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Abstract 
Energy hubs (EHs) are couplers between different energy carriers in smart grids. The 

optimal participation of these actors in energy markets (EMs) as active and helpful actors is 
essential. This paper presents a new structure of methane-based EH considering biomass fuel 
to participate in the EMs of electricity, heat, and natural gas (NG). For this purpose, we 
propose an optimal bidding framework for the EH as a MILP stochastic optimization 
problem. The EH does not inject any CO2 pollution into the air (zero-CO2) and converts it 
into valuable methane (CH4) fuel using the CH4 production unit. To model uncertain 
parameters, electricity market price, wind speed, and solar radiation, an LSTM-based model 
of deep learning is proposed for scenario generation. Moreover, the Kantorovich distance 
matrix method reduces the generated scenarios. Since the proposed EH structure is compatible 
with Finland's infrastructure, simulation studies using actual data of this country are 
performed on selected days. The results show that in addition to profitable operation, high 
flexibility, environmental friendliness, and high accuracy of uncertainty modeling, the EH has 
no dependence on the purchase of energy carriers. 

 
Keywords: Energy hub, Zero-CO2, Biomass, Methane, Uncertainty modeling, Deep learning. 
Nomenclature 

 Indices 
Scenario index s 
Set and index of hours in the time horizon  T,t 
CHPST & CHPICE units j 
  
 Acronyms 
Multi-energy system MES 
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Energy hub EH 
Day-ahead  DA 
Monte Carlo MC 
Electrical energy storage  EES 
Combined heat and power by prime mover of the internal combustion 
engine CHPICE 
Combined heat and power by prime mover of steam turbine CHPST 
Electric heat pump EHP 
Wind farm WF 
Solar farm SF 
Natural gas NG 
Feasible operation region FOR 
Probability distribution function PDF 
Long short-term memory LSTM 
  
 Parameters 
Probability of scenarios  s  
Heat/NG prices ,th NGC C  
Min/max electricity input/output to/from the EH (MW) /,min/maxin outeP  
Min/max NG input/output to/from the EH (MW) /min/maxin outNG  
NG to electricity/heat efficiency of CHPICE (%) ,ICE ICEe th   
Min/max amount of electricity generation by CHPICE (MW) ,min/maxICEeP  
Min/max amount of heat generation by CHPICE (MW) ,min/maxICEthP  
CHPST cost function coefficients , ,...,a b f  
Permissible amounts of electricity generation in FOR of CHPST (MW) - 
x=[A,…, D] ,BioST xP  
Permissible amounts of heat generation in FOR of CHPST (MW) - 
x=[A,…, D] ,BioST xH  
Cost coefficient of j unit start-up (€) ( )CCSU j  
Cost coefficient of j unit shut-down (€) ( )CCSD j  
A large number M 
Number of hours unit j must be on & off ( ), ( )L j F j  
Periods unit has been on at the beginning of the j unit planning horizon 
(hour) (0, )U j  
Periods that j unit has been shut-down at the hour (hour) ( )S j  
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NG to heat efficiency of the boiler (%) Boilerth  
Min/max value of boiler heat generation (MW) ,min/maxBoilerthP 

CO2/SO2 pollution emission factor (kg/MW) 2 2/CO SOEF  
The permissible amount of SO2 pollution production (kg) 2SOPAPP  
Number of turbines in the wind farm turbN  
Rated wind power for wind turbine (kW) WT rP −  
Rated wind speed for wind turbine (m/s) rv  
Cut-in/cut-off speed of wind turbine (m/s) /cut in offv −  
Standard solar irradiance (W/m2) 0G  
Nominal operating temperature (℃) OTN  
Solar cell/ambient temperature (℃) ,c aT T  
Max power point current/voltage (A), (V)  / MPPI V  
Current/voltage temperature coefficient (A/℃), (V/℃)  /I vK  
Number of photovoltaic arrays PVN  
Electricity efficiency of the inverter (%) Inv  
Electricity efficiency of the transformer (%) Trae  
Electricity efficiency of the electrolyzer (%) EL  
The lower heating value of H2 (kJ/kg) H2LHV  
Max produced H2 by electrolyzer (molar) ELH2,maxN  
Coefficient of H2, CO2 & CH4 in methanation reaction , ,    
  
 Variables 
EH revenue terms (€) - [ , , ]out oute th outx P P NG=  Re.x  
EH expense terms (€) - ,[ , , , , ]in Bioe e th inx P P NG SU SD=  .Ex x  
Electric/heat power sold to the EMs (MW) ,out oute thP P  
Total electricity/NG purchased from the EMs (MW) ,ine inP NG  
Day-ahead electricity market price (€/MWh) DAC  
Total gas produced by the methane unit (MW) GenNG  
NG consumed by CHPICE (MW) ICENG  
NG consumed by the boiler (MW) BoilerNG  
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Electricity/heat generated by CHPST biomass burner (MW) ,Bio Bioe thP P  
Electricity/heat generated by CHPICE (MW) ,ICE ICEe thP P  
The heat generated by the boiler (MW) BoilerthP  
Binary variable to on/off unit of CHPST BioU  
Binary variable to on/off unit of CHPICE ICEU  
Binary variable for the commitment of j unit  ( )v j  
MUT/MDT of j unit (hour) ( ), ( )UT j DT j  
Binary variable to start-up/shut-down the j unit  ( ), ( )y j z j  
Total of CO2/SO2 pollutions produced (kg)- 2 2[CO ,SO ]x =  xGenerated  
H2 produced by electrolyzer (kg) GenH  
H2 produced by electrolyzer (molar) ELH2N  
NG generated & injected into the EH (MW) Gen inNG −  
NG sold (MW) Gen outNG −  
Electrolyzer power consumption (MW) PEL  
Binary variable to on & off of electrolyzer ELU  
Electric power generated by the wind/solar farm (MW) ,WF SFP P  
Wind speed/Solar irradiance (m/s, W/m2) ,Gv  
Clearness index tk  
Output current/voltage of PV (A, V) ,I V  

1. Introduction 
Environmental compatibility, productivity, and flexibility are the most critical policy 

priorities of governments, organizations, and research laboratories engaged in energy systems. 
The use of multi-energy systems (MESs) brought advantages, including the priorities 
expressed for the operation of energy systems [1]. With the development of these systems in 
the context of smart grids and the attractiveness of profitability opportunities in the energy 
markets (EMs), actors have been introduced who, in addition to buying energy carriers, are 
also active in selling them (called prosumer) [2]. One of these actors is the energy hub (EH), 
which as multi-energy actors, has a function as a black-box and generally performs three 
types of operations, including conversion, transmission, and storage, on the energy carriers at 
its input [2]-[3]. One of the most important issues for the proper and profitable performance 
of the EH in EMs is having an optimal bidding strategy that depends on the structure and 
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components assumed in the EH participation. In fact, proposing EH is a matter for optimal 
management and operation of EHs to participate in EMs. 

