no statistical significance. The COI is depicted by the green line, which demarcates the zones 
affected by edge effects. The scale has been transformed to a period for the Morlet wavelet function. Using ω0 = 6 for the optimal balance (Torrence and Compo, 
1998), we have Ft = 1.033. s. 
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et al., 2018a; Tiwari and Albulescu, 2016).8 

5. Empirical results 

This section discusses the results and explains their implications 
under the light of economic theories. First, the results obtained from 
VAR Granger-causality approach is reported in Table 6. The VAR 
Granger-causality test follows the modified Wald (MWALD) statistics to 
examine Granger non-causality as the null hypothesis (H0). The MWALD 
statistics follow a chi-square (χ2) distribution with k degrees of freedom. 
The results show that the null of non-causality can be rejected in most of 
the cases. Further, the evidence of bidirectional causality is also prom
inent as affirmed in the previous literature (Das et al., 2018b; Nazlioglu 
et al., 2015). The null of non-causality is accepted in the case of 
OVX→SA, SA←OVX and OVX→Funding pairs. The stress concerning SA 
denote the valuation measures of the asset class which has a stable cash 
flow in general. It is true that the assets that constitute the SA index such 
as gold and bonds could co-move with equity markets during the phases 
of economic turbulence, it remains tranquil during normal periods, 
nonetheless. Baur and Lucey (2010) find that gold remain uncorrelated 
with the mainstream financial assets during normal periods, however, 
during the stressed periods gold becomes correlated shortly as investors 
fly to safety. Thus, insignificant flow of causality between oil uncertainty 
and SA stress for the full sample seems unsurprising. In the context of 
OVX→Funding, the non-causality is somewhat surprising. Theoretically, 
economic uncertainties pronounced by OVX is expected to enhance the 

risk premium and cost of borrowing resulting in higher probabilities of 
default for the firms and eventually the propensity to invest is curbed 
(Apostolakis et al., 2021). One plausible reason could be that the un
derlying indexes used to construct the Funding stress index have not 
been impacted much by OVX. 

Next, the results for WPS are discussed for all the variables, as pre
sented in Fig. 2. While the horizontal axis of the WPS maps indicates the 
timeline, the vertical axis denotes the frequencies converted in terms of 
days for ease of interpretation. The strength of the spectral density is 
indicated by the colour bar ranging from low to high, indicated by blue 
to red, respectively. The funnel-shaped curve denotes the cone-of- 
influence (COI) the area below the curve indicates the zones affected 
by edge effects. The black bounded contours on the map highlight the 
regions that are significant at 5% level estimated using the Monte Carlo 
simulations. It is interesting to note that in the case of OVX, significant 
zones with power conservation are limited during GFC 2007–08. 
Nevertheless, significant zones are identifiable around the period of 
COVID-19 up to ~256 days. It essentially emphasizes that the crude oil 
markets were less affected by economic shocks during 2007–08 than 
COVID-19. This result seems justifiable as a major travel and industrial 
restrictions were posed worldwide during COVID-19. In the context of 
composite FSI and categorical stress indexes, significant power zones are 
identifiable for GFC 2007–08 and COVID-19 up to and over ~256 days. 
Notably, the exposure of stress indexes seems higher during 2007–08 
since it was a crisis of financial nature. Further, it is also interesting to 
note that the impacts of COVID-19 on the SA and Funding markets are 
marginal. Nonetheless, the historical evolution of all the variables de
picts some common feature which is investigated further. 

Fig. 3 presents the result of the Wavelet Coherence Analysis (WCA) 
between OVX and the composite and categorical stress indexes. The 
figures show that the dependence between OVX and stress indexes are 
time and frequency-varying over the window of the study. The hori
zontal axis defines the sphere of time, whereas the vertical axis indicates 
the frequencies in terms of the number of days. The bold black contours 
on the surface of coherence maps indicate significant local correlations 
at 5% level and are estimated using the Monte Carlo simulations. The 

Fig. 6. (continued). 