In [4], the optimal bidding of an EH is introduced to the electricity markets, taking into 
account the uncertainty of electricity prices and wind power generation. The intended EH 
only can buy electricity and natural gas (NG) and sell electricity and heat. In [5], how to 
bidding a prosumer controlled by a computational device is presented. In fact, this device has 
a function similar to that of an agent, which also forecasts in addition to bidding. This agent 
seeks to maximize profits and minimize risk. Rui Li et al. in [6] modeled the participation of a 
sample EH in the electricity and heat markets as a mathematic program with equilibrium 
constraints problem and then approximated a mixed-integer linear programming (MILP) 
model using binary expansion technique and KKT. Researchers [7] have explored a bilevel 
game between energy retailers and consumers in a multi-carrier energy system and simple 
EHs. In [8], the solution to the interdependence of electricity and NG systems for integration 
with wind resources using the demand side management of EHs has been investigated. 

In [9], an optimal two-level operation framework for an EH with electricity, NG, and heat 
energy carriers is presented. In general, the results of this study can be noted that exploiter 
risk aversion in future scheduling causes the costs of operation to decrease under costly 
scenarios. In [10], a robust framework for the optimal operation of an H2-based micro EH is 
presented. In this EH, there has been pollution production, and methane-fueled behavior has 
been carried out as an incoming and consumable energy carrier. Researchers [11], similar to 
researchers [10], have presented a framework for optimal participation of an EH in terms of 
electric vehicles (EVs) in day-ahead (DA) and real-time (RT) electricity markets. Looking at 
the issue of pollution as well as dealing with methane fuel is similar to the previous reference. 
In this research, conditional value at risk (CVaR) was used in terms of uncertainties related to 
wind speed, electricity prices, and the behavior of EVs. M. Oskouei et al. in [12] introduced a 
planning framework for the MES, which consists of networking multiple EHs. Researchers 
have modeled wind speed uncertainty using the information gap decision theory (IGDT) in 
their problem. However, the costs associated with CO2 emissions as well as the cost of EH 
operation have been mentioned as the most important cost-dependent semesters of this 
optimization problem. The results of this study have shown that EH networking and their 
operation as a MES have reduced energy costs. 

An RT scheduling problem for EHs in a dynamic pricing market is presented in [13]. 
Moreover, the interaction of EHs is modeled as a potential game to optimize the payment of 
each EH to the electricity and NG markets and customer satisfaction of energy consumption. 
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The use of H2, heat, and electricity storage systems and CHP and boilers has created an EH in 
[14] that its researchers can investigate the optimal operation of this element with multiple 
energy sources under uncertainty of the electricity market prices and electricity and heat 
loads. Also, operation limitations such as minimum uptime (MUT)/downtime (MDT) are 
investigated in this article. In [14], despite the carriers of electricity, heat, and H2, EH 
operation has been studied using IGDT to deal with the wind speed and solar radiation 
uncertainties. The issue of energy sharing as an alternative solution to the high cost of energy 
storage systems has made this issue attractive and valuable in smart grids. Bei Li et al. in [15] 
have presented a coordinated scheduling method for a microgrid that comprises NG, 
electricity, and heat energy carriers. This microgrid functions for DA scheduling like an EH. 

 Accordingly, in [16], a method for sharing energy between electricity and H2 in the 
presence of electric storage, PV, and PH2EV vehicles has been introduced. The studies have 
shown that by dividing the integrated energy of H2 and electricity, the system's total cost has 
decreased, and social welfare has increased. Due to the increasing extent of EHs in power 
systems and considering the benefits of these elements in current energy structures, in [17], a 
demand response model for an EH is introduced as a multi-objective optimization problem. In 
the presence of uncertainty parameters in such EH, the results indicate an increase in 
economic aspects and reduce other negative aspects. In [18], considering the advantage of 
reducing pollution under dependence conditions between different energy carriers, a two-level 
model is presented to help it consider the cost of producing CO2, the low-carbon operation in 
coordination with the level of transmission and distribution integrated energy-carbon prices. 
The presented model allows both levels to operate independently and coordinates these two 
levels effectively to operate the various energy systems in larger dimensions. Alipour et al. at 
[19] have presented an optimal probabilistic scheduling model for operating an EH, taking 
into account load response plans in the form of an MINLP model. The considered 
uncertainties include market price and load, modeled by Monte Carlo (MC) and 2PEM 
methods. A chance-based optimization framework is provided to manage the optimal 
scheduling of an EH in the presence of electric demands, heat and cool, and renewable power 
generation in [20]. A robust chance-constrained optimization method is presented in this 
paper to model hourly demands and renewable energy generation. In [21], the operation of an 
EH generated by the coupling of renewable wind, solar, biogas, and other heat exchangers 
have been investigated. In addition to selling the generated electricity and heat, the EH under 
study in this paper can sell biogas. The results show that the cost of operation and the use of 
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electrical storage increase its life. Another very influential issue in the planning and operation 
of the EH is the constraints related to greenhouse gas emissions.  

Yuan et al. in [22] have presented the optimal scheduling framework of an EH composed 
of CHP units, wind turbines, energy storage systems, and moveable loads. Researchers have 
used gas conversion technology to control and make the most of wind renewable energy due 
to the uncertain nature of wind speed, demand, and electricity prices. The results have shown 
that the purchase of electricity from the energy market has decreased by coupling between 
energy carriers in this framework. As a result, the cost of operation has also taken a 
decreasing trend. As mentioned above, one of the roles in which the EH can be used is energy 
retailing. With that in mind, the authors in [23] have introduced a multi-energy retailer hybrid 
robust-stochastic model in terms of demand accountability plans to implement this role. This 
framework aims to maximize profit regarding uncertain parameters of electricity market 
prices and energy demands. The results of this work have shown that using EH in the role of 
retailer and demand response program in terms of the traditional mode will benefit the actor 
more.  

Considering the support that biogas fuels have provided in production and use, we 
presented in [24] a linearized DA operation framework of an EH that provided all its internal 
electrical and thermal loads and participation in EMs based on the production and use of 
biogas fuels. In this EH, the local biomass fuel energy in that area is converted to biogas fuel 
by a chemical process in the digester converter. Also, uncertainties of electricity market price 
and solar radiation are modeled. This study showed that local production and use of biogas 
fuels compared to NG-dependent energy converters increase profits and flexibility, reduce 
pollution production, and depend on the purchase of energy carriers. One of the significant 
issues for an actor in operation and bidding to EMs is uncertainty modeling. The relationship 
between increasing the modeling accuracy of uncertain parameters and the amount of EH 
profit from participation in EMs is a direct relationship. The authors of this article have 
already proposed four new uncertainty modeling methods in [25] to improve the accuracy of 
estimating the behavior of uncertain parameters. The results showed that the presented 
methods have led to lower operating costs, reduced dependence on the purchase of energy 
carriers, increased flexibility and reduced the use of energy converters such as electrical 
storage.  

Another very influential issue in the planning and operation of the EH and MES is the 
constraints related to greenhouse gas emissions. According to the world health organization 
(WHO), more than 7 million people die annually due to air pollution [26]. Such incidents on a 
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global scale led governments to commit to reducing CO2 emissions and other greenhouse 
gases; the Paris agreement, ratified on November 4, 2016, was among those measures [27]. 
These agreements led energy industry operators to look for ways to respond positively to 
these plans. One of the best cases, when RES was introduced, was supporting and developing 
energy converters with lower pollution levels and higher efficiency. However, considering 
relatively high investment costs, increasing generation uncertainty, and spending considerable 
time can be considered the challenges of constructing these producers. 

The use of technology and engineering techniques and the complexities they bring to their 
beneficiaries can be a suitable or temporary solution for responding to the challenges 
expressed. One of these techniques, which can also be implemented in the EHs, is CH4 
production systems by accessing a suitable level of CO2 produced in generating electricity, 
heat, etc., in the body of the EH. These units prevent the emissions of the bulk of greenhouse 
gases. However, they can also purchase and depend on the EH into the NG distribution 
network low or needlessly and introduce it as a producer with an acceptable production level. 
The main reason for such capability in this structure is the dependence between different 
energy carriers. 

In the research that has been done so far in the field of EH operation, biomass fuel has 
rarely been used. This fuel has many advantages, such as low energy production cost and less 
dependence on weather conditions, and its use is increasing. Therefore, biomass units can 
reduce pollution, reduce uncertainty and increase flexibility for the participation of EHs in 
EMS. [28]-[29]. 

Table 1 summarizes the differences between this study and previous studies. In this Table, 
the mentioned references in terms of items such as the type of energy carriers used, non-
pollution production and use of CO2 in the energy production process, structure based on 
production and local use of CH4, application of proven chemical and laboratory relationships 
in production CH4, conversion of electrical energy into H2 fuel and CH4 as well as the 
characteristics of the optimization model in the operation of the EH are compared with each 
other. 
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Table 1: Comparison among the studied references and the framework of this article 

Year-Ref 

Energy carriers 
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[4]-2018 ✓ ✓ ✓   ✓       ✓ 
[5]-2018 ✓            ✓ 
[6]-2018 ✓ ✓ ✓          ✓ 
[7]-2018 ✓ ✓ ✓           
[8]-2020 ✓ ✓ ✓   ✓       ✓ 
[9]-2018 ✓ ✓ ✓          ✓ 
[10]-2020 ✓ ✓ ✓ ✓  ✓     ✓   
[11]-2021 ✓ ✓ ✓   ✓       ✓ 
[12]-2021 ✓ ✓ ✓   ✓       ✓ 
[13]-2017 ✓ ✓ ✓           
[30]-2018 ✓ ✓ ✓ ✓       ✓  ✓ 
[14]-2019 ✓ ✓ ✓ ✓  ✓ ✓    ✓  ✓ 
[15]-2018 ✓ ✓ ✓ ✓       ✓  ✓ 
[16]-2020 ✓ ✓ ✓ ✓  ✓ ✓    ✓   
[17]-2018 ✓ ✓ ✓   ✓        
[18]-2019 ✓ ✓ ✓   ✓        
[19]-2017 ✓ ✓ ✓          ✓ 
[20]-2020 ✓ ✓ ✓    ✓      ✓ 
[21]-2018 ✓ ✓ ✓  ✓ ✓ ✓      ✓ 
[22]-2020 ✓ ✓ ✓   ✓      ✓ ✓ 
[23]-2021 ✓ ✓ ✓         ✓ ✓ 
[24]-2021 ✓ ✓ ✓  ✓  ✓  ✓    ✓ 
[25]-2022 ✓ ✓ ✓  ✓ ✓ ✓      ✓ 
This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

From Table 1, it can be concluded that in the EH structure studied in past research, energy 
carriers such as electricity, heat, NG, H2, biomass, wind, and sunlight are not simultaneously 
considered a stochastic optimization problem. There has been the challenge of producing CO2 
as an environmental issue in many previous works. This causes the operator to either consider 
restrictions on CO2 production or pay its production penalty. However, not only does the EH 
as a multi-energy and environmentally friendly element distance itself from its nature, but it 
also reduces its flexibility and also affects its profits and offers to EMs. In none of the 
research mentioned, there has been no full and direct use of CO2 produced by energy 
converters located in the EH for chemical composition with H2-based on proven laboratory 
relationships. In fact, the actual conditions and limitations for producing CH4 by a special 
converter using H2 and CO2 must be considered. 
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In summary, in previous research, it can be mentioned that the modeling of methane 
production has been done simply and away from the actual situation. Moreover, the CH4 
energy carrier has not been considered a pivotal fuel that could directly evaluate all EH 
productions and partnerships in the EM. The simultaneous conversion of electrical energy to 
CH4 and H2 is another case that can be trusted due to the high penetration of renewable energy 
sources in the structure of the EH and the improvement of their energy management. This 
issue has also been less considered in previous works. 