8 In order to examine causality in the wavelet framework few studies in the 
past use Discrete Wavelet Transformation (DWT) and then use the Granger- 
causality (for instance, see Jiang and Yoon, 2020; Reboredo et al., 2017; 
Tiwari et al., 2013). Olayeni (2016) argues that this approach fails to capture 
the causal effects in time-domain and hence it is as good as the Granger-Geweke 
measure of causality only in the frequency-domain. Thus, Olayeni (2016) 
suggests the current method as it circumvents the limitations of using the 
blended DWT-Granger causality model. 
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black funnel-shaped line, which demarcates the zones affected by edge 
effects, is the COI. The stronger (weaker) coherencies are depicted by the 
red (blue) zones as designated by the colour bar. Further, the arrows on 
the surface of the coherence maps indicate the phases. The positive co- 
movements are indicated by right-pointed (→) arrows, while the nega
tive association is ascribed by left-pointed (←) arrows. The lead-lag 
dynamics among a pair of variables is expressed by the arrows pointed 
upwards (↑), right-upward (↗) and left-downward (↙), which indicates 
the first time series is leading the second. Similarly, the downward (↓), 
right-downward (↘), and left-upward (↖) pointed arrows show that the 
second time series tend to lead to the first. Throughout the analysis, OVX 
is considered as the first series, while the stress-related indexes represent 
the second series. Fig. 3a exhibits the wavelet coherency between OVX 
and composite FSI, revealing certain interesting characteristics about 
the OVX-FSI association. Though some small and discrete, black- 
bounded contours are visible at high frequency, however, the overall 
dependency is weak. Relatively higher continuous and coherent de
pendency is observed in the medium to low frequencies starting from 
~32 days. It is noteworthy that higher and long-run coherencies are 
concentrated around the period corresponding to the crisis period. The 

coherence persists until the post-crisis period, i.e., mid-2011, at lower 
frequencies of ~256 days and above. The coherence, however, decays 
subsequently as the crisis condition tranquillizes. Another discrete sig
nificant coherence island is observable between ~32–128 days around 
the period 2014–16. This period is associated with higher volatilities in 
the oil market due to oil oversupply shocks (Dutta, 2018). Another 
black-bounded and significant zone is cognisable around the period of 
COVID-19 in the frequency of ~16 to 256 days. Regarding the direction 
of the relationship, the coherence maps are largely dominated by 
rightward pointed (➔) arrows indicating positive association. In terms of 
the lead-lag relationship, the results are not very convincing to interpret. 
Nevertheless, after the 2007–08 crisis, around frequencies ~256 days 
and above, some right-downward (↘) arrows are dominant. It indicates 
that the volatility in oil markets tends to follow financial conditions. In 
other words, the financial market stress is transmitted to the oil markets. 
The underlying reason could be manifold, such as the contagion mech
anism or the financialization of oil beyond others (Bianchi et al., 2020; 
Madaleno and Pinho, 2014). Similarly, during the phase of COVID-19, 
around ~32–64 days, some right-upward (↗) arrows are perceivable, 
meaning the financial stress trailed the volatility in the oil market. 

Fig. 7. a. In-phase and out-of-phase plots of causality between OVX and US stress. 
b. In-phase and out-of-phase plots of causality between OVX and Other Advanced Economies stress. 
c. In-phase and out-of-phase plots of causality between OVX and Emerging Markets stress. 
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It is imperative to understand the similarities (or differences) in the 
co-movement dynamics of the categorical stress indicators compared to 
composite FSI with respect to OVX. The case of credit-related stress 
represents the difference in borrowing costs for firms of different cred
itworthiness. Higher oil volatilities could impede economic activities 
affecting credit markets and banking systems adversely. On the other 
side, the conditions of financial stress forerun lower energy demands 
due to shrinkage in the public investments (Nazlioglu et al., 2015). 
During turbulent times the distress risks are bound to enhance due to 
increased risks in the macroeconomic environment and a fall in con
sumer demands. Thus, a firm may decide to produce in concurrence with 
revised demands leading to lower energy consumption. Fig. 3b depicts 
the association between credit and OVX in the time-frequency space. 
The overall findings are somewhat consistent with the results of the 
composite FSI. Three major islands of significance are observable 
around GFC (2007 onwards), oversupply shock (around 2014–16) and 
COVID-19. Further, the arrows indicate positive relationship between 
credit stress and OVX. The lead-lag relationship is marginally identifi
able, for instance, around 2019–20 at frequencies ~128–256 days some 
right-downward (↘) arrows are evident. The causal forces that stimulate 
the lagged behaviour in the oil volatility could stem from the shocks in 
the credit markets as public investment and energy demands diminish. 

Fig. 3c exhibits the coherencies between OVX and equity valuation. 