Accordingly, in this article, the optimal operation of an EH with CHP's biomass fuel and 
prime mover of the steam turbine (CHPST) and NG with prime mover of the internal 
combustion engine (CHPICE), boiler with NG, wind and solar farms, electrolyzer and CH4 
production units, respectively, are studied in the EMs of DA electricity, heat, and NG without 
CO2 emissions. Since modeling uncertain parameters, such as solar radiation, wind speed, and 
electricity market price is very effective in EH operation, a method based on the long-short 
term memory (LSTM) model of deep learning is introduced for scenario generation with 
higher accuracy. Also, to reduce the volume of generated scenarios, the Kantorovich distance 
matrix method, which had high accuracy, is applied. Moreover, Finland has been selected as a 
case study due to having two specific features (geographical and strategic conditions) that can 
increase the significant level and advantage of using the EH in these conditions as a case 
study and, of course, under actual conditions. The main advantages of this study are the 
existence of entirely different climatic conditions in different seasons, high prices of energy 
carriers such as NG and heat, and extensive distribution networks of heat, NG, and electricity. 
In addition to the cases mentioned above, the abundance of biomass-fuel CHP units in this 
country can be considered an attractive option. 

Considering the research gaps and challenges mentioned in Table 1, the innovations of this 
article can be expressed as follows: 

• Developing a new EH structure for modeling CH4 production from CO2 and H2, taking 
into account biomass fuel; 

• Proposing an optimal operation framework of the introduced EH to the EMs of 
electricity, heat, and NG, without CO2 emissions. 

In addition, considering that in our recent research in [25], the LSTM method showed a 
better performance than other methods (especially compared to the classic Monte Carlo), in 
this paper, this method is also applied to generate a scenario. Therefore, another contribution 
of this paper is the implementation of LSTM in the proposed EH structure. 
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The rest of this article is organized as follows. Section II contains the model description in 
which the proposed structure of the EH and the optimal strategy problem framework are 
presented. The scenario generation and scenario reduction to model the uncertainties are 
carried out by the proposed method in Section III. In Section IV, simulation results based on 
the actual data in Finland are presented, and finally, conclusions are given in Section V.  
2. Model Description 

In this section, first, a description of the proposed methane-based EH structure is 
presented. Then, the proposed optimal operation framework for the EH to participate in EMs 
is formulated as a stochastic optimization problem. 
2.1. Proposed Structure of Energy Hub 

In the structure of EHs since their emergence, CHP units with natural gas fuel, wind farms, 
and solar have been the most commonly used. Typically, the participation of EHs as vendors 
in the electricity and heat EMs has only been investigated. If researchers wanted to consider 
the issue of CO2 pollution produced in the operation of EHs, they would have to set 
constraints for it. As seen in Fig. 1, the proposed EH uses biomass fuel as a valuable and 
environmentally friendly fuel in this paper. However, it also transfers all CO2 produced from 
internal units in the proposed EH to the CH4 production unit after collection. In the CH4 
production unit, after the chemical reaction of CO2 with H2 (produced from the electrolyzer 
unit), valuable CH4 fuel is produced. The produced CH4 can be sold directly to the NG market 
or injected into the EH. Even in the case of profitable opportunities from the sale of electricity 
and heat, it can be injected into the CHP unit with NG and boiler to produce heat and 
electricity. Also, to better understand the proposed EH structure, the single-line diagram of 
Fig. 1 is shown as Fig. 2. 
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Fig. 1. Structure of the proposed EH understudy. 

 
Fig. 2. Single line diagram of the proposed EH. 

Many studies that have examined CH4 production, such as references [31] and [32], have 
made CH4 production very simple and without the operational and chemical challenges that 
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exist for such a chemical reaction. This paper has tried to model methane production under 
conditions close to reality, based on valid articles' laboratory results. 
2.2. Objective Function of Operation Problem 

The objective function of the operation strategy problem is in the form of profit 
maximization, according to (1), and its terms are revenue from the sale of electrical energy 
(2), revenue from the sale of heat (3), and revenue from the sale of NG (4) are expressed. Cost 
terms include the cost of purchasing electricity (5), the cost of operating the CHP-ST biomass 
burner unit (6) [33], the cost of purchasing NG (7), the cost of setting up and shutting down 
the CHPST and CHPICE units (8)-(9). 
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(7) . ( , ) ( , ).in NGEx NG t s NG t s C=  
(8) . ( , ) ( , )j jEX SU t s CCSU y t s=   
(9) . ( , ) ( , )j jEX SD t s CCSD z t s=   

2.3. Constraints of Operation Problem 
The EH as an energy coupling system can include several elements, each with one or more 

inputs and outputs. Therefore, the energy flow in the EH is significant for energy management 
[34], which is given in (10). 
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where L is the output energy vector, C is the coupling matrix and the input energy vector 
P. 
2.3.1. Electricity and NG distribution networks 

Constraints related to the input/output port of the EH with electricity and NG distribution 
networks are stated in (11-14). Also, for both gas and electricity networks, the limitations of 
the input and output energy ports are the same. 

(11) ,min ,max( , ) ( , ) ( , )in in ine e eP t s P t s P t s   
(12) ,min ,max( , ) ( , ) ( , )out out oute e eP t s P t s P t s   
(13) min max( , ) ( , ) ( , )in in inNG t s NG t s NG t s   
(14) min max( , ) ( , ) ( , )out out outNG t s NG t s NG t s   

2.3.2. CHP by biomass fuel 
The prime mover of biomass-fuel CHP units is usually a steam turbine. Due to the 

dependence of electricity and heat on each other, it is possible to operate in one of the two 
types of feasible operating regions (FORs). CHP with FOR type I is used in this paper, and its 
modeling is by (15)-(17). Also, for the CHPST unit, (18) and (19) are used the heat and power 
generation to zero [25]. 

(15) ( ), ,, ,, ,
( , ) ( , ) 0Bio BioST A ST BBio Bio Bio Bioe ST A th ST ABio BioST A ST B

P PP t s P P t s HH H
−

− −  − 
−

 

(16) ( ), ,, ,, ,
( , ) ( , ) (1 ( , )) MBio BioST B ST CBio Bio Bio Bioe ST B th ST B BioBio BioST B ST C

P PP t s P P t s H -U t sH H
−

− −  −  − 
−

 

(17) ( ), ,, ,, ,
( , ) ( , ) (1 ( , )) MBio BioST C ST DBio Bio Bio Bioe ST C th ST C BioBio BioST C ST D

P PP t s P P t s H -U t sH H
−

− −  −  − 
−

 
(18) ,0 ( , ) ( , ) ( , )Bio Bioe ST A BioP t s P t s U t s    
(19) ,0 ( , ) ( , ) ( , )Bio Bioth ST B BioP t s H t s U t s    

2.3.3. CHP by NG fuel 
The electricity and heat generated by CHPICE are calculated according to (20)-(21) and 

within the framework of the constraints specified in (22)-(23) [35]. 
(20) ( , ) . ( , )ICE ICEe e ICEP t s NG t s=  
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(21) ( , ) . ( , )ICE ICEth th ICEP t s NG t s=  
(22) ,min ,max( , ) ( , ) ( , )ICE ICE ICEe ICE e e ICEP U t s P t s P U t s     
(23) ,min ,max( , ) ( , ) ( , )ICE ICE ICEth ICE th th ICEP U t s P t s P U t s     

2.3.4. Minimum up/downtime 
Considering that the on/off of CHPST and CHPICE units, in addition to the cost, MUT and 

MDT operation limitations are used, in this paper, (24)-(27) are used for MUT modeling and 
(28)-(31) for MDT [36]. 

(24)  
( )

1
1 ( , , ) 0, ,L j

t
v t s j s j

=

− =    

(25) 
( ) 1 ( , , ) ( ) ( , , ), , , ( ) 1... ( ) 1k UT j

t k
t s j UT j y t s j s j k L j T UT j

+ −

=

    = + − +  

(26)  ( , , ) ( , , ) 0, , , ( ) 2...T
t k

t s j z t s j s j t T UT j T
=

−     = − +  
(27)  ( ) ,( ( ) (0, ) (0, )L j Min T UT j U j j= −  
(28) 

1
( , , ) 0, ,jF

t
t s j s j

=

=    

(29)  
( ) 1 1 ( , , ) ( ) ( , , ), , , ( ) 1... ( ) 1k DT j

i k
t s j DT j z t s j s j k F j T DT j

+ −

=

−     = + − +  

(30)  1 ( , , ) ( , , ) 0, , , ( ) 2...T
t k

t s j z t s j s j t T DT j T
=

− −     = − +  
(31)     ( )  , ( ) (0, )  1 (0, )  F j Min T DT j s j j= − −  

In (24), the initial status of the jth unit is checked that if the j unit is turned on at zero-hour, 
the number of fewer hours of MUT is clear, one of the conditions has been met. (25)-(26) has 
been used to check MUT adverbs during consecutive hours and the last UT)j(, respectively. 
Also, (27) expresses the mathematical relationship of the number of hours the j unit should be 
turned on. The constraints related to MDT are similarly described in (28)-(30) that also the 
mathematical relationship of the number of hours that the j unit should be turned off is 
mentioned in (31). 
2.3.5. Boiler by NG fuel 
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Equations (32-33) are used to express the heat generated by the boiler and the constraints 
related to its product range, respectively [37]. 

(32) ( , ) . ( , )Boiler Boilerth th BoilerP t s NG t s=  
(33) ,min ,max( , )Boiler Boiler Boilerth th thP P t s P   

2.3.6. Pollution 
The highest limitation of organizations in the world is for the production of CO2 and Sulfur 

dioxide (SO2), which in this paper is used to calculate their production levels (34) and (35), 
respectively. Furthermore, the maximum emission of SO2 determined by Finnish 
environmental law must always be observed in (36) as a condition.   

Due to the use of all CO2 produced in the EH to produce CH4 (the methane-based zero-
CO2 EH), no amount of it is released into the environment, and accordingly, no additional 
constraints are defined for it. 

(34) 2 2( , ) ( , ) ( , ) ( , )Bio ICE BoilerCO CO e e thGenerated t s EF P t s P t s P t s =  + +
 

 
(35) 2 2( , ) ( , ) ( , ) ( , )Bio ICE BoilerSO SO e e thGenerated t s EF P t s P t s P t s =  + +

 
 

(36) 2 2( , )SO SOGenerated t s PAPP  
2.3.7. Solar and wind farm 

Equation (37) is used to model the power generated by the wind farm [38]. Also, (38-42) to 
calculate the power generated from the solar farm have been applied [39]. It should be noted 
that, due to the relatively small capacity of the considered solar farm, the effect of partial 
shading conditions has been neglected. 

(37) 
( , )

( , )( , ) ( , )
0

WF

WT r turb r cut off
cut in WT r turb cut in rr cut in

P t s
P N v v t s vv t s v P N v v t s vv v else

−
−

−
− −

−

=

 
 

−
   

−



 

(38) 0( , ) ( , ) /tk t s G t s G=  
(39) ( , ) ( , ) ( ( , ) (( 20) / 800)c a OTT t s T t s G t s N= +  −  
(40) ( , ) ( , ) ( ( ( , ) ( , )) )t MPP c a II t s k t s I T t s T t s K=  + −   
(41) ( , ) ( , )MPP c vV t s V T t s K= −   
(42) ( , ) ( , ) ( , )SF PV InvP t s I t s V t s N =     
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2.3.8. CH4 production unit 
CH4 is naturally underground and is usually produced through biological and geological 

processes. Also, this is high-consumption gas can be obtained from the reaction 
2 2 4 24 2CO H CH H O+ → + . A certain amount of CO2 and H2 is used in this chemical reaction, 

producing CH4 and water. One of the main elements for the preparation of CH4 at a meager 
cost is the reduction of injectable air pollution. In this paper, CO2 produced by CHPST, 
CHPICE, and boiler units are transferred to the CH4 production unit after the screening of 
exhaust, each of which is dependent on pollution produced from fuel consumed and under 
operational constraints. CH4 produced in the EH unit is obtained from (43) the condition of 
establishing constraints [40]. According to [41] and considering laboratory research in [42], a 
combination of 2.272 kg of CO2 and 0.4131 kg of H2, 0.933 kg of CH4 is formed. 

To balance the H2 and CO2 injected into the CH4 production unit and obtain the zero-CO2 
EH, (44) is used. Also, since 85 to 95 percent of NG is CH4, in this paper, it is assumed that 
the thermal value of CH4 by domestic energy converters as well as NG distribution network is 
the same as NG. The second constituent element of CH4 is H2, which in this paper is caused 
by the chemical activity of electrolyzer in water according to (45) [43]. Moreover, the 
constraints related to the range of electricity consumed by the electrolysis unit (MW) and the 
H2 produced (molar) are expressed in (46) and (47), respectively [43]. 