The valuation of equities reflects the confidence of investors in the real 
economy and their risk appetite. The co-movement behaviour between 
OVX and equity valuation-related stress is somewhat consistent with 
composite FSI and credit stress. Nonetheless, the arrows depict a 
persistent positive relationship. Further, during the initial phases of 
COVID-19 i.e., around 2020 a few right-upward (↗) arrows suggest 
stress in equity valuation follows OVX as consistent with previous 
literature on oil and equity relationship (Das and Kannadhasan, 2020; 
Xiao et al., 2019). Fig. 3d denotes the coherencies between OVX and 
funding related stress. The funding stress seems to co-move significantly 
during GFC and COVID-19. During GFC, the phases expressed by arrows 
are pointed upwards (↑) and right-upward (↗) meaning OVX leads the 
stress in funding markets. The previous literature establishes the influ
ential role of impending oil shocks on currencies and interest rates 
(Ioannidis and Ka, 2018; Kunkler and MacDonald, 2019). Further, 
during COVID-19 strong and persistent positive association is observed 
between the pair of variables as expressed by rightward pointed (➔) 
arrows. 

Fig. 3e shows the coherencies between OVX and stress in safe assets. 
Safe assets are securities with stable and predictable cash flows and are 
preferred by investors during the phases of an economic downturn. The 
coherencies of OVX are minimal with respect to stress in safe assets. The 
coherencies are mainly observable around GFC and during the phase of 

Fig. 7. (continued). 
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oil oversupply shock in 2014–16. Surprisingly, negligible coherencies 
are observed around the phase of COVID-19. Regarding phases, right- 
downward (↘) arrows dominate the maps around the aforementioned 
crisis periods. Investor’s precautionary flight to safety ahead of the 
fluctuations in oil markets could be a plausible reason for OVX to the 
trail. Lastly, Fig. 3f presents the co-movement of OVX with volatilities of 
equity, credit, currency, and commodity markets. The coherencies are 
persistent over ~32 days across all the major macroeconomic events. 
The phases indicate a strong positive association, and volatility stress 
follows OVX ~32–256 day’s frequency around GFC in 2009. This 
finding is consistent with prior literature establishing the association 
between OVX and implied/realized volatilities of equity and commodity 
markets (Dutta, 2018; Maghyereh et al., 2016; Xiao et al., 2019). 

Though the traditional wavelet coherence analysis reveals only the 
co-movement dynamics between a pair of variables in the time- 
frequency domain, it remains silent on the causality between the vari
ables. To overcome this issue and draw inferences on the causal asso
ciation between the variables in the time-frequency domain, the causal 
wavelet approach proposed by Olayeni (2016) is used. Fig. 4a-f exhibit 
the continuous wavelet transform plots of pairwise directional causal
ities between OVX and stress indexes in sub-figures (a) and (b). Within 
the maps, the white and yellow contours represent the statistical 

significance at 5% and 10%, respectively. The yellow zones denote 
spheres of high causality, whereas the blue zones indicate lower or no 
causality. 

Withstanding the results of the wavelet coherence analysis, the 
wavelet-based causalities also appear episodic around the periods of 
economic turbulence. Fig. 4a presents the continuous causalities be
tween OVX and composite FSI in pairs sub-figure (a) depicts the cau
salities transmitted from OVX to FSI. In contrast, the reverse causality is 
exhibited by sub-figure (b). It is apparent that continuous and significant 
zones of causalities running from OVX to FSI exist mainly around the 
aforementioned periods of crisis for frequencies ~16 to over 256 days. 
Similar patterns can be observed in the reverse case. Nevertheless, it 
seems that causalities transmitted from OVX are stronger than other
wise. In the causality transmission between OVX and credit-related 
stress, as depicted in Fig. 4b, the timeline of causality is consistent 
with the baseline stress measure. Interestingly, the evidence that 
stronger transmissions are emitted from OVX towards credit stress is 
convincing in this case around frequencies ~64–256 days. Similar in
ferences can be drawn for the other stress components such as equity 
valuation, funding, safe assets and volatility with respect to OVX as 
depicted by Fig. 4c-f. In each pair, OVX appears to be the stronger 
emitter of causal forces. Moreover, the intensity of causal transmission is 

Fig. 7. (continued). 
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heterogeneous across the stress components. Unsurprisingly, the trans
mission of causality is minimum for safe asset stress, which was also 
demonstrated by the wavelet coherence results. Hence, it may be 
inferred that causalities that exist between stress and OVX are stronger 
and more convincing, mainly around the phases of economic turbu
lences at various frequencies. Further, the strength of such causalities is 
time-varying and mostly emitting from OVX to stress components. 