(43) 2( , ) ( , ) ( , )GenGen COt s H t s t sNG Generated   =  +   
(44) 2 ( , ) ( , ) ( / )GenCO t s H t sGenerated  =   
(45) ( , )( , ) ELELH2 H2

EL× P t sN t s LHV


=  
(46) ( , ) ( , ) ( , )EL ELmin EL EL max ELP U t s P t s P U t s     
(47) ( , ) ( , )EL ELH2 H2,max ELN t s N ×U t s  

2.3.9. Balance of electricity, heat, NG 
To balance and implement appropriate behavior within a specific framework of electricity 

generation, heat, and NG in the EH understudy, (48-51) are used, respectively. 
(48) ( , ). ( , ) ( , ) ( , ) ( , ) ( , ) ( , )in Tra Bio ICE out ELe e e e WF SF e eP t s P t s P t s P t s P t s P t s P t s + + + + = +  
(49) ( , ) ( , ) ( , ) ( , )Bio ICE Boiler outth th th thP t s P t s P t s P t s+ + =  
(50) ( , ) ( , ) ( , ) ( , )in Gen in ICE BoilerNG t s NG t s NG t s NG t s−+ = +  
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(51) ( , ) ( , ) ( , )Gen Gen in Gen outNG t s NG t s NG t s− −= +  
3. Uncertainty modeling 

The operation problem of the EH understudy, considering that it has been proposed in the 
form of a stochastic optimization problem like much other research, therefore, appropriate 
scenarios are needed to model uncertain parameters, including solar radiation, wind speed, 
and the DA market price. This paper proposes the LSTM model based on forecasting to 
generate the scenario, and the Kantorovich distance matrix method is also presented to reduce 
the scenarios. 
3.1. Scenario Generation 

Long-short term memory (LSTM) is the name of one of the most famous models available 
in deep learning, proposed by Hochreiter and Schmidhuber [44]. Due to their advantages, 
such as memory, ability to establish a relationship between nonlinear variables, and accuracy, 
deep learning models paved the way for displaying their high ability against classical methods 
such as the ARIMA family [45]. 

The use of the LSTM for modeling uncertain parameters in different applications has been 
paid special attention in these years. One of these applications is scenario generation by it in 
different ways. For example, in [46], a three-step process involving a class allocation 
component, an LSTM-based productive element, and an automated reduction method with 
variance-based continuity criteria is presented. Scenario generation in this model has been 
done without forecasting past data and their error based on layers assigned to the neural 
network and determining its parameters for scenario generation. In [47], scenario generation 
for a hydro-PV power system has been done to correlate spatial and temporal data without 
forecasting past parameters. By examining input data related to southwestern China, the 
researchers announce the acceptable results of their approach. Based on our recent research in 
[25], we proposed four methods for modeling uncertainty. The results showed that the 
proposed LSTM method in comparison with other three methods (i.e., Monte Carlo based on 
Kolmogorov Smirnov test, ARIMA based on AIC statistic, and TBATS based on AIC 
statistic) has higher efficiency and accuracy to generate scenarios of uncertain parameters of 
wind speed, solar radiation, and electricity market price. Accordingly, we use the LSTM in 
this research. 

The process of the proposed LSTM-based model for the scenario generation is shown in 
Fig. 3. After determining and removing the missing values from historical data sets, the total 
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data is categorized into three categories: training (70%), validation (15%), and test (15%) are 
divided. Also, the test data are divided into two categories: test1 (except the last 480 data) and 
test2 (all data). Test1 data is used to forecast and extract forecast errors in recent days to 
determine the forecast error's normal probability distribution function (PDF) for the scenario 
generation process. one of the ways to increase the quality of machine learning is to adjust the 
hyperparameters of the model used. Usually, determining the best hyperparameters is very 
hard and, in most cases, impossible. For this reason, researchers are more looking to 
determine the optimal hyperparameters. We used the Grid Search method in the LSTM 
learning process. This method is based on applying an input to the black box, receiving the 
results, and examining them to reset the parameters. The apparent advantage of this method 
compared to other methods is that all possible combinations are examined, so high 
computational and processing power will be needed in some instances. However, the 
significant disadvantage of this method is the speed of its performance and processing. The 
high growth rate of search time relative to the number of parameters makes using this method 
in massive data practically impossible or costly. 

 Python and MATLAB program codes have been applied to perform all the preprocessing, 
forecasting, and scenario generation processes. Considering that using the LSTM model with 
higher speed requires robust computer hardware, Google Colab servers have been used [48]. 
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Fig. 3. Proposed scenario generation process with LSTM model. 

3.2. Scenario Reduction 
Usually, the scenarios generated for modeling uncertainty parameters have a large number 

because of the behavioral coverage of the parameter under study in different aspects. 
Performing calculations related to optimization problems with this large number of scenarios 
leads to an increase in the resolution time or even the computer's inability to perform it. For 
this reason, scenario reduction methods are used to transfer parameter behavior to a smaller 
number of scenarios. The main operation of these methods is to remove generated scenarios 
that are close to each other or that the probability of their occurrence is very low. The 
dimensions of the remaining scenarios can be up to the appropriate number. The desired basis 
of sensitivity analysis performed is reduced. In this paper, the Kantorovich distance matrix 
method is used, according to Fig. 4, as a reducer of scenarios generated by the LSTM model 
[49].  

Initial processing on input data 
Categorization of time series data into 4 sets of train, validation, test1 and test2

Training and quality assessment of LSTM education with train data
Quality assessment of LSTM learning depth with validation data
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Fig. 4. Used scenario reduction process by Kantorovich distance method. 

According to Fig. 4, the basis of this method is the use of a matrix in which the probable 
distance of the generated scenarios is placed. Like other clustering methods, this method tries 
to divide scenarios and generally input data into their own in different clusters. The primary 
purpose of this method is to determine a representative with a specific probability of 
occurrence from the data located in each cluster. For this purpose and determining the 
remaining scenarios, its probability interval is used. In general, the greater the probability 
distance between the two scenarios, the more likely it is to behave in the same scenario. Also, 
if the value is equal to zero, it means behaving quite similarly to those two scenarios. By 
identifying similar scenarios by this method, those scenarios are eliminated, and their 
probability is added to the remaining scenarios. In this way, the scenarios generated by the 
LSTM model are reduced by the Kantorovich distance matrix method. 
4. Simulation & Discussion 