Lastly, to attest to the association between OVX and stress compo
nents further, the sample period is bifurcated into a distressed and 
normal state of economic affairs. Such an investigation is relevant as it 
may reveal the difference in predictive linkages across different eco
nomic regimes. The economic states are defined by phases derived by 
decomposing the variables into positive and negative values. The posi
tive values of OVX and stress component define an economic phase of 
higher oil volatility and high stress, i.e., an adverse economic condition 
(or a distressed period). Conversely, negative values indicate a tranquil 
period (or a normal period). 

Fig. 5a-f exhibit the results for causalities across the phases. The sub- 
figures (a) and (b) in the upper panels show the positive (in-phase) 
causalities running from OVX to stress index and vice-versa, respectively 
(i.e., during the distressed period). Similarly, the sub-figures (c) and (d) 
in the lower panels show the negative (out-of-phase) causalities in the 
normal periods.9 It is clearly evident by Fig. 5a-f that though the in
ferences on causal transmission remain the same, the causalities mainly 
exist only during the phases of adverse economic conditions. Hence, it 
may be concluded that the causal association between OVX and stress 
components are not only episodic but also becomes stronger in dis
tressed phases. 

6. OVX and financial stress across geographic regions 

This section describes the causal transmissions between OVX and 
financial stress indexes of the geographic regions. In addition to 

segment-wise stress indexes, OFR also constructs indexes for three broad 
geographic regions, they are: (a) the US (focussing on the US-centric 
variables), (b) Other Advanced Economies (encompassing variables 
from advanced economies other than the US, primarily focussing on 
Eurozone and Japan), and (c) Emerging Markets (measuring stress by 
focussing on the emerging market variables). Fig. 6a-c exhibit the 
continuous wavelet transform plots of pairwise directional causalities 
between OVX and stress indexes of geographic regions in sub-figures (a) 
and (b). In the case of the US (as depicted by Fig. 6a), islands of sig
nificance may be observed around frequencies ~8 to 128 days around 
the period of GFC. Similarly, as discussed earlier in the case of segment- 
wise stress indexes, the other islands of significance persist during the oil 
oversupply shock and the COVID-19 pandemic. An interesting obser
vation is that, in this case, the causal transmission appears stronger from 
US stress to OVX. The plausible underlying reason could be the fact that 
turbulence in the US economy may influence the industrial production 
demand of the rest of the world by the way of economic integration 
(Arora and Vamvakidis, 2006; Heathcote and Perri, 2003). Nevertheless, 
the results for Other Advanced Economies and Emerging Markets (in 
Fig. 6b and c) remain consistent with the results of the segment-wise 
stress indexes. In both cases, OVX apparently has stronger causal in
fluences. Interestingly OVX has the strongest influence on Emerging 
Market stress, which is also consistent with the recent study conducted 
by Das et al., 2022a. In terms of causalities across the phases, as 
exhibited by Fig. 7a-c, the results reinforce the fact that causal associ
ations intensify mainly during the distressed phases. 

7. Further analysis of OVX and US stress index 

Lastly, further analysis is conducted to test the robustness of the 
findings in the case of the US stress index, which is an exception 
compared to all other indexes considered. In the current case, the US 
stress is proxied by the St. Louis Fed Financial Stress Index, which is 
sourced from the website of the Federal Reserve Bank of St. Louis. This 
data is available at a weekly frequency. The bidirectional causal asso
ciation and causalities across the phases are exhibited in Figs. 8 and 9, 

Fig. 8. Continuous wavelet transform plot of cau
sality between OVX and St. Louis Fed Financial Stress 
Index. 
Note: The White and Yellow contours in sub-figures 
(a) and (b) represent the statistical significance at 
5% and 10%, respectively. The significance levels are 
derived on 3000 Monte-Carlo simulation draws esti
mated on ARMA (1,1) null of no statistical signifi
cance. The COI is depicted by the green line, which 
demarcates the zones affected by edge effects. The 
scale has been transformed to a period for the Morlet 
wavelet function. Using ω0 = 6 for the optimal bal
ance (Torrence and Compo, 1998), we have Ft =
1.033. s.   