In this section, the results related to the optimal operation of the EH introduced in Fig. 1, 
whose parameters are considered based on Table 2, are stated. Due to the reduction of damage 
to the correlation between uncertain parameters, all historical data for modeling these 
parameters from one place (region Varsinais_Suomi due to having wind farms and access to 
electricity, NG, heat distribution networks, and biomass fuel) and a specific time (from 2005 
to 2016) have been extracted [50–53]. Also, two sample working days in winter and summer, 
including January 14 and July 14, 2016, have been selected for simulation studies. 
Considering that one of the main terms of the objective function of the optimization problem 
in this paper, cost function of CHPST unit and also has nonlinear components, this cost 
function is assumed linearly. Accordingly, the EH operation problem was modeled as a MILP 
optimization problem and solved using the CPLEX solver in GAMS. This section presents the 
results in three sub-sections, including modeling the uncertain parameters, the results of EH 
optimal operation to EMs, and three sensitivity analyses for completing the studies. 
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Table 2: EH parameters understudy 
Parameter Value Parameter Value 

Trae  0.98 EL  0.75 
/maxTrae,minP  0 ,4 ElN  500 

/maxminNG  0 ,5 H2LHV  240 
, , , ,BioST A B C DP  1.5, 1.2, 0.3, 0.5 ELH2,maxN  1562.5 

, , , ,BioST A B C DH  0, 2.5, 1, 0 /turb PVN  10, 4000 
b, c, e 36.0012, 65, 0.6002 WT rP −  200 

/ICEe th  0.35, 0.4 /cut in offv −  3.5, 25 
/maxICEe,minP  0.05, 0.7 rv  11.5 
/maxICEth,minP  0.1, 0.5 0G  1000 
,j jCCSU CCSD  5, 5  OTN  4000 

,ST ICEUT UT  2, 1 MPPI  7.35  
,ST ICEDT DT  2, 1 MPPV  30.5  

0 0,ST ICEU U  1, 1 IK  0.0003 
Boilerth  0.85 vK  0.0027 

/maxBoilerth,minP  0, 0.8 Inv  0.88 
2, / /CO ST ICE BoilerEF  500, 550, 450  NG, winterC  34 
2, / /SO ST ICE BoilerEF  0.003, 0.0035, 0.0025  NG, SummerC  34 

2SOPAPP  500  th, winterC  38 
, ,    0.4131, 2.272, 0.933  th, SummerC  38 
 

4.1. Scenarios Generated and Reduced 
The process described in Fig. 3 has been used to generate scenarios using the LSTM 

model. To adequately cover the behavioral aspects of uncertain parameters, 500 scenarios 
were generated for each parameter. After this step, 500 scenarios were reduced to 10 using the 
Kantorovich distance method and its stated method in Fig. 4. It should be noted that selecting 
10 scenarios to reduce the generated scenarios based on sensitivity analysis and background 
studies has been a suitable option. 

As examples in winter, the generated and reduced scenarios with actual and forecasted 
values for wind power, solar power, and DA market price parameters are shown in Fig. 5 and 
Fig. 6. The generated scenarios have not exceeded a specific range and have followed the 
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forecasted values with high accuracy. Also, the reduced scenarios summarize the inherent 
behavior of the generated scenarios, indicating the appropriate performance of this method. 

 Fig. 5. Generated scenarios for uncertain parameters using the LSTM in winter with actual and forecasted values. 

 Fig. 6. Reduced scenarios for uncertain parameters using the Kantorovich distance method in winter with actual and forecasted values. 
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4.2. Results from the Operation of EH and Comparative Studies 
Table 3 and Fig. 7 show the expected results of the proposed EH operation during the 24 

hours of selected days in the electricity, heat, and NG markets. Table 3 shows the operation 
results of this EH, including the benefits of operation and exchange of electricity, heat, and 
NG carriers and the amount of CO2 injection into the air. In this section, the behavior of two 
other structures is also investigated for a more thorough investigation and a better 
understanding of the benefits of EH structure behavior proposed in this research. Accordingly, 
Table 3 includes the results of the operation of three types of case studies as follows: 

• Case study 1: The structure of the proposed EH in this research; 
• Case study 2: The EH structure proposed in this study without considering CH4 

production unit and H2 production; and 
• Case study 3: Structure of the second case study without regard to biomass fuel and 

CHPST unit. 

 
Fig. 7. The results of EH operation to EMs in winter and summer. 
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Table 3: The results of the proposed EH operation and its comparison with two different structures 
 Structure 

Purchased 
electricity 
(MWh) 

Sold 
electricity 
(MWh) 

Purchased 
NG (MWh) 

Sold 
thermal 
(MWh) 

CO2 
injected to 

air (kg) 
Operation 
profit (€) 

Revenue from EMs (€) 
Electricity Thermal NG 

Win
ter 

Sea
son

 Case study 1 0 49.073 0 33.327 0 6077.333 2564 1266 4080 
Case study 2 0 79.903 16.286 66.514 17535 3645.824 4304 2527 -553 
Case study 3 0 51.106 16.294 6.517 3136.6 2467.630 2773.957 247.668 -553 

Sum
mer

 
Sea

son
 Case study 1 0 29.589 0 33.327 0 4511.379 998 1266 4080 

Case study 2 0 57.266 7.278 62.911 15801 1428.405 1918 2390 -247 
Case study 3 0 28.466 7.278 2.911 1401 836.944 973.771 110.625 -247 
 
The results show that the operating income of the proposed EH in this paper, alone from 

the NG market on the selected winter and summer days, constitutes 51% and 61% of the total 
income of the proposed EH, respectively. However, this EH does not inject any CO2 
contamination into the air and spends all of it producing CH4. Also, EH does not need to buy 
electricity carriers and NG from networks and therefore does not depend on energy 
distribution networks to purchase energy. 

On the contrary, it can be concluded that the removal of biomass fuel, local CH4 
production, and the use of CO2 produced to convert into more valuable energy lead to a great 
increase in the purchase of electricity and NG. Also, the amount of profit is significantly 
reduced, and the beneficiary is faced with a significant amount of pollution that you have to 
manage during the operation process. All of this indicates the valuable function of the 
proposed model and adapts to the environment and economic conditions. 