9 Other rules for interpreting the wavelet maps remain the same. 
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respectively. Interestingly, the baseline results remain qualitatively 
similar, and the stronger causal influences from US stress to OVX hold 
true. A detailed analysis of the factors that mediate this relationship may 
be the subject of detailed future research. 

8. Concluding remarks 

The influential role of crude oil fluctuations upon individual finan
cial asset segments (such as equity, bonds, and precious metals, among 
others) is well-established in the existing literature. While those studies 
are relevantly unwinding the segment-specific vulnerabilities of finan
cial markets with respect to oil shocks, however, not sufficient to deci
pher the overall standing of the market. Thus, Chen et al. (2014) suggest 
FSI as an appropriate measure of expectations of financial market losses 
induced by macroeconomic uncertainties such as oil shocks. Thus, this 
study examines the relationship between oil volatility (proxied by OVX) 
with respect to composite and categorical indicators of financial stress 
using a continuous wavelet transformation framework, which is seldom 
in the existing literature. 

The outcome of the study indicates that there exists a co-movement 
between oil volatility and financial stress, mainly around periods of 
economic turbulence. The patterns and strength of co-movement are 
time-varying and episodic. Further, the impact of OVX varies across the 

categories and nature of financial stress. Additionally, the direction of 
the relationship is mainly positive, and the lead-lag relationship, in most 
instances, reveals that OVX tends to drive the significant co-movement. 
In terms of causality, it is observed that they are mostly bi-directional, as 
consistent with Das et al. (2018b); however, relatively stronger causal
ities are transmitted from OVX to the stress components. The zones of 
causal transmission also correspond to the phases of economic in
stabilities such as the GFC, oil oversupply shock and COVID-19. To attest 
to the findings further, the OVX and stress indicators are decomposed 
into positive and negative values as represented by the phases. While the 
positive values indicate a state of distress, the negative values represent 
a state of tranquillity. The results suggest that the causalities are mainly 
existent in the state of distress than otherwise. Thus, the relationship 
between OVX and stress must be given attention, especially during the 
phase of economic turbulence. 

The findings of this study could be useful to several policymakers, 
such as energy economists, financial analysts and oil production and 
supply regulatory cartels. The potential arenas of financial vulnerabil
ities expected to stem from oil volatility (originating from production 
cuts or sluggish demand) could be projected, and remedial measures can 
be sought to mitigate the adverse shocks. Besides, the findings are 
equally relevant for the investors and other market participants to 
anticipate the potential impacts of OVX on the different classes of stress. 

Fig. 9. In-phase and out-of-phase plots of causality 
between OVX and Emerging Markets stress. 
Note: The White and Yellow contours in sub-figures (a) 
and (b) represent the statistical significance at 5% and 
10%, respectively. The significance levels are derived 
on 3000 Monte-Carlo simulation draws estimated on 
ARMA (1,1) null of no statistical significance. The COI 
is depicted by the green line, which demarcates the 
zones affected by edge effects. The scale has been 
transformed to a period for the Morlet wavelet func
tion. Using ω0 = 6 for the optimal balance (Torrence 
and Compo, 1998), we have Ft = 1.033. s.   
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Therefore, portfolio choices and diversification strategies may be framed 
according to the anticipated risk. In addition, understanding the 
persistence of the association indicated by the frequency dimension in 
the wavelet maps may aid in predicting the time lag of information 
diffusion. This also emphasizes the use of wavelet-based techniques. As a 
future course of study, one potential area could be the investigation of 
co-movement and causal transmission of structural crude oil shocks with 
respect to the various stress indicators in a wavelet framework. Such an 
ensuing study may deepen the understanding of this sphere of literature. 
In addition, as stated earlier, the underlying reason for causal trans
mission from US stress to oil market uncertainties may also be examined. 

Note: The White and Yellow contours in sub-figures (a) and (b) 
represent the statistical significance at 5% and 10%, respectively. The 
significance levels are derived on 3000 Monte-Carlo simulation draws 
estimated on ARMA (1,1) null of no statistical significance. The COI is 
depicted by the green line, which demarcates the zones affected by edge 
effects. The scale has been transformed to a period for the Morlet 
wavelet function. Using ω0 = 6 for the optimal balance (Torrence and 
Compo, 1998), we have Ft = 1.033. s. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.eneco.2022.106388. 
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