Considering that the proposed optimization problem consists of three main parts, including 
scenario generation, scenario reduction, and determination of bidding decision variables, the 
time spent on the computer system with the specifications of Core i5 7th Gen and RAM 6 GB 
is shown in Table 4. According to this Table and the EH DA operation, the calculation time 
for each sector, i.e., scenario generation and reduction and determination of EH decision 
variables, is relatively short. Such processing speed makes the proposed framework for using 
a suitable and fast operator.  
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Table 4: Simulation time (sec.) for calculations of the proposed model 
 Software Processing 

environment Winter season Summer season 

Scenario 
generation 

Wind speed Python & 
MATLAB 

Google Colab and 
PC 

175  177  
Sunlight 178  176  

Market price 172  174  
Scenario 
reduction 

Wind speed 
MATLAB PC 

65  62  
Sunlight 70  65  

Market price 59  61  
Determining decision 

variables GAMS PC 31  28  
 

4.3. Sensitivity Analysis 
In the following, three sensitivity analyses are presented to investigate the impact of EMs 

price, CO2 pollution, and limitations related to the NG network port connected to the EH on 
the behavior and expected profit gained from the EH operation. 
4.3.1. Price of Energy Carriers 

In this sensitivity analysis, the effect of positive and negative changes in market price in 
steps of 5% to the base value of energy carriers including electricity, heat, and NG on the 
operation profit result of the EH has been investigated. As seen from Fig. 8, with energy 
carriers' prices rising or falling, the EH's profit reaction to these changes would be almost 
linear. In other words, by increasing or decreasing each energy carrier's price, the profit 
earned by the EH also increases or decreases, respectively. 



27 

 
Fig. 8. Results of EH operation profit in the sensitivity analysis of EMs prices. 

4.3.2. Emission Factor of CO2 
Considering that CH4 production in this EH depends on the specific chemical composition 

of CO2 and H2, in this part of sensitivity analysis, the amount of CO2 produced by CHP units 
with biomass and NG fuels as well as the boiler unit with NG fuel has been studied. Changes 
in CO2 production volume from the mentioned units have been performed by applying 5% 
incremental and decreasing steps compared to the primary factor values. The results of this 
analysis, shown in Fig. 9, mean that the total pollution rate increases by increasing the CO2 
emission factor. As a result, the EH is forced to increase the volume of H2 produced to 
comply with the operational constraints. Finally, because the EH cannot sell more than 5MW 
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to the NG network, it injects some of the produced gas levels into the domestic units, which 
causes the EH's profits to be withdrawn from the well-being. 

On the other hand, the electricity demand by the electrolyzer increases, which reduces 
electricity sales and profits. Such a relationship can be expressed between the mentioned 
parameters regarding reducing CO2 pollution coefficients. The increasing and decreasing 
behavior of this analysis has a linear relationship with the profit of the EH. 

 
Fig. 9. Results of EH operation profit in the sensitivity analysis of CO2 emission. 

4.3.3. Port Restrictions of NG 
Investigating the impact of buying/selling restrictions from/to the NG network is the third 

analysis studied due to the impact on the EH operation results in energy carriers exchanges. In 
this analysis, the NG network port's capacity connected to the EH has been accompanied by a 
1.5 MW step increase, with the results of exchanges related to the electricity, heat, and NG 
network along with CO2 pollution produced and the operating profits of winter are shown in 
Fig. 10. By changing the structure mentioned in this sensitivity analysis, the EH at each stage 
is faced with an increase in the sales capacity of NG, which attracts the operator's focus to 
make more profits towards increasing the sales of this energy carrier. To implement such a 
decision, the CH4 generating elements, including H2 and CO2, increase production so that the 
biomass-burning CHP unit has faced an increase in production at each stage. However, in the 
last stage, the production of NG-burning CHP decreased. The electrolyzer power demand 
increased, leading to a decrease in electricity sales to the DA power market. 
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Fig. 10. Results of EH operation profit in the sensitivity analysis of NG port restrictions. 
 
The presence of scalable capability in the presented EH is another valuable and important 

point that can be concluded in different parts of this research simulation. The main reason for 
such an advantage in the proposed operation framework is the complete linear structure of the 
optimization problem.  
5. Conclusion 

In this article, an optimal operation framework of an EH with a new and attractive structure 
has been proposed to the electricity, heat, and NG markets along with considering uncertain 
parameters, including solar radiation, wind speed, and DA power market price. One of the 
most important features of the presented EH is CH4 production, CO2 emissions prevention, 
and biomass fuel as a usual and clean fuel. Moreover, an LSTM based model of deep learning 
has been presented to generate scenarios and model the behavior of uncertain parameters. The 
results showed that this method has high accuracy and has generated scenarios close to the 
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behavioral reality of parameters. Also, the reduced scenarios of the Kantorovich distance 
method have been very accurate and able to follow the initial scenarios' behavior. 

The results of the optimal operation of the EH to EMs showed the EH has no dependence 
on the purchase of electricity and NG from distribution networks, and it has also been able to 
become a significant player in the sale of electricity, heat, and NG. Such flexibility and 
increased energy exchange power can be considered the placement of biomass-burning CHP 
units and CH4 production. The EH's profits in the EMs showed how attractive and profitable 
the operation of such a unit could be. This profitability is due to the cheap or cost-free of one 
of the main elements of CH4 production, i.e., CO2, in which all CO2 EHs produced from 
biomass-burning CHPs, NG burners, and boilers were transferred to the CH4 production unit. 
In addition to this profitability, the compatibility of such an EH with the environment showed 
that no CO2 was injected into the air, which could also result in the sale of pollution permits 
that would increase the profits of the EH. Sensitivity analyses showed that the EH as a player 
who couples different energy carriers together could bring many advantages in productivity, 
which occurs provided that the constraints related to the EH are also met. For example, in this 
paper, it was shown that by increasing the volume of CO2 production as a CH4-making 
supplement, the EH's profits would not increase because this occurs due to the limitations of 
energy distribution networks. In this study, to further investigate the performance of the 
proposed energy hub, we considered two other structures. These two structures are formed by 
eliminating the methanation unit and removal of biomass fuel, respectively. One of the most 
important results of this study can be a 40% and 60% increase in winter and 59% and 82% 
profit of the proposed model compared to the other two structures in summer. The existence 
of scalability features and reliable results for changing the size dimensions of the presented 
framework is another advantage of the proposed model. 
According to the presented results, finally, the following points can be considered in order to 
implement the proposed structure in practical applications: 

• Existence and proper access of EH to electricity, heat, and NG distribution networks 
as well as biomass fuel locally in the study location; 

• Access to reliable and comprehensive weather information and data on geographical 
location and EMs; 

• Lack of restrictive laws for the participation of multi-energy actors as well as the 
conversion of H2, CO2, and other energy carriers into valuable CH4 fuels; 

• Observing safety rules in the design and operation of converters during the process of 
energy conversion; and 
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• Paying attention to the chemical reaction capacity of the CH4 converter, the existence 
of constant pressure and temperature of NG, heat, CO2 produced from the conversion 
of NG to other energy carriers and H2 fuel. 
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